
Topological Methods in Nonlinear Analysis
Volume 47, No. 2, 2016, 511–528

DOI: 10.12775/TMNA.2016.011

c© 2016 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

PULLBACK ATTRACTORS

FOR A NON-AUTONOMOUS SEMILINEAR DEGENERATE

PARABOLIC EQUATION

Xin Li — Chunyou Sun — Feng Zhou

Abstract. In this paper, we consider the pullback attractors for a non-

autonomous semilinear degenerate parabolic equation ut − div(σ(x)∇u) +
f(u) = g(x, t) defined on a bounded domain Ω ⊂ RN with smooth bound-

ary. We provide that the usual (L2(Ω), L2(Ω)) pullback Dλ-attractor in-

deed can attract the Dλ-class in L2+δ(Ω), where δ ∈ [0,∞) can be arbitrary.

1. Introduction

In this paper, we consider the following non-autonomous degenerate para-

bolic equation:

(1.1)


ut − div(σ(x)∇u) + f(u) = g(x, t) in Ω× (τ,+∞),

u = 0 on ∂Ω× (τ,+∞),

u|t=τ = uτ ∈ L2(Ω),

where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω, the

diffusion coefficient σ, the nonlinearity f and the external force g satisfying the

following conditions:

(C1) σ(x) is a non-negative measurable function such that σ ∈ L1
loc(Ω) and

for some α ∈ (0, 2), lim inf
x→z

|x− z|−ασ(x) > 0 for every z ∈ Ω.
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(C2) The function f ∈ C1(R,R) satisfies, for any s ∈ R,

α1|s|p − α2 ≤ f(s)s ≤ α3|s|p + α4, p ≥ 2,(1.2)

f(0) = 0, f
′
(s) ≥ −l,(1.3)

where αi, i = 1, 2, 3, 4 are positive constants.

(C3) g ∈ L2
loc(R;L2(Ω)) satisfies

(1.4)

∫ 0

−∞
eλs‖g(s)‖2L2(Ω) ds < +∞,

where λ > 0 is the first eigenvalue of the operator −div(σ(x)∇ · ) in Ω

with the homogeneous Dirichlet boundary condition.

Assumption (C1) indicates that the function σ( · ) may be extremely irregu-

lar, for example, σ( · ) could be non-smooth, such as σ(x) = |x−z|α for α ∈ (0, 2)

and every z ∈ Ω. The physical motivation of assumption on the diffusion vari-

able σ( · ) is to model the “perfect insulator” or “perfect conductor” of the media

somewhere, see [1], [2], [4], [9], [10] for detailed discussions.

For equation (1.1) with degeneracy, the existence and uniqueness of solutions

have been studied extensively, see for example, [4], [5], [14], [15] for the elliptic

case and [8], [15], [18] for the parabolic problem.

The main purpose of this paper is to consider the dynamics of the dissi-

pative dynamical systems, using the so-called pullback attractor ([6], [7], [11]),

generated by the weak solutions of (1.1).

Before we continue with the setting of the problem, let us introduce a notation

that will be used in the sequel.

Let Rλ be the set of all functions ρ : R→ [0,∞) such that

eλτρ2(τ)→ 0 as τ → −∞,

where λ > 0 is the first eigenvalue of the operator −div(σ(x)∇ · ) in Ω with the

homogeneous Dirichlet boundary condition; and the attraction universe

Dλ be the class of all families D̂ = {D(t) : t ∈ R, D(t) ⊂ L2(Ω)},(1.5)

such that D(t) ⊂ {u ∈ L2(Ω) : ‖u‖L2(Ω) ≤ ρD̂(t)} for some ρD̂ ∈ Rλ.

Under assumptions (C1)–(C3), the existence of a pullback Dλ-attractor as

well as analysis of its properties in the phase space L2(Ω) for problem (1.1) has

been studied extensively. Let us recall some typical results among them.

In [1], Anh and Bao proved that under assumptions (C1)–(C3), there ex-

ists an (L2(Ω), L2(Ω)) pullback Dλ-attractor for the process generated by the

weak solutions of (1.1), and then, they also proved that such attractor can

attract in D1
0 (Ω, σ) ∩ Lp(Ω)-norm (where the power p comes from (1.2)) if
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g ∈W 1,2
loc (R;L2(Ω)) satisfies∫ 0

−∞
eλs(‖g(s)‖2L2(Ω) + ‖g′(s)‖2L2(Ω))ds < +∞.(1.6)

Furthermore, the authors in [2] show that the pullback attractor obtained in [1]

is in fact an (L2(Ω), D2
0 (Ω, σ) ∩ L2p−2(Ω))-pullback attractor if g satisfies the

additional condition: ∫ 0

−∞
eλs‖g

′
(s)‖m

′
k

Lmk (Ω) ds <∞,

where mk=2βk+2/(2βk+2 + 1−2βk+1) and m′k=2βk+1 with β=N/(N − 2 + α)

and k ∈ N satisfies 0 ≤ k ≤ logβ(p−1)+1. Note that, in the previously mentioned

two papers [1], [2], the authors used essentially the method of differentiating

the equation with respect to time t to get some estimates about higher-order

integrability of ut, and then obtained the higher-order integrability of u(t) to

obtain the attraction in Lp(Ω) and L2p−2(Ω).

