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NONZERO SOLUTIONS

OF PERTURBED HAMMERSTEIN INTEGRAL EQUATIONS

WITH DEVIATED ARGUMENTS AND APPLICATIONS

Alberto Cabada — Gennaro Infante — F. Adrián F. Tojo

Abstract. We provide a theory to establish the existence of nonzero so-

lutions of perturbed Hammerstein integral equations with deviated argu-
ments, being our main ingredient the theory of fixed point index. Our ap-

proach is fairly general and covers a variety of cases. We apply our results

to a periodic boundary value problem with reflections and to a thermo-
stat problem. In the case of reflections we also discuss the optimality of

some constants that occur in our theory. Some examples are presented to

illustrate the theory.

1. Introduction

The existence of solutions of boundary value problems (BVPs) with devi-

ated arguments has been investigated recently by a number of authors using the

upper and lower solutions method [15], monotone iterative methods [34], [39],
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[59], [60] (1), the classic Avery–Peterson Theorem [35]–[38] or, in the special case

of reflections, the classical fixed point index [9]. One motivation for studying

these problems is that they often arise when dealing with real world problems,

for example when modelling the stationary distribution of the temperature of a

wire of length one which is bent, see the recent paper by Figueroa and Pouso [15]

for details. Most of the works mentioned above are devoted to the study of pos-

itive solutions, while in this paper we focus our attention on the existence of

non-trivial solutions. In particular we show how the fixed point index theory

can be utilized to develop a theory for the existence of multiple non-zero so-

lutions for a class of perturbed Hammerstein integral equations with deviated

arguments of the form

u(t) = γ(t)α[u] +

∫ b

a

k(t, s)g(s)f(s, u(s), u(σ(s))) ds, t ∈ [a, b],

where α[u] is a linear functional on C[a, b] given by

α[u] =

∫ b

a

u(s) dA(s),

involving a Stieltjes integral with a signed measure, that is, A has bounded

variation.

Here σ is a continuous function such that σ([a, b]) ⊆ [a, b]. We point out that

when σ(t) = a+b−t this type of perturbed Hammerstein integral equation is well-

suited to treat problems with reflections. Differential equations with reflection

of the argument have been subject to a growing interest along the years, see for

example the papers [1], [3], [6]–[9], [22], [23], [45], [52]–[57], [71] and references

therein. We apply our theory to prove the existence of nontrivial solutions of

the first order functional periodic boundary value problem

(1.1) u′(t) = h(t, u(t), u(−t)), t ∈ [−T, T ]; u(−T )− u(T ) = α[u],

which generalises the boundary conditions in [6], [9] by adding a nonlocal term.

The formulation of the nonlocal boundary conditions in terms of linear func-

tionals is fairly general and includes, as special cases, multi-point and integral

conditions, namely

α[u] =

m∑
j=1

αju(ηj) or α[u] =

∫ 1

0

φ(s)u(s) ds.

The study of multi-point problems has been initiated by 1908 by Picone [51] and

continued by a number of authors. For an introduction to nonlocal problems

(1) The tight relationship between the monotone iterative method and the upper and lower

solutions method has been highlighted in [5]. Therefore, to make a difference between them is

mostly a convention.
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we refer to the reviews of Whyburn [70], Conti [13], Ma [46], Ntouyas [49] and

Štikonas [58] and to the papers [40], [41], [66].

We also prove for the BVP (1.1) the optimality of some constants that occur

in our theory, improving the results even for the local case, studied in [9].

We study as well the existence of non-trivial solutions of the BVP

u′′(t) + g(t)f(t, u(t), u(σ(t))) = 0, t ∈ (0, 1),(1.2)

u′(0) + α[u] = 0, βu′(1) + u(η) = 0, η ∈ [0, 1].(1.3)

This type of problems arises when modelling the problem of a cooling or

heating system controlled by a thermostat, something that has been studied in

several papers, for instance [4], [11], [16]. Nonlocal heat flow problems of the type

(1.2)–(1.3) were studied, without the presence of deviated arguments, by Infante

and Webb in [32], who were motivated by the previous work of Guidotti and

Merino [20]. This study continued in a series of papers, see [14], [25], [26], [33],

[42], [54], [63]–[65] and references therein. The case of deviating arguments has

been the subject of a recent paper by Figueroa and Pouso, see [15]. In Section 4

we describe with more details the physical interpretation of the BVP (1.2)–(1.3).

We stress that the existence of nontrivial solutions of perturbed Hammerstein

integral equations, without the presence of deviated arguments, namely

(1.4) u(t) = γ(t)α̂[u] +

∫ b

a

k(t, s)f(s, u(s)) ds,

where α̂[ · ] is an affine functional given by a positive measure, have been inves-

tigated in [33], also by means of fixed point index. We make use of ideas from

the paper [33], but our results are somewhat different and complementary in the

case of undeviated arguments.

We work in the space C[a, b] of continuous functions endowed with the usual

supremum norm, and use the well-known classical fixed point index for com-

pact maps, we refer to the review of Amann [2] and to the book of Guo and

Lakshmikantham [21] for further information.

2. On a class of perturbed Hammerstein integral equations

We impose the following conditions on k, f, g, γ, α, σ that occur in the integral

equation

(2.1) u(t) = γ(t)α[u] +

∫ b

a

k(t, s)g(s)f(s, u(s), u(σ(s))) ds =: Fu(t).

