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EXISTENCE RESULTS

FOR A CLASS OF HEMIVARIATIONAL INEQUALITIES

INVOLVING THE STABLE (g, f, α)-QUASIMONOTONICITY

Zhenhai Liu — Biao Zeng

Abstract. In this paper, by introducing a new concept of the stable

(g, f, α)-quasimonotonicity and applying the properties of Clarke’s gener-

alized gradient and KKM technique, we show the existence results of so-
lutions for hemivariational inequalities when the constraint set is compact,

bounded and unbounded, respectively, which extends and improves several

well-known results in many respects. In the last section, we also give an

example to present the our main result.

1. Introduction

As an important and useful generalization of variational inequalities, hemi-

variational inequalities were first introduced by Panagiotopoulos (see [15], [16])

as the variational formulation of an important class of unilateral or inequality

problems in mechanics. It is based on the notation of Clarke’s generalized gradi-

ent for a class of locally Lipschitz functions. Hemivariational inequalities appear

in a variety of mechanical problems, for example, the unilateral contact problems
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in nonlinear elasticity, the problems describing the adhesive and friction effects,

the nonconvex semipermeability problems, the masonry structures, and the de-

lamination problems in multilayered composites (one can see [13], [14], [17]).

In the last few years many kinds of hemivariational inequalities have been stu-

died (see [2], [3], [9]–[12], [20]) and the study of hemivariational inequalities has

emerged as a new and interesting branch of applied mathematics.

Very recently, many authors studied the existence results for some types of

hemivariational inequalities (see [18], [19], [21]). In 2011, Zhang and He ([21])

study a kind of hemivariational inequalities of the Hartman–Stampacchia type

by introducing the concept of stable quasimonotonicity. They considered that

the constraint set is a bounded (or unbounded), closed and convex subset in a re-

flexive Banach space. The authors gave sufficient conditions for the existence

and boundedness of solutions. In 2013, Tang and Huang ([18]) generalized the

result of [21], by introducing the concept of stable φ-quasimonotonicity. By ap-

plying the stable φ-quasimonotonicity and the properties of Clarke’s generalized

directional derivative and generalized gradient, they obtained some existence the-

orems when the constrained set is nonempty, bounded (or unbounded), closed

and convex in a reflexive Banach space. In the same year, Wangkeeree and

Preechasilp ([19]) generalized the results of [18] and [21], by introducing the con-

cept of stable f -quasimonotonicity. By applying the stable f -quasimonotonicity,

they obtained some existence theorems similar to [18].

The aim of this paper is to study the existence of solutions for generalized

problems of hemivariational inequalities in a reflexive Banach space. To establish

our results, we introduce a new concept of stable (g, f, α)-quasimonotonicity

and use the properties of Clarke’s generalized directional derivative, generalized

gradient, and KKM technique. Our results extend and improve some results in

[18], [19], [21] in many respects.

The rest of this paper is organized as follows. In the next section, we will

introduce some useful preliminaries and necessary materials. In Section 3, we

introduce some kinds of generalized monotonicity of a mapping. In Section 4,

we are devoted to proving our main results. We show the existence of solutions

in the case when the constraint set is compact, bounded and unbounded in The-

orems 4.1, 4.2 and 4.6, respectively. Theorem 4.8 provides a sufficient condition

to the boundedness of the solution set. In Section 5, we give an example to

present the generalized monotonicity and our main result.

2. Preliminaries

Let E be a real Banach space with the norm denoted by ‖ · ‖E . Denote by

E∗ its dual space and by 〈 · , · 〉E the duality pairing between E∗ and E. Let

F : K(⊆ E) ⇒ E∗ be a multivalued mapping, g : K × K → E be a mapping.
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Let f : K × K → R := R ∪ {±∞} be a mapping satisfying the set D(f) =

{u ∈ K : f(u, v) 6= −∞, for all v ∈ K} 6= ∅. Let Ω be a bounded open set in

RN (N ≥ 1) and ∂Ω be its boundary. Let X be Ω or ∂Ω, T : E → Lp(X;Rk)

a linear continuous operator, where k ≥ 1, 1 < p < ∞. Let j◦(x, y;w) be

the Clarke’s generalized directional derivative of a locally Lipschitz mapping

j(x, · ) : Rk → R at the point y ∈ Rk with respect to direction w ∈ Rk, where

x ∈ X. In this paper, we discuss the following hemivariational inequalities

involving a multivalued mapping and a nonlinear term:

(2.1)


Find u ∈ D(f) and u∗ ∈ F (u) such that

〈u∗, g(u, v)〉+ f(u, v) +

∫
X

j◦(x, û(x); ĝ(u, v)(x)) dx ≥ 0,

for all v ∈ K,

where û := Tu, ĝ(u, v) := Tg(u, v).