Recently, for a stochastic version of equation (1.1), under the same assump-

tions (C1)–(C2), Yang and Kloeden in [19] proved the existence of a random

attractor in L2(Ω), and then Zhao in [20] proved that the random attractor ob-

tained in [19] indeed can attract in D1
0 (Ω, σ)∩Lp(Ω)-norm, where the power p is

the same as in (1.2). On the other hand, for an autonomous equation (1.1) with

the same assumptions (1.2)–(1.3) on nonlinearity, but with a different assumption

on the degenerate function σ, Li, Ma and Zhong in [12] established the existence

of a global attractor in L2(Ω), and the attraction can be the D1
0 (Ω, σ) ∩ Lp(Ω)-

norm too, where the power p is also the same as in (1.2).

In this paper, we will extend the known results, without any additional con-

ditions except (C1)–(C3), by showing that the known (L2(Ω), L2(Ω)) pullback

Dλ-attractor indeed can attract the Dλ-class in L2+δ(Ω)-norm for any δ ∈ [0,∞).

That is,

Theorem 1.1. Under assumptions (C1)–(C3), let U(t, τ) be the process

generated by the weak solutions of (1.1) and Â = {A (t) : t ∈ R} be the

(L2(Ω), L2(Ω)) pullback Dλ-attractor. Then, for any δ ∈ [0,∞) and any D̂ =

{D(t) : t ∈ R} ∈ Dλ, the following properties hold:

(a) Â can attract the Dλ-class in L2+δ-norm, that is,

lim
τ→−∞

distL2+δ(U(t, τ)D(τ),A (t)) = 0 for all t ∈ R;(1.7)

(b) for any complete trajectory v(t) ∈ A (t) (t ∈ R) of U(t, τ), there exist

two sequences T (t, δ, D̂, Â ) and Mδ(t) (which depend only on t, δ,N ,∫ t
−∞ eλs‖g(s)‖2L2(Ω) ds and the L2-size of A (t)), such that

(1.8)

∫
Ω

|U(t, τ)uτ − v(t)|2+δ dx ≤Mδ(t) for any t− τ ≥ T (t, δ, D̂, Â ).
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Remark 1.2. Theorem 1.1 (a) implies immediately both the (L2(Ω), Lp(Ω))-

pullback attractor obtained in [1] and (L2(Ω), L2p−2(Ω))-pullback attractor ob-

tained in [2]. Theorem 1.1 (b) implies that A (t)−v(t) is bounded in L2+δ(Ω) for

any δ ∈ [0,∞) despite the fact that we do not know whether A (t) is bounded

in L2+δ(Ω) or not.

Remark 1.3. Note that our external forcing term g satisfies only the L2-

integrability (C3), thus we cannot obtain the L∞-estimate for the solution; at the

same time, from (1.4), even for the non-degenerate equation (e.g. as that in [13]),

the solution of (1.1) at most belongs to W 2,2p−2(Ω), however, since our spatial

dimension N ≥ 3 is arbitrary, in general we do not have W 2,2p−2(Ω) ↪→ L∞(Ω).

Therefore, the L2+δ(Ω)-attraction for any δ ∈ [0,∞) is not trivial, and seems

un-expectable to some extent.

The rest of this article consists of three sections. In Section 2, we recall the

main concepts and results about function spaces, solutions of (1.1) and abstract

results about pullback attractors we will use in this paper. In Section 3, we recall

and give an outline of proof about the existence of an (L2(Ω), L2(Ω)) pullback

Dλ-attractor. Finally, we prove the main result, Theorem 1.1, in Section 4.

2. Notation and abstract results

In this section, we will firstly introduce the function spaces and recall the

existence and uniqueness of the solution to equation (1.1), and then, we will

recall some abstract results related to pullback attractors which will be used

later.

2.1. Weighted Sobolev spaces. We recall some properties of weighted

Sobolev spaces with weight function σ(x).

Definition 2.1. Assume that Ω is a bounded domain in RN (N ≥ 3) and

σ(x) is a non-negative measurable function such that σ ∈ L1
loc(Ω) and for some

α ∈ (0, 2), lim inf
x→z

|x− z|−ασ(x) > 0 for every z ∈ Ω. The Hilbert space D1
0 (Ω, σ)

is defined as the closure of C∞0 (Ω) with the norm

‖u‖D1
0 (Ω,σ) :=

(∫
Ω

σ(x)|∇u|2 dx
)1/2

,

and the product

〈u, v〉D1
0 (Ω,σ) :=

∫
Ω

σ(x)∇u∇v dx.

The following lemma refers to the continuous and compact inclusions of

D1
0 (Ω, σ).

Lemma 2.2 ([2], [4], [5]). Assume that Ω is a bounded domain in RN (N ≥ 2),

and σ(x) satisfies (C1). Then the following embeddings hold:
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(a) D1
0 (Ω, σ) is continuously embedded into L2∗α(Ω);

(b) D1
0 (Ω, σ) is compactly embedded into Lp(Ω) as p ∈ [1, 2∗α), where 2∗α =

2N/(N − 2 + α) and α comes from (1.1).

Remark 2.3. The exponent 2∗α plays the role of the critical exponent in the

classical Sobolev embedding. 2∗α > 2 when α ∈ (0, 2).

Under condition (C1), the operator A := −div(σ(x)∇ · ) is positive and self-

adjoint with the domain of definition,

Dom(A) = {u ∈ D1
0 (Ω, σ) : Au ∈ L2(Ω)}.

The space Dom(A) is a Hilbert space endowed with the usual scalar product.

Moreover, there exists a complete orthonormal system of eigenvectors (ej , λj)j∈N
such that

(ej , λj) = δij and − div(σ(x)∇ej) = λjej , i, j = 1, 2, . . . ,

0 < λ1 < λ2 ≤ . . . , λj → +∞, j → +∞.