(C1) The kernel k is measurable, and for every τ ∈ [a, b] we have

lim
t→τ
|k(t, s)− k(τ, s)| = 0 for almost every (a. e.) s ∈ [a, b].
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(C2) There exist a subinterval [â, b̂] ⊆ [a, b], a measurable function Φ with

Φ ≥ 0 almost everywhere in [a, b] and a constant c1 = c1(â, b̂) ∈ (0, 1]

such that

|k(t, s)| ≤ Φ(s) for all t ∈ [a, b] and a.e. s ∈ [a, b],

k(t, s) ≥ c1 Φ(s) for all t ∈ [â, b̂] and a.e. s ∈ [a, b].

(C3) A is of bounded variation and

KA(s) :=

∫ b

a

k(t, s)dA(t) ≥ 0 for a.e. s ∈ [a, b].

(C4) The function g satisfies that gΦ ∈ L1[a, b], g(t) ≥ 0 for a.e. t ∈ [a, b] and∫ b̂

â

Φ(s)g(s) ds > 0.

(C5) 0 6≡ γ ∈ C[a, b], 0 ≤ α[γ] < 1 and there exists c2 ∈ (0, 1] such that

γ(t) ≥ c2‖γ‖ for all t ∈ [â, b̂].

(C6) The nonlinearity f : [a, b] × (−∞,∞) × (−∞,∞) → [0,∞) satisfies Ca-

rathéodory conditions, that is, f( · , u, v) is measurable for each fixed u

and v in R, f(t, · , · ) is continuous for a.e. t ∈ [a, b], and for each r > 0,

there exists φr ∈ L∞[a, b] such that

f(t, u, v) ≤ φr(t) for all (u, v) ∈ [−r, r]× [−r, r], and a.e. t ∈ [a, b].

(C7) The function σ : [a, b]→ [a, b] is continuous.

We recall that a cone K in a Banach space X is a closed convex set such that

λx ∈ K for x ∈ K and λ ≥ 0 and K ∩ (−K) = {0}. Here we work in the cone

K =
{
u ∈ C[a, b] : min

t∈[â,̂b]
u(t) ≥ c‖u‖, α[u] ≥ 0

}
,

where c = min{c1, c2} and c1 and c2 are given in (C2) and (C5), respectively.

Note that, from (C5), K 6= {0} since 0 6= γ ∈ K and

K = K0∩{u ∈ C[a, b] : α[u] ≥ 0}, where K0 =
{
u ∈ C[a, b] : min

t∈[â,̂b]
u(t) ≥ c‖u‖

}
.

The cone K0 has been essentially introduced by Infante and Webb in [30]

and later used in [9], [17], [18], [14], [24], [27], [28], [31]–[33], [48]. K0 is similar to

a type of cone of non-negative functions first used by Krasnosel’skĭı, see e.g. [43],

and D. Guo, see e.g. [21]. Note that functions in K0 are positive on the subset

[â, b̂] but are allowed to change sign in [a, b]. The cone K is a modification of

a cone of positive functions introduced in [67], that allows the use of signed

measures.

We require some knowledge of the classical fixed point index for compact

maps, see for example [2] or [21] for further information. If Ω is a bounded open

subset of K (in the relative topology) we denote by Ω and ∂Ω the closure and



Perturbed Hammerstein Integral Equations with Deviated Arguments 269

the boundary relative to K. When D is an open bounded subset of X we write

DK = D ∩K, an open subset of K.

The next lemma summarises some classical results regarding the fixed point

index (cf. [21]).

Lemma 2.1. Let D be an open bounded set with 0 ∈ DK and DK 6= K.

Assume that F : DK → K is a compact map such that x 6= Fx for all x ∈ ∂DK .

Then the fixed point index iK(F,DK) has the following properties:

(a) If there exists e ∈ K \ {0} such that x 6= Fx + λe for all x ∈ ∂DK and

all λ > 0, then iK(F,DK) = 0.

(b) If µx 6= Fx for all x ∈ ∂DK and for every µ ≥ 1, then iK(F,DK) = 1.

(c) If iK(F,DK) 6= 0, then F has a fixed point in DK .

(d) Let D1 be open in X with D1 ⊂ DK . If iK(F,DK) = 1 and iK(F,D1
K) =

0, then F has a fixed point in DK \ D1
K . The same result holds if

iK(F,DK) = 0 and iK(F,D1
K) = 1.

Definition 2.2. Let us define the following sets for every ρ > 0:

Kρ = {u ∈ K : ‖u‖ < ρ}, Vρ =
{
u ∈ K : min

t∈[â,̂b]
u(t) < ρ

}
.

The set Vρ was introduced in [33] and is equal to the set called Ωρ/c in [31]. The

notation Vρ makes it clear that choosing c as large as possible yields a weaker

condition to be satisfied by f in the forthcoming Lemma 2.6. A key feature of

these sets is that they can be nested, that is

Kρ ⊂ Vρ ⊂ Kρ/c.

Theorem 2.3. Assume that hypotheses (C1)–(C7) hold. Then, for every r,

F maps Kr into K and is compact. Moreover F : K → K and is compact.

Proof. For u ∈ Kr and t ∈ [a, b] we have,

|Fu(t)| ≤ |γ(t)|α[u] +

∫ b

a

|k(t, s)|g(s)f(s, u(s), u(σ(s))) ds

≤ α[u]‖γ‖+

∫ b

a

Φ(s)g(s)f(s, u(s), u(σ(s))) ds.