By introducing the concept of stable quasimonotonicity, Zhang and He ([21])

considered the following hemivariational inequalities of the Hartman–Stampa-

cchia type:

(2.2)


Find u ∈ K and u∗ ∈ F (u) such that

〈u∗, v − u〉+

∫
Ω

j◦(x, û(x); v̂(x)− û(x)) dx ≥ 0,

for all v ∈ K,

where K is a bounded (or unbounded), closed and convex subset in a reflexive

Banach space E.

By introducing the concept of stable φ-quasimonotonicity with respect to

a certain subset U of E∗, Tang and Huang ([18]) generalized the result of [21],

with the following variational-hemivariational inequalities:

(2.3)


Find u ∈ K and u∗ ∈ F (u) such that

〈u∗, v − u〉+ φ(v)− φ(u) +

∫
Ω

j◦(x, û(x); v̂(x)− û(x)) dx ≥ 0,

for all v ∈ K,

where φ : E → R ∪ {+∞} is proper, convex and lower semicontinuous function

such that Kφ := K ∩ domφ 6= ∅.
By introducing the concept of stable f -quasimonotonicity with respect to

a certain subset U of E∗, Wangkeeree and Preechasilp [19] generalized the results

of [18] and [21], with the following variational-hemivariational inequalities:

(2.4)


Find u ∈ K and u∗ ∈ F (u) such that

〈u∗, v − u〉+ f(u, v) +

∫
Ω

j◦(x, û(x); v̂(x)− û(x)) dx ≥ 0,

for all v ∈ K,
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where f : K ×K → R is such that the set D(f) = {u ∈ K : f(u, v) 6= −∞, for

all v ∈ K}, is nonempty.

For a suitable choice of F, g, f and T one can obtain a wide class of inequality

problems, including mixed variational inequalities and Stampacchia variational

inequalities. For example, by choosing g(u, v) = v − u, one easily sees that

problems (2.2)–(2.4) in [18], [19], [21] are special cases of (2.1). Moreover, our

new concept of the stable (g, f, α)-quasimonotonicity is more general than that

of the stable f -quasimonotonicity in [19]. Therefore, our results extend and

improve some results in [18], [19], [21].

Now, we introduce some basic preliminaries. For a nonempty, closed and

convex subset K of E and every r > 0, we define

Br := {u ∈ K : ‖u‖E ≤ r}.

Let us recall the notations related to the Clarke’s generalized directional

derivative and generalized gradient for a locally Lipschitz function h : E → R
(see [1], [4]). Denote by h0(u; v) the Clarke’s generalized directional derivative

of h at the point u ∈ E in the direction v ∈ E, that is

h0(u; v) := lim sup
λ→0+, ζ→u

h(ζ + λv)− h(ζ)

λ
.

Recall also that the Clarke’s subdifferential or generalized gradient of h at u ∈ E,

denoted by ∂h(u), is a subset of E∗ given by

∂h(u) := {u∗ ∈ E∗ : h0(u; v) ≥ 〈u∗, v〉E , for all v ∈ E}.

Let j : X × Rk → R be a function and the mapping

(2.5) j( · , y) : X → R be measurable, for every y ∈ Rk.

We assume that at least one of the following conditions holds: either there exists

l ∈ Lq(X;R) (1/p+ 1/q = 1) such that

(2.6) |j(x, y1)− j(x, y2)| ≤ l(x)|y1 − y2|, for all x ∈ X, for all y1, y2 ∈ Rk,

or

(2.7) the mapping j(x, · ) is locally Lipschitz, for all x ∈ X,

and there exists C > 0 such that

(2.8) |z| ≤ C(1 + |y|p−1), for all x ∈ X, for all z ∈ ∂j(x, y).

Let J : Lp(X;Rk)→ R be an arbitrary locally Lipschitz functional. For each

u, v ∈ E there exists zu ∈ ∂J(û) such that

J0(û; v̂) = 〈zu, v̂〉Lp = max{〈ω, v̂〉Lp : ω ∈ ∂J(û)}.
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Denoting by T ∗ : Lq(X;Rk)→ E∗ the adjoint operator of T , we define the subset

U(J, T ) of E∗ as follows:

(2.9) U(J, T ) = {−z∗u : u ∈ K, z∗u = T ∗zu}.

From Remark 2.2 of [21] it is easy to deduce that

(2.10) J0(û; ĝ(u, v)) = 〈z∗u, g(u, v)〉E .