Noting that

(2.1) λ = λ1 = inf

{
‖u‖2D1

0 (Ω,σ)

‖u‖2L2(Ω)

: u ∈ D1
0 (Ω, σ), u 6= 0

}
,

we have

(2.2) ‖u‖2D1
0 (Ω,σ) ≥ λ‖u‖

2
L2(Ω) for all u ∈ D1

0 (Ω, σ).

Lemma 2.4 ([2]). Assume that Ω is a bounded domain in RN (N ≥ 2), and

σ(x) satisfies (C1), then the following estimate holds:

λ‖u‖2D1
0 (Ω,σ) ≤

∫
Ω

|Au|2 dx,

where λ is the positive constant given in (2.1).

2.2. Solutions for equation (1.1). For the readers’ convenience, in this

subsection we will recall the definitions of solutions of equation (1.1), see [1], [2],

[12] for more details.

Definition 2.5 (Weak solution). A function u(x, t) is called a weak solution

of (1.1) on [τ, T ] if and only if

u ∈ C([τ, T ];L2(Ω)) ∩ L2(τ, T ; D1
0 (Ω, σ)) ∩ Lp(τ, T ;Lp(Ω))

and u|t=τ = uτ almost everywhere in Ω such that∫ T

τ

∫
Ω

(
∂u

∂t
φ+ σ∇u∇ϕ+ f(u)ϕ

)
dx dt =

∫ T

τ

∫
Ω

gϕ dx dt

holds for all test functions ϕ ∈ L2(τ, T ; D1
0 (Ω, σ)) ∩ Lp(τ, T ;Lp(Ω)).
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Definition 2.6 (Strong solution). A function u(x, t) is called a strong solu-

tion of (1.1) on [τ, T ] if and only if

u ∈ C([τ, T ]; D1
0 (Ω, σ)) ∩ L2(τ, T ; Dom(A)) ∩ L∞(τ, T ;Lp(Ω))

and the three equations in (1.1) are satisfied almost everywhere in their corre-

sponding domains.

The following two lemmas refer to the existence and uniqueness of the global

weak solution and strong solution for the degenerate parabolic equation (1.1),

which can be obtained by the Faedo–Galerkin method (see [8], [15], [17], [18]).

Here we only state them as follows.

Lemma 2.7. Assume that Ω ⊂ RN is a bounded domain with smooth bound-

ary, σ(x) satisfies (C1), g ∈ L2
loc(R;L2(Ω)) and f satisfies (C2). Then for any

initial data uτ ∈ L2(Ω) and any T > τ , there exists a unique weak solution u of

equation (1.1) which satisfies

u ∈ C([τ, T ];L2(Ω)) ∩ L2(τ, T ; D1
0 (Ω, σ)) ∩ Lp(τ, T ;Lp(Ω)),

and the mapping uτ → u(t) is continuous in L2(Ω).

Lemma 2.8. Assume that Ω ⊂ RN is a bounded domain with smooth bound-

ary, σ(x) satisfies (C1), g ∈ L2
loc(R;L2(Ω)) and f satisfies (C2). If uτ ∈

D1
0 (Ω, σ) ∩ Lp(Ω) then there exists a unique strong solution u of equation (1.1)

which satisfies

u ∈ C([τ, T ]; D1
0 (Ω, σ)) ∩ L2(τ, T ; Dom(A)) ∩ L∞(τ, T ;Lp(Ω)).

2.3. Abstract results on pullback attractors. In this subsection, we

recall some results about the existence of pullback attractors and their properties,

see [6], [7], [11] for more details.

Let us consider a process U on a metric space X, i.e. a family {U(t, τ) :

−∞ < τ < +∞} of continuous mappings U(t, τ) : X → X, such that

(a) U(τ, τ) = Id;

(b) U(t, τ) = U(t, r)U(r, τ) for all τ ≤ r ≤ t.
Let P(X) denote all bounded sets of X, Dλ be a class of parameterized sets

D̂ = {D(t) : t ∈ R} ⊂P(X).

Definition 2.9. A family Â = {A (t) : t ∈ R} is said to be a pullback

Dλ-attractor for the process {U(t, τ)} if

(a) A (t) is compact in X for all t ∈ R;

(b) Â is Dλ-pullback attracting in X, i.e.

lim
τ→−∞

distX(U(t, τ)D(τ),A (t)) = 0, for all D ∈ Dλ and all t ∈ R;
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(c) Â is invariant, i.e.

U(t, τ)A (τ) = A (t), for all ∞ < τ < t < +∞.

We call A minimal if for any family C = {C(t) : t ∈ R} ⊂ Dλ of closed

sets such that lim
τ→−∞

distX(U(t, τ)D(τ), C(t)) = 0, we have A (t) ⊂ C(t).

Denote by K the collection of all complete trajectories of U(t, τ), that is,

K := {û = {u(t) : t ∈ R} : U(t, τ)u(τ) = u(t) for any ∞ < τ ≤ t <∞}.

The following result gives conclusions about the construction of attractors

(see e.g. [11]).

Lemma 2.10. Let U(t, τ) be a process on Banach space X, and Â = {A (t) :

t ∈ R} ∈ Dλ be the pullback Dλ-attractor of U(t, τ). Then, for any t ∈ R,

A (t) =
⋃

û∈K ∩Dλ

u(t),

consequently, there exists at least one complete trajectory v̂ of U(t, τ) which sa-

tisfies v̂ ∈ Dλ.

We also need the following abstract result given in [16] to get the higher-order

attraction.