Taking the supremum on t ∈ [a, b] we get

‖Fu‖ ≤ α[u]‖γ‖+

∫ b

a

Φ(s)g(s)f(s, u(s), u(σ(s))) ds

and, combining this fact with (C2) and (C5),

min
t∈[â,̂b]

Fu(t) ≥ c2α[u]‖γ‖+ c1

∫ b

a

Φ(s)g(s)f(s, u(s), u(σ(s))) ds ≥ c‖Fu‖.
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Furthermore, by (C3) and (C5),

α[Fu] = α[γ]α[u] +

∫ b

a

KA(s)g(s)f(s, u(s), u(σ(s))) ds ≥ 0.

Therefore we have Fu ∈ K for every u ∈ Kr.

The compactness of F follows from the fact that the perturbation γ(t)α[u] is

compact (since it maps a bounded set into a bounded subset of a one dimensional

space) and the fact that the Hammerstein integral operator that occurs in (2.1)

is compact (this a consequence of Proposition 3.1 of Chapter 5 of [47]). �

In the sequel, we give a condition that ensures that, for a suitable ρ > 0, the

index is 1 on Kρ.

Lemma 2.4. Assume that

(I1ρ) there exists ρ > 0 such that

f−ρ,ρ · sup
t∈[a,b]

{
|γ(t)|

1− α[γ]

∫ b

a

KA(s)g(s) ds+

∫ b

a

|k(t, s)|g(s) ds

}
< 1

where

f−ρ,ρ := sup

{
f(t, u, v)

ρ
: (t, u, v) ∈ [a, b]× [−ρ, ρ]× [−ρ, ρ]

}
.

Then the fixed point index, iK(F,Kρ), is equal to 1.

Proof. We show that µu 6= Fu for every u ∈ ∂Kρ and for every µ ≥ 1. In

fact, if this does not happen, there exist µ ≥ 1 and u ∈ ∂Kρ such that µu = Fu,

that is

µu(t) = γ(t)α[u] +

∫ b

a

k(t, s)g(s)f(s, u(s), u(σ(s))) ds,

furthermore, applying α to both sides of the equation,

µα[u] = α[γ]α[u] +

∫ b

a

KA(s)g(s)f(s, u(s), u(σ(s))) ds,

thus, from (C5), µ− α[γ] ≥ 1− α[γ] > 0, and we deduce that

α[u] =
1

µ− α[γ]

∫ b

a

KA(s)g(s)f(s, u(s), u(σ(s))) ds

and we get, substituting,

µu(t) =
γ(t)

µ− α[γ]

∫ b

a

KA(s)g(s)f(s, u(s), u(σ(s))) ds

+

∫ b

a

k(t, s)g(s)f(s, u(s), u(σ(s))) ds.



Perturbed Hammerstein Integral Equations with Deviated Arguments 271

Taking the absolute value, and then the supremum for t ∈ [a, b], gives

µρ ≤ sup
t∈[a,b]

{
|γ(t)|

1− α[γ]

∫ b

a

KA(s)g(s)f(s, u(s), u(σ(s))) ds

+

∫ b

a

|k(t, s)|g(s)f(s, u(s), u(σ(s))) ds

}
≤ ρf−ρ,ρ · sup

t∈[a,b]

{
|γ(t)|

1− α[γ]

∫ b

a

KA(s)g(s) ds+

∫ b

a

|k(t, s)|g(s) ds

}
< ρ.

This contradicts the fact that µ ≥ 1 and proves the result. �

Remark 2.5. We point out, in a similar way as in [67], that a stronger (but

easier to check) condition than (I1ρ) is given by the following:

(2.2) f−ρ,ρ
(
‖γ‖

1− α[γ]

∫ b

a

KA(s)g(s) ds+
1

m

)
< 1,

where

(2.3)
1

m
:= sup

t∈[a,b]

∫ b

a

|k(t, s)|g(s) ds.

Let us see now a condition that guarantees that the index is equal to zero

on Vρ for some appropriate ρ > 0.

Lemma 2.6. Assume that

(I0ρ) there exists ρ > 0 such that

fρ,ρ/c · inf
t∈[â,̂b]

{
γ(t)

1− α[γ]

∫ b̂

â

KA(s)g(s) ds+

∫ b̂

â

k(t, s)g(s) ds

}
> 1,

where

fρ,ρ/c := inf

{
f(t, u, v)

ρ
: (t, u, v) ∈ [â, b̂]× [ρ, ρ/c]× [θ, ρ/c]

}
,

and

θ :=

ρ if σ([â, b̂]) ⊆ [â, b̂],

−ρ/c otherwise.

Then iK(F, Vρ) = 0.

Proof. Since 0 6≡ γ ∈ K we can choose e = γ in Lemma 2.1, so we now

prove that

u 6= Fu+ µγ for all u ∈ ∂Vρ and every µ > 0.

In fact, if not, there exist u ∈ ∂Vρ and µ > 0 such that u = Fu+ µγ. Then we

have

u(t) = γ(t)α[u] +

∫ b

a

k(t, s)g(s)f(s, u(s), u(σ(s))) ds+ µγ(t)
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and

α[u] = α[γ]α[u] +

∫ b

a

KA(s)g(s)f(s, u(s), u(σ(s))) ds+ µα[γ],

and therefore

α[u] =
1

1− α[γ]

∫ b

a

KA(s)g(s)f(s, u(s), u(σ(s))) ds+
µα[γ]

1− α[γ]
.