Lemma 2.1 ([1, Proposition 2.1.1]). Let h : K → R be locally Lipschitz of

rank Lu near u. Then:

(a) the function v 7→ h0(u; v) is finite, positively homogeneous, subadditive

on E, and satisfies |h0(u; v)| ≤ Lu‖v‖;
(b) h0(u; v) is upper semicontinuous as a function of (u, v), and as a function

of v alone, is Lipschitz of rank Lu near u on E;

(c) h0(u;−v) = (−h)0(u; v).

Lemma 2.2 ([1, Theorem 2.7.5]). If J(ϕ) =
∫
X
j(x, ϕ(x)) dx, and j satisfies

conditions (2.5) and (2.6) or (2.5) and (2.7)–(2.8), then J is Lipschitz on bounded

subsets, and one has

∂J(ϕ) ⊂
∫
X

∂j(x, ϕ(x)) dx.

Furthermore, if j is regular at (x, ϕ(x)) then J is regular at ϕ and equality holds.

In order to obtain the main result of this paper, we need the following lemma.

Lemma 2.3 ([5, Theorem 2.7.5]). Let K be a nonempty subset of a Hausdorff

topological vector space E and let G : K ⇒ E be a multivalued mapping satisfying

the following properties:

(a) G is a KKM mapping, i.e.

conv{x1, . . . , xn} ⊂
n⋃
i=1

G(xi), for xi ∈ K, i = 1, . . . , n;

(b) G(x) is closed in E for every x ∈ K;

(c) G(x0) is compact in E for some x0 ∈ K.

Then
⋂
x∈K

G(x) 6= ∅.

We also need the following definition (see [8]).

Definition 2.4. The multivalued mapping F : K ⇒ E∗ is said to be

(a) lower semicontinuous (l.s.c.) at x0, if for any x∗0 ∈ F (x0) and any se-

quence {xn}n≥1 ⊂ K with xn → x0, there exists a sequence x∗n ∈ F (xn)

which converges to x∗0;

(b) lower hemicontinuous (l.h.c.), if the restriction of F to every line segment

of K is lower semicontinuous with respect to the weak topology in E∗.
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Now, we recall some concepts of monotonicity which can be founded in [21],

[18], [19].

Definition 2.5. Let φ : K → R be a function, and F : K ⇒ E∗ a multivalued

mapping, f : K ×K → R a bifunction. Then F is said to be

(a) monotone, if for each u, v ∈ K,

〈v∗ − u∗, v − u〉 ≥ 0, for all u∗ ∈ F (u) and v∗ ∈ F (v);

(b) pseudomonotone, if for each u, v ∈ K,

〈u∗, v − u〉 ≥ 0⇒ 〈v∗, v − u〉 ≥ 0, for all u∗ ∈ F (u) and v∗ ∈ F (v);

(c) quasimonotone, if for each u, v ∈ K,

〈u∗, v − u〉 > 0⇒ 〈v∗, v − u〉 ≥ 0, for all u∗ ∈ F (u) and v∗ ∈ F (v);

(d) stably pseudomonotone with respect to the set U ⊂ E∗, if F and F ( · )−ζ
are pseudomonotone for every ζ ∈ U ;

(e) stably quasimonotone with respect to the set U ⊂ E∗, if F and F ( · )− ζ
are quasimonotone for every ζ ∈ U ;

(f) φ( · )-pseudomonotone (φ-pseudomonotone), if for each u, v ∈ K,

〈u∗, v − u〉+ φ(v)− φ(u) ≥ 0⇒ 〈v∗, v − u〉+ φ(v)− φ(u) ≥ 0,

for all u∗ ∈ F (u) and v∗ ∈ F (v);

(g) φ( · )-quasimonotone (φ-quasimonotone), if for each u, v ∈ K,

〈u∗, v − u〉+ φ(v)− φ(u) > 0⇒ 〈v∗, v − u〉+ φ(v)− φ(u) ≥ 0,

for all u∗ ∈ F (u) and v∗ ∈ F (v);

(h) stably φ-pseudomonotone with respect to the set U ⊂ E∗, if F and F ( · )−
ζ are φ-pseudomonotone for every ζ ∈ U ;

(i) stably φ-quasimonotone with respect to the set U ⊂ E∗, if F and F ( · )−ζ
are φ-quasimonotone for every ζ ∈ U ;

(j) f( · , · )-pseudomonotone (f -pseudomonotone), if for each u, v ∈ K,

〈u∗, v − u〉+ f(u, v) ≥ 0⇒ 〈v∗, v − u〉+ f(u, v) ≥ 0,

for all u∗ ∈ F (u) and v∗ ∈ F (v);