Lemma 2.11. Let Z ↪→ Y ↪→ X be the three Banach spaces with continuous

embeddings, U( · , · ) be a process defined on X and Dλ be a class of parameterized

sets D̂ = {D(t) : t ∈ R} ⊂P(X). Moreover, assume that

(a) U( · , · ) has a pullback Dλ-attractor Â = {A (t) : t ∈ R} in X, and

Â ∈ Dλ;

(b) v̂ = {v(t) : t ∈ R} ∈ Dλ is a complete trajectory of U(t, τ);

(c) W (t, τ) (−∞ < τ ≤ t < ∞) are a family of operators defined on X

satisfying

U(t, τ) · = v(t) +W (t, τ)( · − v(τ)) for all τ ≤ t;

(d) there exists B̂0 = {B0(t) : t ∈ R} with B0(t) is bounded in Z for each

t ∈ R, satisfying that for any t ∈ R and any D̂ ∈ Dλ, there exists

τ0 = τ0(t, D̂) ≤ t such that

(2.3) W (t, τ)(D(τ)− v(τ)) ⊂ B0(t) for all τ ≤ τ0.

Then, the following hold:

(i) B̂ = {v(t)}t∈R + B̂0 := {B(t) = v(t) +B0(t) : t ∈ R} is a Dλ-absorbing

set in X for the process U( · , · );
(ii) distX(Â , B̂) = 0, i.e.

(2.4) distX(A , v(t) +B0(t)) = distX(A − v(t), B0(t)) = 0 for all t ∈ R;
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(iii) if B0(t) is closed in X for all t ∈ R, then

(2.5) A (t)− v(t) ⊂ B0(t) for all t ∈ R;

further, we assume that the space Y satisfies ‖ · ‖Y ≤ C‖ · ‖θX‖ · ‖
1−θ
Z for

some θ ∈ (0, 1] and constant C, then for any D̂ ∈ Dλ and any t ∈ R,

(2.6) distY (U(t, τ)D(τ),A (t))→ 0 as τ → −∞.

In the sequel we shall need the following lemma belonging to the family of

Gronwall type lemmas, see [13].

Lemma 2.12. Let for some λ > 0, τ ∈ R and, for s > τ ,

y′(s) + λy(s) ≤ h(s),

where the functions y, y′, h are assumed to be locally integrable and y, h nonneg-

ative on the interval t < s < t+ r, for some t ≥ τ . Then

y(t+ r) ≤ e−λr/2 2

r

∫ t+r/2

t

y(s) ds+ e−λ(t+r)

∫ t+r

t

eλsh(s) ds.

3. The existence of pullback attractor in L2(Ω)

Thanks to Lemma 2.7, under assumptions (C1), (C2), g ∈ L2
loc(R;L2(Ω)),

we can define the bi-parametric family of maps

(3.1) U(t, τ) : L2(Ω) 7→ L2(Ω), with τ 6 t, given by U(t, τ)uτ = u(t),

where u(t) = u(t; τ, uτ ) is the unique weak solution of problem (1.1), which forms

a process on L2(Ω).

We start with the existence of pullback attractors in L2(Ω). The following

result about the existence of pullback attractors in L2(Ω) can be deduced directly

from the arguments given in [1, 19], here we recall it, and for the later application,

we give an outline of its proof.

Lemma 3.1. Under assumptions (C1)–(C3), the process U(t, τ) generated by

the weak solution of (1.1) has an (L2(Ω), L2(Ω)) pullback Dλ-attractor Â =

{A (t) : t ∈ R}, that is, Â ∈ Dλ and satisfying:

(a) A (t) is compact in L2(Ω) for all t ∈ R;

(b) Â (t) is L2(Ω)-pullback Dλ-attracting, that is, for any D̂ = {D(t) : t ∈
R} ∈ Dλ,

lim
τ→−∞

distL2(Ω)(U(t, τ)D(τ),A (t)) = 0 for all t ∈ R;(3.2)

(c) Â is invariant, i.e.

U(t, τ)A (τ) = A (t) for any ∞ < τ ≤ t <∞.(3.3)
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Proof. According to the general criterion (e.g. see [6], [7], [11]) about the

existence of pullback attractor, it is sufficient to prove the below two claims.

Moreover, since the estimates are standard, we only present it by some formal

arguments, which can be justified by means of the approximation procedure as

that for the existence of solutions (e.g. see [8], [12], [18]).

Claim 1. There exists a pullback Dλ-absorbing set in L2(Ω).

Let uτ ∈ L2(Ω) and u(t) = U(t, τ)uτ . Multiplying the first equation in (1.1)

by u and integrating over Ω, we deduce that

(3.4)
1

2

d

dt
‖u‖2L2(Ω) + ‖u‖2D1

0 (Ω,σ) + α1‖u‖pLp(Ω)

≤ 2

λ
‖g(t)‖2L2(Ω) +

λ

2
‖u‖2L2(Ω) + α2|Ω|,

where we have used (1.2) and Young’s inequality. Applying the inequality

‖u‖2D1
0 (Ω,σ)

≥ λ‖u‖2L2(Ω), we get

d

dt
‖u‖2L2(Ω) + ‖u‖2D1

0 (Ω,σ) + 2α1‖u‖pLp(Ω) ≤
4

λ
‖g(t)‖2L2(Ω) + 2α2|Ω|(3.5)

and

1

2

d

dt
‖u‖2L2(Ω) +

λ

2
‖u‖2L2(Ω) + α1‖u‖pLp(Ω) ≤

2

λ
‖g(t)‖2L2(Ω) + α2|Ω|.

Using the Gronwall inequality, then we have that

(3.6) ‖u(t)‖2L2(Ω) ≤ e
−λ(t−τ)‖u(τ)‖2L2(Ω)

+ 2α2|Ω|λ−1 + 4λ−1e−λt
∫ t

τ

eλs‖g(s)‖2L2(Ω) ds.