Thus we get, for t ∈ [â, b̂],

u(t) =
γ(t)

1− α[γ]

(∫ b

a

KA(s)g(s)f(s, u(s), u(σ(s))) ds+ µα[γ]

)
+

∫ b

a

k(t, s)g(s)f(s, u(s), u(σ(s))) ds+ µγ(t)

≥ γ(t)

1− α[γ]

∫ b̂

â

KA(s)g(s)f(s, u(s), u(σ(s))) ds

+

∫ b̂

â

k(t, s)g(s)f(s, u(s), u(σ(s))) ds

≥ ρfρ,ρ/c
(

γ(t)

1− α[γ]

∫ b̂

â

KA(s)g(s) ds+

∫ b̂

â

k(t, s)g(s) ds

)
.

Taking the minimum over [â, b̂] gives ρ > ρ, a contradiction. �

Remark 2.7. We point out, in a similar way as in [67], that a stronger (but

easier to check) condition than (I0ρ) is given by the following:

(2.4) fρ,ρ/c

(
c2‖γ‖

1− α[γ]

∫ b̂

â

KA(s)g(s) ds+
1

M(â, b̂)

)
> 1,

where

(2.5)
1

M(â, b̂)
:= inf

t∈[â,̂b]

∫ b̂

â

k(t, s)g(s) ds.

Remark 2.8. Depending on the nature of the nonlinearity f and due to the

way θ is defined, sometimes it could be useful to take a smaller [â, b̂] such that

σ([â, b̂]) ⊆ [â, b̂]. This fact is illustrated in Section 4.

The above lemmas can be combined to prove the following theorem. Here we

deal with the existence of at least one, two or three solutions. We stress that, by

expanding the lists in conditions (S5), (S6) below, it is possible to state results

for four or more positive solutions, see for example the paper by Lan [44] for the

type of results that might be stated. We omit the proof which follows directly

from the properties of the fixed point index stated in Lemma 2.1 (c) and (d).

Theorem 2.9. The integral equation (2.1) has at least one non-zero solution

in K if any of the following conditions hold:
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(S1) There exist ρ1, ρ2 ∈ (0,∞) with ρ1/c < ρ2 such that (I0ρ1) and (I1ρ2) hold.

(S2) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that (I1ρ1) and (I0ρ2) hold.

The integral equation (2.1) has at least two non-zero solutions in K if one of the

following conditions hold:

(S3) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1/c < ρ2 < ρ3 such that (I0ρ1), (I1ρ2)

and (I0ρ3) hold.

(S4) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < ρ2 and ρ2/c < ρ3 such that

(I1ρ1), (I0ρ2) and (I1ρ3) hold.

The integral equation (2.1) has at least three non-zero solutions in K if one of

the following conditions hold:

(S5) There exist ρ1, ρ2, ρ3, ρ4 ∈ (0,∞) with ρ1/c < ρ2 < ρ3 and ρ3/c < ρ4
such that (I0ρ1), (I1ρ2), (I0ρ3) and (I1ρ4) hold.

(S6) There exist ρ1, ρ2, ρ3, ρ4 ∈ (0,∞) with ρ1 < ρ2 and ρ2/c < ρ3 < ρ4 such

that (I1ρ1), (I0ρ2), (I1ρ3) and (I0ρ4) hold.

Remark 2.10. A similar approach can be used, depending on the signs of k

and γ, to prove the existence of solutions that are negative on sub-interval, non-

positive, strictly negative, non-negative and strictly positive. See for example

Remark 3.4 of [33] and also Sections 2, 3 and 4 and Remark 4.5 of [9].

3. An application to a problem with reflection

We now turn our attention to the first order functional periodic boundary

value problem

u′(t) = h(t, u(t), u(−t)), t ∈ I := [−T, T ],(3.1)

u(−T )− u(T ) = α[u],(3.2)

where α is a linear functional on C(I) given by

α[u] =

∫ T

−T
u(s) dA(s),

involving a Stieltjes integral with a signed measure.

We utilize the shift argument of [6] (a similar idea has been used in [61],

[69]), by fixing ω ∈ R \ {0} and considering the equivalent expression

(3.3) u′(t) + ωu(−t) = h(t, u(t), u(−t)) + ωu(−t) =: f(t, u(t), u(−t)), t ∈ I,

with the BCs

(3.4) u(−T )− u(T ) = α[u].

The Green’s function k of the periodic problem

u′(t) + ωu(−t) = f(t, u(t), u(−t)), t ∈ I, u(T ) = u(−T )
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is given by (see [6], [9])

2 sin(ωT )k(t, s) =


cosω(T − s− t) + sinω(T + s− t) if t > |s|,
cosω(T − s− t)− sinω(T − s+ t) if |t| < s,

cosω(T + s+ t) + sinω(T + s− t) if |t| < −s,
cosω(T + s+ t)− sinω(T − s+ t) if t < −|s|.

Note that k only exists when ωT 6= lπ for every l ∈ Z. Hence, [6, Corollary 3.4]

guarantees that problem (3.3)–(3.4) is equivalent to the perturbed Hammerstein

integral equation

u(t) = k(t,−T )α[u] +

∫ T

−T
k(t, s)f(t, u(t), u(−t)) dt.

Thus, we are working with an equation of the type (1.4) where

γ(t) = k(t,−T ) = cosωt− sinωt =
√

2 sin

(
π

4
− ωt

)
.

Let ζ := ωT . Then we have

‖γ‖ =


√

2 sin

(
π

4
+ ζ

)
if ζ ∈

(
0,
π

4

)
,

√
2 if ζ ∈

[
π

4
,
π

2

)
.