(k) f( · , · )-quasimonotone (f -quasimonotone), if for each u, v ∈ K,

〈u∗, v − u〉+ f(u, v) > 0⇒ 〈v∗, v − u〉+ f(u, v) ≥ 0,

for all u∗ ∈ F (u) and v∗ ∈ F (v);

(l) stably f -pseudomonotone with respect to the set U⊂E∗, if F and F ( · )−ζ
are f -pseudomonotone for every ζ∈U ;

(m) stably f -quasimonotone with respect to the set U ⊂ E∗, if F and F ( · )−ζ
are f -quasimonotone for every ζ ∈ U .
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3. Generalized monotonicity

In this section, we introduce the concept of stable (g, f, α)-quasimonotonicity

with respect to the set U ⊂ E∗ which is useful for establishing the existence

theorems for the main results.

Definition 3.1. Let g : K × K → E, f : K × K → R, α : E → R, and

F : K ⇒ E∗. Then F is said to be

(a) (g, f, α)-pseudomonotone, if for each u, v ∈ K,

〈u∗, g(u, v)〉+ f(u, v) ≥ −α(u− v)⇒ 〈v∗, g(u, v)〉+ f(u, v) ≥ −α(u− v),

for all u∗ ∈ F (u), v∗ ∈ F (v);

(b) (g, f, α)-quasimonotone, if for each u, v ∈ K,

(3.1) 〈u∗, g(u, v)〉+ f(u, v) > −α(u− v)⇒ 〈v∗, g(u, v)〉+ f(u, v) ≥ −α(u− v),

for all u∗ ∈ F (u) and v∗ ∈ F (v);

(c) stably (g, f, α)-pseudomonotone with respect to the set U ⊂ E∗, if F and

F ( · )− ζ are φ-pseudomonotone for every ζ ∈ U ;

(d) stably (g, f, α)-quasimonotone with respect to the set U ⊂ E∗, if F and

F ( · )− ζ are φ-quasimonotone for every ζ ∈ U .

Remark 3.2. (a) It is easy to verify that the (g, f, α)-quasimonotonicity is

weaker than the (g, f, α)-pseudomonotonicity.

(b) If g(u, v) = v − u, α ≡ 0, then (3.1) becomes

〈u∗, v − u〉+ f(u, v) > 0⇒ 〈v∗, v − u〉+ f(u, v) ≥ 0,

for all u∗ ∈ F (u) and v∗ ∈ F (v) almost everywhere, F is f -quasimonotone. But

in most instances, 〈u∗, g(u, v)〉 + f(u, v) > 0 is false. So we have necessary to

use 〈u∗, g(u, v)〉+ f(u, v) > −α(u− v) for some α. This is one of motivation to

introduce the generalized monotonicity above.

Remark 3.3. We represent the implications between monotonicity and some

kinds of generalized monotonicity through the following two diagrams (see [18],

[19], [21]):

(D1)

monotone ⇒ stably pseudomonotone
with respect to the set U

⇒ pseudomonotone

⇓ ⇓
stably quasimonotone

with respect to the set U
⇒ quasimonotone
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(D2)

monotone ⇒ stably φ-pseudomonotone
with respect to the set U

⇒ φ-pseudomonotone

⇓ ⇓
stably φ-quasimonotone
with respect to the set U

⇒ φ-quasimonotone

(D3)

monotone ⇒ stably f -pseudomonotone
with respect to the set U

⇒ f -pseudomonotone

⇓ ⇓
stably f -quasimonotone
with respect to the set U

⇒ f -quasimonotone

(D4)

monotone ⇒ stably α-pseudomonotone
with respect to the set U

⇒ α-pseudomonotone

⇓ ⇓
stably α-quasimonotone
with respect to the set U

⇒ α-quasimonotone

where α above stands for (g, f, α).

The inverse direction of each implication relationship mentioned by two di-

agrams above does not hold in general. Example 2 in [6] had shown that a

stably pseudomonotone mapping with respect to a closed line segment is not

necessarily monotone; Example 3.1 in [7] had shown that a quasimonotone map-

ping may not be pseudomonotone; Example 4.1 in [21] had shown that a stably

quasimonotone mapping is not necessarily stable pseudomonotone; Example 3.1

in [18] had shown that stably φ-pseudomonotone mapping may not be monotone,

while Example 4.1 in the same paper had shown that a stably φ-quasimonotone

mapping is not necessarily stably φ-pseudomonotone and φ-quasimonotone map-

ping may not be φ-pseudomonotone. Example 3.4 in [19] had shown that stably

φ-pseudomonotone mapping may not be f -quasimonotone, while Example 3.5

in the same paper has shown that a stably f -pseudomonotone mapping is not

necessarily stably φ-quasimonotone.