For each t ∈ R, we define R(t) as a positive number given by

R2(t) = 1 + 2α2|Ω|λ−1 + 4λ−1e−λt
∫ t

−∞
eλs‖g(s)‖2L2(Ω) ds,

then, from (1.4) we know that R(t) <∞ for every t ∈ R.

Define D̂0 := {D(τ) : D(τ) := {v ∈ L2(Ω) | ‖v‖L2(Ω) ≤ R(τ)}, τ ∈ R}, then,

according to the definition of Dλ given in (1.5), we know that D̂0 is a pullback Dλ-

absorbing set for the process U(t, τ), that is, for any D̂ = {D(τ) : τ ∈ R} ∈ Dλ

and any t ∈ R, there exists a T̂ = T (t, D̂) > 0 satisfying

(3.7) U(t, τ)D(τ) ⊂ D̂0 = {u ∈ L2(Ω) : ‖u(t)‖L2(Ω) ≤ R(t)}

for all τ ∈ R satisfies t− τ ≤ T̂ .

Claim 2. The process U(t, τ) defined in (3.1) is Dλ-pullback asymptotic

compact in L2(Ω).
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We will prove that there exists a family B̂ of pullback Dλ-absorbing sets which

are bounded in D1
0(Ω, σ), from which the pullback asymptotical compactness in

L2(Ω) follows immediately by the compact embedding (see Lemma 2.2).

Firstly, we multiply the first equation in (1.1) by −div(σ(x)∇u) and integrate

over Ω to deduce that

1

2

d

dt
‖u‖2D1

0 (Ω,σ) +

∫
Ω

|Aun|2 dx+ (f(u),−div(σ(x)∇u)) = (g(t),−div(σ(x)∇u)).

Applying (1.3) and the embedding λ‖u‖2D1
0 (Ω,σ)

≤
∫

Ω
|Au|2 dx, we get

d

dt
‖u‖2D1

0 (Ω,σ) + λ‖u‖2D1
0 (Ω,σ) ≤ 2l‖u‖2D1

0 (Ω,σ) + ‖g(t)‖2L2(Ω),

then apply Lemma 2.12 and the above inequality with r = 1 to get

(3.8) ‖u(t+ 1)‖2D1
0 (Ω,σ) ≤ 2e−λ/2

∫ t+1/2

t

‖u(s)‖2D1
0 (Ω,σ) ds

+ e−λ(t+1)

∫ t+1

t

eλs
(
2l‖u(s)‖2D1

0 (Ω,σ) + ‖g(s)‖2L2(Ω)

)
ds

for every t ≥ τ .

Now, we estimate the right-hand side in terms of the data using the energy

inequality (3.5). Integrating (3.5) from t to t+ 1/2 and using (3.6), we get∫ t+1/2

t

‖u(s)‖2D1
0 (Ω,σ) ds(3.9)

≤‖u(t)‖2L2(Ω) + α2|Ω|+ 4λ−1

∫ t+1/2

t

‖g(s)‖2L2(Ω) ds

≤‖u(t)‖2L2(Ω) + α2|Ω|+ 4λ−1e−λt
∫ t+1

t

eλs‖g(s)‖2L2(Ω) ds

≤ e−λ(t−τ)‖u(τ)‖2L2(Ω) + α2(2λ−1 + 1)|Ω|

+ 4λ−1e−λt
∫ t+1

−∞
eλs‖g(s)‖2L2(Ω) ds.

Integrating (3.5) from t to t+ 1 and using (3.6), we get

e−λ(t+1)

∫ t+1

t

eλs‖u(s)‖2D1
0 (Ω,σ) ds ≤

∫ t+1

t

‖u(s)‖2D1
0 (Ω,σ) ds(3.10)

≤‖u(t)‖2L2(Ω) + 2α2|Ω|+ 4λ−1

∫ t+1

t

‖g(s)‖2L2(Ω) ds

≤‖u(t)‖2L2(Ω) + 2α2|Ω|+ 4λ−1e−λt
∫ t+1

t

eλs‖g(s)‖2L2(Ω) ds

≤ e−λ(t−τ)‖u(τ)‖2L2(Ω) + 2α2(λ−1 + 1)|Ω|

+ 4λ−1e−λt
∫ t+1

−∞
eλs‖g(s)‖2L2(Ω) ds.
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Applying (3.9) and (3.10) to (3.8), we conclude that

‖u(t+ 1)‖2D1
0 (Ω,σ) ≤ C̃

(
1 + e−λt

∫ t+1

−∞
eλs‖g(s)‖2L2(Ω) ds

)
,

uniformly with respect to all initial conditions u(τ) ∈ D(τ) for all τ ∈ R sat-

isfying t − τ ≤ T̂ (where T̂ comes from (3.7) which corresponds to D̂), with

C̃ = C̃(|Ω|, α2, λ, l). This proves the existence of the Dλ-absorbing sets in

D1
0(Ω, σ). �

4. The (L2(Ω), L2+δ(Ω)) pullback Dλ-attractor

In this section, our main propose is to obtain the existence of the pullback

Dλ-attractor (L2(Ω), L2+δ(Ω)). So we obtain a maximum principle about the

strong solutions and L2+δ-type estimate for the weak solutions.

4.1. A maximum principle about the strong solutions. The purpose

of this subsection is to establish, applying the Stampacchia’s truncation method,

some a priori L∞ estimates for the strong solutions with initial data (uτ , g) ∈
(D1

0 (Ω, σ) ∩ L∞(Ω)) × L∞(Ω × (τ, T )), which will guarantee the test functions

that we used in next subsection to make sense.