Also, using Lemma 5.5 in [9], the constant c2 is given by

‖γ‖c2 = inf
t∈[â,̂b]

γ(t) =


γ(̂b) if ζ ∈

(
0,
π

4

]
or

∣∣∣∣â+
π

4ζ

∣∣∣∣ < ∣∣∣∣̂b+
π

4ζ

∣∣∣∣,
γ(â) if ζ ∈

(
π

4
,
π

2

]
and

∣∣∣∣â+
π

4ζ

∣∣∣∣ ≥ ∣∣∣∣̂b+
π

4ζ

∣∣∣∣.
The constant c1 was given in [9] for the case â + b̂ = 1 and has the following

expression:

(3.5) c1 =
(1− tan ζâ)(1− tan ζb̂)

(1 + tan ζâ)(1 + tan ζb̂)
.

Observe that in the case [â, b̂] = I, using the fact that k(t, s) = k(t + 1, s + 1),

k(t+1, s) = k(t, s+1) for t, s ∈ [−T, 0] (cf. [9]) and formula (3.5) for [â, b̂] = [0, T ],

we get that

c1 =
1− tan ζ

1 + tan ζ
= cot

(
π

4
+ ζ

)
.

Consider now the set Ŝ := {(â, b̂) ∈ R2 : â < b̂, (C2) is satisfied for [â, b̂]} and

M(â, b̂) defined as in (2.5) (with g ≡ 1). Since a smaller constant M(â, b̂) relaxes
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the growth conditions imposed on the nonlinearity f by the inequality (2.4), we

turn our attention to the quantity

1

Mopt
:= sup

(â,̂b)∈Ŝ

1

M(â, b̂)
.

A similar study has been done, in the case of second-order BVPs in [28], [63],

[64] and for fourth order BVPs in [29], [50], [68].

Before computing this value, we need some relevant information about the

kernel k. First, observe that with the change of variables t = xT , s = y T ,

k(x, y) = k(t, s), a = a T , b = b T we have

1

Mopt
= T sup

(a,b)∈S̃
min
x∈[a,b]

∫ b

a

k(x, y) dy,

where S̃ := {(a, b) ∈ R2 : (a T, a T ) ∈ Ŝ}.
There is a symmetry (see [6]) between the cases ω and −ω given by the fact

that kω(x, y) = −k−ω(−x,−y), so we can restrict our problem to the case ω > 0.

Information on the sign of k is given in the following lemma which summarizes

the findings in [9], [6].

Lemma 3.1. Let ζ = ωT . The following hold:

(a) If ζ ∈ (0, π/4), then k is strictly positive in I2.

(b) If ζ ∈ (−π/4, 0), then k is strictly negative in I2.

(c) If ζ ∈ [π/4, π/2), then k is strictly positive in

S :=

[(
− π

4|ζ|
,
π

4|ζ|
− 1

)
∪
(

1− π

4|ζ|
,
π

4|ζ|

)]
× [−1, 1].

(d) If ζ ∈ (−π/2,−π/4], k is strictly negative in S.

First, in [6], it was proven that k satisfies the equation

∂k

∂x
(x, y) + ωk(−x, y) = 0.

Also, the strip S satisfies that, if (x, y) ∈ S, then (−x, y) ∈ S, so, wherever

k ≥ 0, ∂k/∂t ≤ 0. Hence, we have

(3.6)
1

M(ω)
= T sup

(a,b)∈S̃

∫ b

a

k(b, y) dy.

Notice that, fixed b, it is of our interest to take a as small as possible (as long as

(C2) is satisfied) for we are integrated a positive function on the interval [a, b].

With these considerations in mind, we will prove that

Mopt =


ω if ζ ∈

(
0,
π

4

)
,

ω

cos ζ
if ζ ∈

[
π

4
,
π

2

)
,
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by studying two cases: (A) and (B).

(A) If ζ ∈ (0, π/4), k is positive and

1

Mopt
= T sup

b∈[−1,1]

∫ b

−1
k(b, y) dy.

(A1) If b ≤ 0, let

g1(b) := 2 sin ζ

∫ b

−1
k(b, y) dy

=

∫ b

−1
[cos ζ(1 + y + b) + sin ζ(1 + y − b)] ds

=
1

ζ
[sin ζ(1 + 2b)− sin ζb+ cos ζb− cos ζ].

Then, taking into account that b ∈ [−1, 0] and ζ ∈ (0, π/4) and studying the

range of the arguments of the sines and cosines involved, we get

g′1(b) = 2 cos ζ(1 + 2b)−
√

2 sin
(
ζb+

π

4

)
≥ 2

√
2

2
−
√

2

√
2

2
=
√

2− 1 > 0.

Therefore, the maximum of g1 in [0, 1] is reached at 0.

(A2) If b ≥ 0,

g1(b) =

∫ −b
−1

[cos ζ(1 + y + b) + sin ζ(1 + y − b)] ds

+

∫ b

−b
[cos ζ(1− y − b) + sin ζ(1 + y − b)] ds

= − 1

ζ
[cos ζ − cos ζb− 2 sin ζ + sin ζb+ sin ζ(1− 2b)].

Now, we have

g′′′1 (b) = −ζ2
[
8 cos ζ(1− 2b)−

√
2 sin

(
ζb+

π

4

)]
< 0.

Therefore, g′1 reaches its minimum in [0, 1] at 0 or 1.

g′1(0) = 2 cos ζ − 1, g′1(1) = cos ζ − sin ζ > 0.