Let A,Aφ and Af denote the sets consisting of generalized monotonicity in

diagrams (D1)–(D3), respectively. Example 3.1 in [18] had shown that each of

generalized monotonicity taken from the set A is independent of any one taken

from Aφ if φ 6= IK . Also, Examples 3.4 and 3.5 in [19] had shown that each of

generalized monotonicity taken from the set Aφ is independent of any one taken

from Af if f(u, v) 6= φ(v)− φ(u) for all u, v ∈ K.

The motivation of introducing the notions of stable (g, f, α)-pseudomono-

tonicity and stable (g, f, α)-quasimonoonicity is based on using some relatively
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weak conditions to solve the problems of hemivariational inequalities like (2.1).

If g(u, v) = v−u for all u, v ∈ K, and Aα denotes the set consisting of generalized

monotonicity in diagram (D4), we give the following two examples to illustrate

that each of generalized monotonicity taken from the set Af is independent of

any one taken from Aα if α 6≡ 0.

Example 3.4. Let E = R2 and K = [3, 5] × {0}. Let g : K × K → E,

f : K ×K → R, α : K → R, F : K ⇒ E∗ defined by, respectively,

g(u, v) = v − u, f(u, v) = v2
1 − u2

1, α(u) = 4u1, F (u) = [−5, 1]× {0},

where u = (u1, 0), v = (v1, 0). Then we get that F is stably f -pseudomonotone

with respect to the set V := {(0,m) : m ∈ R} ⊂ R2 but not (g, f, α)-quasimono-

tone.

At first, we show that F is f -pseudomonotone on K. If

0 ≤ 〈u∗, v − u〉+ f(u, v) = u∗1(v1 − u1) + v2
1 − u2

1 = (u∗1 + v1 + u1)(v1 − u1),

since u∗1 ∈ [−5, 1] and u1, v1 ∈ [3, 5], we get that u∗1 + v1 + u1 > 0. It implies

that v1 − u1 ≥ 0. Thus we have

〈v∗, v − u〉+ f(u, v) = (v∗1 + v1 + u1)(v1 − u1) ≥ 0.

Hence F is f -pseudomonotone on K.

Next, we show that F ( · )−ζ is stably f -pseudomonotone for each ζ = (0,m)

in V . If

0 ≤ 〈u∗ − ζ, v − u〉+ f(u, v) = u∗1(v1 − u1) + v2
1 − u2

1 = (u∗1 + v1 + u1)(v1 − u1),

since u∗1 ∈ [−5, 1] and u1 , v1 ∈ [3, 5], we get that u∗1 + v1 + u1 > 0. It implies

that v1 − u1 ≥ 0. Thus we have

〈v∗ − ζ, v − u〉+ f(u, v) = (v∗1 + v1 + u1)(v1 − u1) ≥ 0.

Hence F is stably f -pseudomonotone with respect to the set V .

However, if we take u1 = 3, v1 = 4, u∗1 = 1, v∗1 = −5, then we have

〈u∗, v − u〉+ f(u, v) + α(u− v) = u∗1(v1 − u1) + v2
1 − u2

1 + 4(u1 − v1)

= (u∗1 + v1 + u1 − 4)(v1 − u1) = (1 + 4 + 3− 4)(4− 3) = 4 > 0

but

〈v∗, v − u〉+ f(u, v) + α(u− v) = v∗1(v1 − u1) + v2
1 − u2

1 + 4(u1 − v1)

= (v∗1 + v1 + u1 − 4)(v1 − u1) = (−5 + 4 + 3− 4)(4− 3) = −2 < 0.

Hence F is not (g, f, α)-quasimonotone on K.
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Example 3.5. Let E = R2 and K = [−1, 2] × {0}. Let g : K × K → E,

f : K ×K → R, α : K → R, F : K ⇒ E∗ defined respectively by

g(u, v) = v − u, f(u, v) = v2
1 − u1v1 − 4(v1 − u1),

α(u) = −4u1, F (u) = [3/4, 3]× {0},

where u = (u1, 0), v = (v1, 0). Then we get that F is stably (g, f, α)-pseudo-

monotone with respect to the set V := {(0,m) : m ∈ R} ⊂ R2 but not f -quasi-

monotone.