Lemma 4.1. Assume (C1)–(C2). For any −∞ < τ ≤ T <∞ and any initial

data (uτ , g) ∈ (D1
0 (Ω, σ) ∩ L∞(Ω))× L∞(Ω× (τ, T )), the unique strong solution

u of (1.1) belongs to L∞(Ω× (τ, T )).

Proof. We will use the Stampacchia’s truncation method in Brezis [3], fixing

a function H( · ) ∈ C1(R) such that

(a) |H ′(s)| ≤M <∞, for all s ∈ R;

(b) H is strictly increasing on (0,∞);

(c) H(s) = 0, for all s ≤ 0;

and defining

G(s) :=

∫ s

0

H(δ) dδ.

Denote K ′ := max{‖uτ‖L∞(Ω), ‖g‖L∞(Ω×(τ,T ))}. Under assumption (1.2), there

exists a positive constant M which depends only on β, α1 and K ′ such that

(4.1) f(s) ≥ K ′ as s ≥M and f(s) ≤ −K ′ as s ≤ −M.

Then, we define K := max{K ′,M}+ 1.

Note that u is a strong solution (see Lemma 2.8) and u ∈ C([τ, T ]; D1
0 (Ω, σ)),

we have that

H(u(t)−K) ∈ D1
0 (Ω, σ) for any t ∈ [τ, T ],(4.2)

H(u(t)−K) ∈ L2(τ, T ; D1
0 (Ω, σ)).(4.3)
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Hence, from the definition of strong solutions, we have that

(4.4)

∫ t

τ

∫
Ω

u′(x, s)H(u(s)−K) dx ds

+

∫ t

τ

∫
Ω

σ(x)H ′(u(s)−K)|∇u(s)|2 dx ds

= −
∫ t

τ

∫
Ω

f(u(x, s))H(u(s)−K) dx ds+

∫ t

τ

∫
Ω

g(x, s)H(u(s)−K) dx ds.

In the following, we will deal with the terms in (4.4) one by one.

Firstly, it is obvious that

(4.5)

∫ t

τ

∫
Ω

σ(x)H ′(u(s)−K)|∇u(s)|2 dx ds ≥ 0.

Secondly, from (4.3) and the definition of K ′, we have that

0 ≤
∫ t

τ

∫
Ω

K ′H(u(s)−K) dx ds <∞,

and, combining with (4.1) and the definition of K, we know that

−
∫ t

τ

∫
Ω

(f(u(x, s))−K ′)H(u(s)−K) dx ds ≤ 0,∫ t

τ

∫
Ω

(g(x, s)−K ′)H(u(s)−K) dx ds ≤ 0.

Inserting the above estimates into (4.4), we obtain that∫ t

τ

∫
Ω

u′(x, s)H(u(s)−K) dx ds ≤ 0,

which implies that∫
Ω

G(u(x, t)−K) dx−
∫

Ω

G(u(x, τ)−K) dx ≤ 0 for all t ∈ [τ, T ],

consequently, we can obtain

(4.6) u(x, t) ≤ K a.e. on Ω for all t ∈ [τ, T ].

Similarly, defining H̃(s) = H(−s) and replacing H(u(s)−K) by H̃(u(s)+K)

in (4.4), we can deduce that

(4.7) u(x, t) ≥ −K a.e. on Ω for all t ∈ [τ, T ].

From (4.6) and (4.7), we can finish our proof immediately. �
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4.2. L2+δ-type estimate for the weak solution. Throughout this sec-

tion, we denote by (Lemmas 3.1 and 2.10 guarantee its existence)

(4.8) v̂ := {v(t) : t ∈ R} with v(t) ∈ A (t) for all t ∈ R

a fixed complete trajectory of U(t, τ), that is

U(t, τ)v(τ) = v(t) for any ∞ < τ ≤ t < +∞.

To make our proof rigorous, let us consider the approximation of solutions.

Let D̂ = {D(t) : t ∈ R} ∈ Dλ and u(t) = U(t, τ)uτ , uτ ∈ D(τ). For any (fixed)

τ ∈ R and T > τ , we know that there exist two sequences {(uτm, gm)} and

{(vτm, gm)} satisfying

(4.9) uτm, vτm ∈ D1
0 (Ω, σ) ∩ L∞(Ω) and gm ∈ L∞(Ω× (τ, T ))

such that

(4.10) uτm → uτ , vτm → vτ ∈ L2(Ω) and gm → g ∈ L2(τ, T ;L2(Ω))

as m→∞, and

(4.11) um → u and vm → v ∈ C([τ, T ];L2(Ω)),

where um and vm are the unique strong solutions of (1.1) corresponding to

the regular data (uτm, gm) and (vτm, gm) respectively; note that (4.11) can be

deduced by a similar proof for the uniqueness of weak solutions, here we omit it.

Without loss of generality, from (4.10) we can assume that

(4.12) ‖uτm‖2L2(Ω) ≤ ‖uτ‖
2
L2(Ω) + 1 and ‖vτm‖2L2(Ω) ≤ ‖vτ‖

2
L2(Ω) + 1,

for all m = 1, 2, . . . Denote wm(t) = um(t) − vm(t), then, wm(t) is the unique

strong solution of the following equation:

(4.13)


wm,t − div(σ(x)∇wm) + f(um(t))− f(vm(t)) = 0

for (x, t) ∈ Ω× (0, T ),

wm|∂Ω = 0,

wm|t=τ = um(τ)− vm(τ).