Thus, g′1 > 0 in [0, 1], this is, the maximum of g1 in [0, 1] is reached at 1. In

conclusion, by the continuity of g1, the maximum of g1 in [−1, 1] is reached at 1

and so

1

Mopt
= T

∫ 1

−1
k(1, y) dy = T

g1(1)

2 sin ζ
=
T

ζ
=

1

ω
.

Observe now that, since [a, b] = [−1, 1], c = c1 = c2 = cot (π/4 + ζ).
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(B) Now assume ζ ∈ [π/4, π/2). k is positive on S. Assume b > 0. Also,

since k(x, y) = k(−y,−x) (see [6]), fixed b ∈ S, the smallest a that can be taken

is a = 1− π/(4ζ), so

g2(b) := 2 sin ζ

∫ b

1−π/(4ζ)
k(b, y) dy

=
1

ζ

[
cos

(
π

4
+ (b− 2)ζ

)
+ cos

(
π

4
+ bζ

)
− cos ζ + sin((2b− 1)ζ)

]
.

Thus, we have

g′′′2 (b) = ζ2
[

sin

(
π

4
+ (b− 2)ζ

)
+ sin

(
π

4
+ bζ

)
− 8 cos((1− 2b)ζ)

]
> ζ2

(
2− 8

√
2

2

)
< 0.

Therefore, g′2 reaches its minimum in Y := [1 − π/(4ζ), π/(4ζ)] at 1 − π/(4ζ)

or π/(4ζ).

g′2

(
1− π

4ζ

)
= 2 sin ζ, g′2

(
π

4ζ

)
= 2(sin ζ − cos2 ζ) > 0.

Thus, g′2 > 0 in Y , this is, the maximum of g2 in Y is reached at π/(4ζ) and so

T

∫ π/(4ζ)

1−π/(4ζ)
k

(
π

4ζ
, y

)
dy = T

g2(π/(4ζ))

2 sin ζ
=
T cos ζ

ζ
=

cos ζ

ω
.

Now, the case b ≤ 0 can be reduced to the case b ≥ 0 just taking into account

that k(z, y) = k(z+ 1, y+ 1) for z, y ∈ [−1, 0] (cf. [9]) and making the change of

variables y = y − 1, so∫ π/(4ζ)

1−π/(4ζ)
k

(
π

4ζ
, y

)
dy =

∫ π/(4ζ)−1

−π/(4ζ)
k

(
π

4ζ
, y+1

)
dy =

∫ π/(4ζ)−1

−π/(4ζ)
k

(
π

4ζ
−1, y

)
dy.

Hence we have
1

Mopt
=

cos ζ

ω
,

Consider again the case ζ ∈ (0, π/4) and âopt, b̂opt, c(âopt, b̂opt), the values for

which Mopt is reached. In the following table we summarize these findings.

ζ âopt b̂opt Mopt c(âopt, b̂opt) ‖γ‖(
0,
π

4

)
−1 1 ω cot

(
π

4
+ ζ

) √
2 sin

(
π

4
+ ζ

)

When ζ ∈ [π/4, π/2) we have the following:
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ζ âopt b̂opt Mopt ‖γ‖[
π

4
,
π

2

)
1− π

4ζ

π

4ζ

ω

cos ζ

√
2

− π

4ζ

π

4ζ
− 1

We point out that in this second case we cannot take an interval [â, b̂] at

which Mopt is reached because c1 and c2 tend to zero as we approach that

interval, but we may take [â, b̂] as close as possible to these values, in order to

approximate Mopt.

With all these ingredients we can apply Theorem 2.9 in order to solve (3.1)–

(3.2) for some given f and α.

4. An application to a thermostat problem

4.1. The model. We work here with the model of a light bulb with a tem-

perature regulating system (thermostat). The model includes a bulb in which

a metal filament, bended on itself, is inserted with only its two extremes outside

of the bulb. There is a sensor that allows to measure the temperature of the

filament at a point η (see Figure 1). The bulb is sealed with some gas in its

interior.

Figure 1. Sketch of the light bulb model with a sensor at the point η.

As variables, we take u for the temperature, t ∈ [0, 1] for a point in the

filament and x for the time (2).

We control the light bulb via two thermopairs connected to the extremes

of the filament. This allows us to measure (and hence modify via a resistance

or with some other heating or cooling system) the variation of the temperature

with respect to x. Also, we will be able to measure the total light ouput of the

light bulb.

(2) We use this unusual notation in order to be consistent with the rest of the paper.

Since we are looking for stationary solutions of the model, the temporal variable will no longer

appear after the model is set.
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The problem can then be stated as

(4.1)

du

dx
(t, x) = d1

d2u

dt2
(t, x) +

∫ 1

0

u4(s, x)υ(s, t, u(t, x)) ds− d2u4(t, x)

+ j(t, u(t, x)) + (d3 + d4u(t, x))Î2 + d5(u0 − u(t, x)),

(4.2)
du

dt
(0, x) + d6

∫ 1

0

u(s, x) ds = 0, β
du

dt
(1, x) + u(η, x) = 0

where d1, . . . , d5 and u0 are physical (real) constants that can be determined

either theoretically or experimentally; d6, Î and β are real constants to be chosen;

η ∈ [0, 1] is the position of the sensor at the filament and υ is some real continuous

function. We explain now each component of the equation.

The term d1
d2u
dt2 (t, x) comes from the traditional heat equation, dudx = d1

d2u
dt2 .