At first, we show that F is (g, f, α)-pseudomonotone on K. If

0 ≤ 〈u∗, v − u〉+ f(u, v) + α(u− v)

= u∗1(v1 − u1) + v2
1 − u1v1 − 4(v1 − u1)− 4(u1 − v1) = (u∗1 + v1)(v1 − u1),

since u∗1 + v1 > 0, we have v1 − u1 > 0. It implies that v1 − u1 ≥ 0. Thus we

have

〈v∗, v − u〉+ f(u, v) = (v∗1 + v1)(v1 − u1) ≥ 0.

Hence F is (g, f, α)-pseudomonotone on K.

Next, we show that F ( · ) − ζ is stably (g, f, α)-pseudomonotone for each

ζ = (0,m) ∈ V . If

0 ≤, 〈u∗ − ζ, v − u〉+ f(u, v)

=u∗1(v1 − u1) + v1(v1 − u1)

= (u∗1 + v1)(v1 − u1),

since u∗1 + v1 > 0, we have v1 − u1 > 0. It implies that v1 − u1 ≥ 0. Thus we

have

〈v∗ − ζ, v − u〉+ f(u, v) = (v∗1 + v1)(v1 − u1) ≥ 0.

Hence F is stably (g, f, α)-pseudomonotone with respect to the set V .

However, if we take u1 = 1, v1 = 2, u∗1 = 3, v∗1 = 4/3, then we have

〈u∗, v − u〉+ f(u, v) = u∗1(v1 − u1) + v2
1 − u1v1 − 4(v1 − u1)

= (u∗1 + v1 − 4)(v1 − u1) = (3 + 2− 4)(2− 1) = 1 > 0,

but

〈v∗, v − u〉+ f(u, v) = v∗1(v1 − u1) + v2
1 − u1v1 − 4(v1 − u1)

= (v∗1 + v1 − 4)(v1 − u1) =

(
4

3
+ 2− 4

)
(2− 1) = −2

3
< 0.

Hence F is not f -quasimonotone on K.
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4. Existence theorems

Now, we give some existence results for our problem. At the first, we give

the follow existence result when K is a compact and convex subset of E.

Theorem 4.1. Let K be a nonempty, compact and convex subset of a real

Banach space E. Assume that:

• g : K ×K → E is a mapping satisfying the following conditions:

(a) g(u, u) = 0 for all u ∈ K,

(b) for all v ∈ K, g( · , v) is continuous,

(c) for all u ∈ K, n ∈ N, λj ∈ [0, 1], j = 1, . . . , n such that
n∑
j=1

λj = 1,

g(u, · ) satisfies

g

(
u,

n∑
j=1

λjvj

)
=

n∑
j=1

λjg(u, vj);

• f : K ×K → R is a mapping satisfying the following conditions:

(d) D(f) = {u ∈ K : f(u, v) 6= −∞ for all v ∈ K} is nonempty,

(e) f(u, u) = 0 for all u ∈ K,

(f) for all v ∈ K, f( · , v) is upper semicontinuous,

(g) for all u ∈ K, f(u, · ) is convex;

• J : Lp(X;Rk)→ R is the mapping

J(ϕ) =

∫
X

j(x, ϕ(x)) dx,

where j satisfies conditions (2.5) and (2.6) or (2.5) and (2.7)–(2.8);

• T : E → Lp(X;Rk) is a linear continuous operator;

• F : K ⇒ E∗ is l.s.c. with respect to the weak∗ topology of E∗.

Then problem (2.1) has at least one solution.

The proof is similar to Theorem 3.1 of [3]. So we omit it here.

We point out the fact that in the above case when K is a compact convex

subset of E we do not impose any monotonicity conditions on F , nor we assume

E to be a reflexive space. However, in applications, most problems lead to

an inequality whose solution is sought in a closed and convex subset of the

space E. Weakening the hypotheses on K by assuming that K is only bounded,

closed and convex, we need to impose certain monotonicity properties on F and

assume in addition that E is reflexive. We shall use the generalized monotonicity

in Section 3. Furthermore, we need to suppose that T is compact and for all

v ∈ K, f( · , v) is weakly upper semicontinuous.

Now, we consider the existence of solutions of problem (2.1) when K is

a bounded, closed and convex subset of E.