Applying Lemma 4.1, we know that um(t), vm(t) ∈ L∞(Ω × (τ, T )) for each

m = 1, 2, . . ., so

wm(t) = um(t)− vm(t) ∈ C([τ, T ]; D1
0 (Ω, σ)) ∩ L∞(Ω× (τ, T ))

and, for any 0 ≤ θ <∞,

(4.14) |wm|θ · wm ∈ L2(τ, T ; D1
0 (Ω, σ)) ∩ L∞(Ω× (τ, T )),

consequently, we can multiply (4.13) by |wm|θ · wm for any 0 ≤ θ <∞.

With the preparation above, we will prove the following main result of this

subsection:
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Lemma 4.2. Let D̂ ∈ Dλ, v̂ be the fixed complete trajectory given in (4.8)

and T be a fixed time. Assume that g ∈ L2
loc(R;L2(Ω)) satisfies (1.4), f sat-

isfies (1.2)–(1.3) and uτm, vτm satisfy (4.9)–(4.12). Then, for each t ∈ (τ, T )

and each k = 0, 1, . . ., there exist two sequences T̃k(t, D̂, v̂) (which depends

only on k, t, λ, D̂ and v̂) and Mk(t) (which depends only on k, t, λ, N and∫ t
−∞ eλs‖g(s)‖2L2(Ω)ds), such that for any m = 1, 2, . . ., the solution wm of (1.1)

satisfies

(Ak)

∫
Ω

|wm(t)|2(N/(N−2+α))k ds ≤Mk(t) for any t− τ ≥ T̃k(t, D̂, v̂),

(Bk)

∫ s+1

s

(∫
Ω

|wm(ς)|2(N/(N−2+α))k+1

dx

)(N−2+α)/N

dς ≤Mk(t)

for any s− τ ≥ T̃k(t, D̂, v̂).

Proof. Since um is a strong solution, similar to (3.5) we have that

d

ds
‖um‖2L2(Ω) + ‖um‖2D1

0 (Ω,σ) + 2α1‖um‖pLp ≤
4

λ
‖gm(s)‖2L2(Ω) + 2α2|Ω|,(4.15)

then, combining with the embedding (2.2), (4.15) implies that

‖um(t)‖2L2(Ω) ≤ e
−λ(t−τ)‖um(τ)‖2L2(Ω) +

4

λ
e−λt

∫ t

τ

eλs‖gm(s)‖2L2(Ω) ds+
2α2

λ
|Ω|

for all t ∈ (τ, T ). Similarly, we also have

‖vm(t)‖2L2(Ω) ≤ e
−λ(t−τ)‖vm(τ)‖2L2(Ω) +

4

λ
e−λt

∫ t

τ

eλs‖gm(s)‖2L2(Ω) ds+
2α2

λ
|Ω|

for all t ∈ (τ, T ). Therefore, we obtain that

‖wm(t)‖2L2(Ω) ≤ 2e−λ(t−τ)(‖um(τ)‖2L2(Ω) + ‖vm(τ)‖2L2(Ω))(4.16)

+
8

λ
e−λt

∫ t

τ

eλs‖gm(s)‖2L2(Ω) ds+
4α2

λ
|Ω|

for all t ∈ (τ, T ), consequently, there exists T̃0(t, D̂, v̂) such that

‖wm(t)‖2L2(Ω) ≤ 2e−λ(t−τ)(‖um(τ)‖2L2(Ω) + ‖vm(τ)‖2L2(Ω))(4.17)

+
8

λ
e−λt

∫ t

τ

eλs‖gm(s)‖2L2(Ω) ds+
4α2

λ
|Ω|

≤ 4e−λ(t−τ)(‖uτ‖2L2(Ω) + ‖vτ‖2L2(Ω) + 1) +M ′0(t)

≤ 1 +M ′0(t)

for any t− τ ≥ T̃0(t, D̂, v̂), where we have used (4.12), and set

M ′0(t) :=
8

λ
e−λt

∫ t

τ

eλs‖gm(s)‖2L2(Ω) ds+
4α2

λ
|Ω|.
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Now, multiplying (4.13) by wm and integrating with both space and time,

we have that

(4.18)

∫ s+1

s

∫
Ω

σ(x)|∇wm(%)|2 dx d% ≤ (l + 1)(M ′0(t) + 1)

for any s− τ ≥ T̃0(t, D̂, v̂). From the embedding D1
0 (Ω, σ) ↪→ L2N/(N−2+α)(Ω),

we have that

(4.19)

∫ s+1

s

‖wm(%)‖2L2N/(N−2+α)(Ω) dx d% ≤ C
2
N (l + 1)(M ′0(t) + 1)

for any s−τ ≥ T̃0(t, D̂, v̂), where CN is a constant depending only on the domain

Ω and the spatial dimension N .

Set M0(t) = (1 + C2
N (l + 1))(M ′0(t) + 1). From (4.17) and (4.19) we know

that (A0) and (B0) hold.

In the following, we assume that (Ak) and (Bk) hold for k ≥ 0, by in-

duction, we will show that (Ak+1) and (Bk+1) hold. Multiplying (4.13) by

|wm|2(N/(N−2+α))k+1−2wm, we deduce that

(4.20)
1

2

(
N

N − 2 + α

)k+1
d

dt
‖wm‖2(N/(N−2+α))k+1

L2(N/(N−2+α))k+1 (Ω)

+
2((N − 2 + α)/N)k+1 − 1

(N/(N − 2 + α))2(k+1)