The integral in the equation stands for the irradiance (that is, power per space

unit squared), in form of blackbody radiation, absorbed by the point t and emit-

ted from every other point s of the filament. The function υ gives the rate of

this absorption depending on t, s and also on u, since the reflectivity of metals

changes with temperature (see [62]). The equation behind the fourth power in

the integral comes from the Stefan–Boltzmann equation for blackbody power

emission, j? = k̃u4(t, x), where j? is the irradiance and k̃ a constant. Observe

that considering the power emission from the rest of the filament is important,

since, as early as 1914 (see [12]), it has been observed that an interior and much

brighter (90 to 100 percent) helix appears in helical filaments of tungsten. Al-

though a 200 ◦C difference would be necessary to account for the extra brightness,

experiments show that most of it is due to reflection, being the difference in the

temperature less than 5 ◦C.

The term −d2u4(t, x) accounts again for the Stefan–Boltzmann equation, this

time for the irradiance of the point, j(t, u(t, x)) for the energy absorbed from the

bulb (via reflection and/or blackbody emission) and (d3+d4u(t, x))Î2 is the heat

produced by the intensity of the electrical current, Î, going through the filament

via Ohm’s law taking into account a first order approximation of the variation

of the resistivity of the metal with temperature. Finally, d5(u0 − u(t, x)) is the

heat transfer from the filament to the gas due to Newton’s law of cooling, where

u0 is the temperature at the interior of the bulb which we may assume constant.

The first boundary condition controls the variation of the temperature at the

left extreme depending on the total temperature of the bulb, while the second

boundary condition controls the variation of the temperature at the right end of

the filament depending on the temperature at η.

Consider now the term

Γ[u](t, x) :=

∫ 1

0

u4(s, x)υ(s, t, u(t, x)) ds.
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For a fixed x, Γ is an operator on C[0, 1]. If we consider the wire to be bended

on itself, in such a way that every point of the filament touches one and only one

other point of the filament, by the continuity of the temperature on the filament,

we may take the approximation Γ[u](t, x) = d7u
4(σ(t, x)) for some constant d7

and a function σ which maps every point in the filament to the other point it is

affected by. Clearly, σ is an involution.

With these ingredients, and looking for stationary solutions of problem (4.1)–

(4.2), we arrive to a BVP of the form

u′′(t) + g(t)f(t, u(t), u(σ(t))) = 0, t ∈ (0, 1),(4.3)

u′(0) + α[u] = 0, βu′(1) + u(η) = 0, η ∈ [0, 1].(4.4)

Remark 4.1. In some other light bulb model it could happen that every

point of the filament is ‘within reach’ of more than one other point, which would

mean we could have a multivalued function σ or just two functions σ1 and σ2 in

equation (4.3). Our theory can be extended to the case of having more than one

function σ. A possible approach to the multivalued case would require to extend

the theory in [28], which is beyond the scope of this paper.

4.2. The associated perturbed integral equation. We now turn our

attention to the second order BVP (4.3)–(4.4). In a similar way as in [33], the

solution of the BVP (4.3)–(4.4) can be expressed as

u(t) = γ(t)α[u] +

∫ 1

0

k(t, s)g(s)f(s, u(s), u(σ(s))) ds,

where γ(t) = β + η − t, and

k(t, s) = β +

η − s if s ≤ η,
0 if s > η,

−

t− s if s ≤ t,
0 if s > t.

Here we focus on the case β ≥ 0 and 0 < β + η < 1, that leads (in a similar

way to [33]) to the existence of solutions that are positive on a sub-interval. The

constant c for this problem (see for example [28]) is

c =


β/(β + η) for b̂ ≤ η, β + η ≥ 1/2,

β/(1− (β + η)) for b̂ ≤ η, β + η < 1/2,

(β + η − b̂)/(β + η) for b̂ > η, β + η ≥ 1/2,

(β + η − b̂)/(1− (β + η)) for b̂ > η, β + η < 1/2.

Also, we have

Φ(s) = ‖γ‖ =

β + η for β + η ≥ 1/2,

1− (β + η) for β + η < 1/2,
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and clearly c2‖γ‖ = β + η − b̂. Theorem 2.9 can be applied to this problem for

given f, α and g. We now set g ≡ 1 and recall (see [33]) that

sup
t∈[0,1]

∫ 1

0

|k(t, s)| ds = max

{
β +

1

2
η2, β2 − β +

1

2
(1− η2)

}
.

Furthermore, note that the solution of the problem

w′′(t) = −1, w′(0) = 0, βw′(1) + w(η) = 0,

is given by w(t) = β + (η2 − t2)/2, which implies that

w(t) =

∫ 1

0

k(t, s) ds = β +
1

2
(η2 − t2).

Using this fact and Fubini’s Theorem, we have∫ 1

0

KA(s) ds =

∫ 1

0

∫ 1

0

k(t, s) dA(t) ds

=

∫ 1

0

∫ 1

0

k(t, s) ds dA(t) = α

[
β +

1

2
(η2 − t2)

]
.

With all these facts, conditions (2.2) and (2.4) can be rewritten, respectively, for

problem (1.2)–(1.3) as

(̃I1ρ) f−ρ,ρ < mα, where

1

mα
:=

(β + η)χ[1/2,+∞)(β + η) + (1− β − η)χ(−∞,1/2)(β + η)

1− α[β + η − t]

· α
[
β +

1

2
(η2 − t2)

]
+ max

{
β +

1

2
η2, β2 − β +

1

2
(1− η2)

}
,

χB is the characteristic function of the set B; and

(̃I0ρ) fρ,ρ/c > Mα, where

1

Mα
:=

β + η − b̂
1− α[β + η − t]

· α
[ ∫ b̂

â

k(t, s) ds

]
+

1

M(â, b̂)
.