206 Z. Liu — B. Zeng

Theorem 4.2. Let K be a nonempty, bounded, closed and convex subset of

a real reflexive Banach space E. Assume that:

• g : K ×K → E is a mapping satisfying the following conditions:

(a) g(u, v) + g(v, u) = 0 for all u, v ∈ K,

(b) for all v ∈ K, g(·, v) is continuous,

(c) for all u ∈ K, n ∈ N, λj ∈ [0, 1], j = 1, . . . , n such that
n∑
j=1

λj = 1,

g(u, · ) satisfies

g

(
u,

n∑
j=1

λjvj

)
=

n∑
j=1

λjg(u, vj);

• f : K ×K → R is a mapping satisfying the following conditions:

(d) D(f) = {u ∈ K : f(u, v) 6= −∞, for all v ∈ K} 6= ∅,
(e) f(u, u) = 0 for all u ∈ K,

(f) f(u, v) + f(v, u) ≥ 0 for all u, v ∈ K,

(g) for all v ∈ K, f( · , v) is weakly upper semicontinuous,

(h) for all u ∈ K, f(u, · ) is convex;

• J : Lp(X;Rk)→ R is the mapping

J(ϕ) =

∫
X

j(x, ϕ(x)) dx,

where j satisfies conditions (2.5) and (2.6) or (2.5) and (2.7)–(2.8);

• T : E → Lp(X;Rk) is a linear compact operator;

• α : E → R is a convex and weakly upper semicontinuous functional such

that

lim
t↓0

α(tu)

t
= 0, for all u ∈ E;

• F : K ⇒ E∗ is a l.h.c. multivalued mapping and stably (g, f, α)-quasi-

monotone with respect to the set U(J, T ) defined as (2.9).

Then problem (2.1) has at least one solution.

Proof. For any v ∈ K define a multivalued mapping G : K ⇒ E as follows:

G(v) :=
{
u ∈ K : inf

v∗∈F (v)
〈v∗, g(u, v)〉+ f(u, v) + J◦(û; ĝ(u, v)) ≥ −α(u− v)

}
.

G(v) is nonempty since v ∈ G(v) for each v ∈ K. Consider two cases of G: G is

not a KKM mapping, and G is a KKM mapping.

Case 1. If G is not a KKM mapping, then there exist ui ∈ K and λi ∈ [0, 1],

i = 1, . . . , N , with
N∑
i=1

λi = 1 such that u0 =
N∑
i=1

λiui 6∈
N⋃
i=1

G(ui), that is

(4.1) inf
u∗
i∈F (ui)

〈u∗i , g(u0, ui)〉+ f(u0, ui) + J◦(û0; ĝ(u0, ui)) + α(u0 − ui) < 0,

forall i ∈ {1, . . . , N}.
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We claim that there exists a neighbourhood U of u0 such that for all v ∈
U ∩K,

inf
u∗
i∈F (ui)

〈u∗i , g(v, ui)〉+ f(v, ui) + J◦(v̂; ĝ(v, ui)) + α(v − ui) < 0,

for all i ∈ {1, . . . , N}. If not, for any neighbourhood U of u0, there exists

v0 ∈ U ∩K and i0 ∈ {1, . . . , N} such that

inf
u∗
i0
∈F (ui0

)
〈u∗i0 , g(v0, ui0)〉+ f(v0, ui0) + J◦(v̂0; ĝ(v0, ui0)) + α(v0 − ui0) ≥ 0.

Putting U = B(u0, 1/n), so there exists vn ∈ B(u0, 1/n) ∩K such that

inf
u∗
i0
∈F (ui0 )

〈u∗i0 , g(vn, ui0)〉+ f(vn, ui0) + J◦(v̂n; ĝ(vn, ui0)) + α(vn − ui0) ≥ 0.

By (b) of Lemma 2.1, vn → u0, (b), (g) of the assumptions and the weak upper

semicontinuity of α, passing to the superior limit, we obtain that

inf
u∗
i0
∈F (ui0

)
〈u∗i0 , g(u0, ui0)〉+ f(u0, ui0) + J◦(û0; ĝ(u0, ui0)) + α(u0 − ui0) ≥ 0,

which is a contradiction with (4.1), hence we have the claim.

From (2.10) and (4.1), there exists a neighbourhood U of u0 such that for all

v ∈ U ∩K,

inf
u∗
i∈F (ui)

〈u∗i , g(v, ui)〉+ f(v, ui) + 〈z∗v , g(v, ui)〉+ α(v − ui)

= inf
u∗
i∈F (ui)

〈u∗i , g(v, ui)〉+ f(v, ui) + J◦(v̂; ĝ(v, ui)) + α(v − ui) < 0,

for all i ∈ {1, . . . , N}, which can be rewritten as

inf
u∗
i∈F (ui)

〈u∗i − (−z∗v), g(v, ui)〉+ f(v, ui) < −α(v − ui), for all i ∈ {1, . . . , N}.