∫
Ω

σ(x)|∇|wm(t)|(N/(N−2+α))k+1

|2 dx

≤ l‖wm‖2(N/(N−2+α))k+1

L2(N/(N−2+α))k+1 (Ω)

for almost every t ∈ (τ, T ), and we have that

(4.21)
d

dt
‖wm‖2(N/(N−2+α))k

L2(N/(N−2+α))k+1 (Ω)
≤ 2l

(
N

N − 2 + α

)k
‖wm‖2(N/(N−2+α))k

L2(N/(N−2+α))k+1 (Ω)

for almost every t ∈ (τ, T ). Applying the uniform Gronwall lemma to (4.21) and

(Bk), we can deduce that

(4.22)

∫
Ω

|wm(t)|2(N/(N−2+α))k+1

dx ≤ CM ′k(t),l,N,k

for any t − τ ≥ T̃k(t, D̂, v̂) + 1. Now, having (4.22), by integrating (4.20) over

[s, s+ 1], we can obtain that

(4.23)

∫ s+1

s

∫
Ω

|σ(x)|∇|wm(%)|(N/(N−2+α))k+1

|2 dx d% ≤ CM ′k(t),l,N,k

for any s− τ ≥ T̃k(t, D̂, v̂) + 1.

Applying the embedding D1
0 (Ω, σ) ↪→ L2N/(N−2+α)(Ω) again, from (4.23) we

finally obtain that

(4.24)

∫ s+1

s

(∫
Ω

|wm(%)|2(N/(N−2+α))k+2

dx

)(N−2+α)/N

d% ≤ C2
NCM ′k(t),l,N,k
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for any s− τ ≥ T̃k(t, D̂, v̂) + 1. Therefore, set T̃k+1(t, D̂, v̂) = T̃k(t, D̂, v̂) + 1 and

Mk(t) = max
{
CM ′k(t),l,N,k, C

2
NCM ′k(t),l,N,k

}
, from (4.22) and (4.24) we know

that (Ak+1) and (Bk+1) hold. �

As a consequence of Lemma 4.2 and Fatou’s lemma, we have:

Theorem 4.3. Let D̂ ∈ Dλ, v̂ be the fixed complete trajectory given in (4.8).

Assume (C1)–(C3). Then, for each t ∈ R and each k = 0, 1, . . ., there exist two

sequences Tk(t, D̂, v̂) (which depends only on k, t, λ, D̂ and v̂) and Mk(t) (which

depends only on k, t, λ,N and
∫ t
−∞ eλs‖g(s)‖2L2(Ω) ds) such that∫

Ω

|U(t, τ)uτ − v(t)|2(N/(N−2+α))k dx ≤Mk(t)

for any t− τ ≥ Tk(t, D̂, v̂) and any uτ ∈ D(τ).

Proof. For each fixed t ∈ R and k ∈ {0, 1, . . .} we take

Tk(t, D̂, v̂) = T̃k(t, D̂, v̂) + 1,

where T̃k(t, D̂, v̂) is the constant given in Lemma 4.2 corresponding to the pair

t, k.

Set T = t+ 1 and for any (fixed) τ satisfying t− τ ≥ Tk(t, D̂, v̂), we consider

the approximation on the interval [τ, T ]. For the interval [τ, T ] given above,

choose two sequences {(uτm, gm)} and {(vτm, gm)} satisfying all conditions in

(4.9)–(4.12). Then, from (4.11), we have that there exist two subsequences

{umj (t)} ⊂ {um(t)} and {vmj (t)} ⊂ {vm(t)} satisfying that umj (t) → u(t) =

U(t, τ)uτ and vmj (t) → v(t) almost everywhere on Ω as j → ∞ (where the

sequence mj may depend on t). Then, applying Lemma 4.2, (Ak) and the

Fatou’s lemma, we can deduce that∫
Ω

|U(t, τ)uτ − v(t)|2(N/(N−2+α))k dx

≤ lim inf
j→∞

∫
Ω

|umj (t)−vmj (t)|2(N/(N−2+α))k dx ≤Mk(t). �

4.3. Proof of Theorem 1.1. Now, we are able to prove Theorem 1.1 by

checking the conditions of the abstract Lemma 2.11 in the case of our degenerate

parabolic equation (1.1).

For each δ ∈ [0,∞), we know that there exists a unique k ∈ {1, 2, . . .} such

that

(4.25) 2 + δ + 1 ∈
(

2

(
N

N − 2 + α

)k−1

, 2

(
N

N − 2 + α

)k]
.

Let

X = L2(Ω), Y = L2+δ(Ω) and Z = L2(N/(N−2+α))k(Ω).
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Then, for X,Y and Z given above, we will check the conditions of Lemma 2.11

as followings:

(a) Â is the (L2(Ω), L2(Ω)) pullback Dλ-attractor in Lemma 3.1.

(b) v̂ is the fixed complete trajectory given in (4.8).

(c), (d) Applying Theorem 4.3, we know that

(4.26)

∫
Ω

|U(t, τ)uτ − v(t)|2(N/(N−2+α))k dx ≤Mk(t)

for any t− τ ≥ Tk(t, D̂, v̂), any uτ ∈ D(τ). Consequently, we can define

B0(t) =
{
w ∈ L2(N/(N−2+α))k(Ω) : ‖w‖2(N/(N−2+α))k

L2(N/(N−2+α))k (Ω)
≤Mk(t)

}
for any t ∈ R. Therefore, we see that all conditions in Lemma 2.11 are satisfied,

and then, the L2+δ(Ω) pullback Dλ-attraction (1.7) follows from conclusion (c)

in Lemma 2.11, and (1.8) follows from (4.26) (where we take T (t, δ, D̂, Â ) :=

Tk(t, D̂, v̂) and Mδ(T ) := Mk(t)). �

Remark 4.4. Note that in the proof of Theorem 1.1, we used essentially

only the interpolation, hence, our results and methods are applicable to the

unbounded domain case such as that considered in [19], [20].
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