Therefore, we can restate Theorem 2.9 as follows.

Theorem 4.2. Theorem 2.9 is satisfied if we change conditions (I0ρ) and (I1ρ)

by (̃I0ρ) and (̃I1ρ), respectively.

We now illustrate how the behaviour of the deviated argument affects the

allowed growth of the nonlinearity f .

Example 4.3. Take η = 1/5, β = 3/5. It was proven in [28] that the optimal

interval for such a choice is [â, b̂] = [0, 3/5], for which Mopt = 5, m = 50/31,

c1 = 1/4. Consider σ(t) = 11t − 101t2 + 318t3 − 394t4 + 167t5. σ satisfies

σ([0, 1]) = [0, 1] and σ([0, 2/5]) ⊆ [0, 2/5] as it is shown in Figure 2.



282 A. Cabada — G. Infante — F.A.F. Tojo

Figure 2. Plot of the function σ and the identity.

Remember that condition (4.2) is of the form

fρ,ρ/c(â, b̂)
(
p(α)q(â, b̂) + r(â, b̂)

)
> 1

where

p(α) =
‖γ‖

1− α[γ]
, q(â, b̂) = c2(â, b̂)

∫ b̂

â

KA(s)g(s) ds and r(â, b̂) =
1

M(â, b̂)
.

Now, picking up Remark 2.8, the questions is: Is it worth to take [â, b̂] =

[0, 3/5] or is it preferable to take [â, b̂] = [0, 2/5]? Observe that, as mentioned,

σ([0, 2/5]) ⊆ [0, 2/5] but σ([0, 3/5]) 6⊆ [0, 3/5], which means that the value of

fρ,ρ/c(â, b̂) can vary considerably from one case to the other. It will be prefer-

able to take [â, b̂] = [0, 2/5] if and only if

fρ,ρ/c(0, 2/5)

fρ,ρ/c(0, 3/5)
>
p(γ, α)q(0, 3/5) + r(0, 3/5)

p(γ, α)q(0, 2/5) + r(0, 2/5)
.

We can compute, a priori, q(0, 3/5), q(0, 2/5), r(0, 2/5) and r(0, 3/5), but so-

lutions fρ,ρ/c(0, 2/5) and fρ,ρ/c(0, 3/5) will depend on f and p(γ, α) on α. As

a simple example, if f is zero at a subset of (2/3, 5/3] of positive measure, it is

clear that the choice to make is [â, b̂] = [0, 2/5].

Example 4.4. Continuing with the last example, assume now α[u] = λu(2/5)

for some λ ∈ (0, 5/2). (C1) and (C2) are satisfied by the properties of the

kernel and by the choice of c1. We assume (C6) is satisfied for the nonlinearity

chosen. (C4) and (C7) are obviously satisfied. Ka(s) = k((2λ)/5, s) > 0 for

every s ∈ [0, 1] by the properties of the kernel, so (C3) is also satisfied. Last,

0 ≤ α[4/5− t] = (2λ)/5 < 1 and, by the choice of c2, (C7) is satisfied as well. In

this case we have mα = 25/26, and it is independent of the choice of [â, b̂]. Let

us compare the intervals [0, 2/5] and [0, 3/5].

1

Mα(0, b̂)
=

4− 5b̂

1− 2λ

∫ b̂

0

k((2λ)/5, s) ds+ inf
t∈(0,̂b]

∫ b̂

0

k(t, s) ds.
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It was proven in [28] that, for 0 ≤ â < b̂ < β + η,

inf
t∈(0,̂b]

∫ b̂

0

k(t, s) ds =

∫ b̂

0

k(̂b, s) ds.

Hence,

Mα

(
0,

2

5

)
=


50(1− 2λ)

43 + 2λ
if λ ∈

[
1,

5

2

)
,

50(1− 2λ)

(7− 2λ)(5 + 4λ)
if λ ∈ (0, 1),

Mα

(
0,

3

5

)
=


25 + 50λ

19 + 4λ
if λ ∈

[
1,

5

2

)
,

50(1 + 2λ)

29 + 20λ− 4λ2
if λ ∈ (0, 1).

Figure 3 shows how these two values vary depending on λ.

Figure 3. Plot of Mα(0, 2/5) and Mα(0, 3/5) depending on λ.

If we take a specific value for λ, say λ = 1, we get Mα(0, 2/5) = Mα(0, 3/5)

= 10/3, and so it is more convenient to take [â, b̂] = [0, 2/5]. The reason for this

is that fρ,ρ/c(0, 2/5) ≥ fρ,ρ/c(0, 3/5) independently of f , and so I0ρ is more easily

satisfied.

Observe in Figure 3 that the graphs of Mα(0, 2/5)(λ) and Mα(0, 3/5)(λ)

cross at λ = 1. If f is continuous and fρ,ρ/c(0, 2/5) > fρ,ρ/c(0, 3/5), since

Mα(0, 2/5)(1) is a better choice than Mα(0, 3/5)(1), by the continuity of f , so it

will be in a neighborhood of 1. That shows that the condition Mα(0, 2/5)(λ) <

Mα(0, 3/5)(λ) may help but is not deciding when choosing the interval.
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