By the stable (g, f, α)-quasimonotonicity of F with respect to the set U(J, T ),

we get that

sup
v∗∈F (v)

〈v∗ − (−z∗v), g(v, ui)〉+ f(v, ui) ≤ −α(v − ui), for all i ∈ {1, . . . , N},

which, for all i ∈ {1, . . . , N}, is equivalent to

sup
v∗∈F (v)

〈v∗, g(v, ui)〉+ f(v, ui) + J◦(v̂; ĝ(v, ui)) + α(v − ui) ≤ 0.
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From (a) of Lemma 2.1, (c), (h) of the assumptions and the linearity of T , we

have that

sup
v∗∈F (v)

〈v∗,g(v, u0)〉+ f(v, u0) + J◦(v̂; ĝ(v, u0)) + α(v − u0)(4.2)

= sup
v∗∈F (v)

〈
v∗, g

(
v,

N∑
i=1

λiui

)〉
+ f

(
v,

N∑
i=1

λiui

)

+ J◦
(
v̂; ĝ

(
v,

N∑
i=1

λiui

))
+ α

(
v −

N∑
i=1

λiui

)

≤
N∑
i=1

λi

[
sup

v∗∈F (v)

〈v∗, g(v, ui)〉

+ f(v, ui) + J◦(v̂; ĝ(v, ui)) + α(v − ui)
]
≤ 0,

By (a) of Lemma 2.1, we have that

J◦(v̂; ĝ(u0, v)) + J◦(v̂; ĝ(v, u0)) ≥ J◦(v̂; 0) = 0.

From (a), (f) of the assumptions, combining the last inequality with (4.2), we

obtain that

(4.3) inf
v∗∈F (v)

〈v∗, g(u0, v)〉+ f(u0, v) + J◦(v̂; ĝ(u0, v))− α(v − u0) ≥ 0,

for all v ∈ U ∩K. Let v′ ∈ K be any element and define

um =
1

m
v′ +

(
1− 1

m

)
u0, m ≥ 1.

Thus, um → u0 as m→∞ and hence there exists M ∈ N such that um ∈ U ∩K
for all m > M .

For any given u∗0 ∈ F (u0), since F is l.h.c., there exists a sequence {u∗m} in

F (um) converging weakly star to u∗0. It follows from (4.3) that for any m > M ,

〈u∗m, g(u0, um)〉+ f(u0, um) + J◦(ûm; ĝ(u0, um))− α(um − u0) ≥ 0,

for all v ∈ U ∩K.

By (a) of Lemma 2.1, (a), (c), (e) and (h) of the assumptions, and the

linearity of T , we have that

0 ≤
〈
u∗m, g

(
u0, u0 +

1

m
(v′ − u0)

)〉
+ f

(
u0, u0 +

1

m
(v′ − u0)

)
+ J◦

(
ûm; ĝ

(
u0, u0 +

1

m
(v′ − u0)

))
− α

(
1

m
(v′ − u0)

)
≤ 1

m

[
〈u∗m, g(u0, v

′)〉+ f(u0, v
′) + J◦(ûm; ĝ(u0, v

′))
]
− α

(
1

m
(v′ − u0)

)
.
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Multiplying the last inequality by m and letting m→∞, from (b) of Lemma 2.1

and the assumption of α, we obtain that

(4.4) 〈u∗0, g(u0, v
′)〉+ f(u0, v

′) + J◦(û0; ĝ(u0, v
′)) ≥ 0, for all v′ ∈ K.

Since J(ϕ) =
∫
X
j(x, ϕ(x)) dx and j satisfies conditions (2.5) and (2.6) or (2.5)

and (2.7)–(2.8), by Lemma 2.2, we get that∫
X

j◦(x, û(x); ĝ(u, v)(x)) dx ≥ J◦(û; ĝ(u, v)), for all u, v ∈ K.

It follows from (4.4) that

〈u∗0, g(u0, v
′)〉+ f(u0, v

′) +

∫
X

j◦(x, û0(x); ĝ(u0, v
′)(x)) dx ≥ 0, for all v′ ∈ K.

Obviously, we have u0 ∈ D(f). Hence problem (2.1) has at least one solution.

Case 2. If G is a KKM mapping. For any v ∈ K, we consider the following

mapping:

u 7→ inf
v∗∈F (v)

〈v∗, g(u, v)〉+ f(u, v) + J◦(û; ĝ(u, v)) + α(u− v).

We claim that the above mapping is weakly upper semicontinuous. For a given

a sequence {µn} ⊂ K such that µn ⇀ µ0, it follows from the linearity and

compactness of T that Tµn → Tµ0; that is µ̂n → µ̂0 as n→∞. Since g( · , y) is

continuous and f( · , y) is weakly upper semicontinuous for all y ∈ K and by (b)

of Lemma 2.1, we have that

lim sup
n→∞

[
inf

v∗∈F (v)
〈v∗, g(µn, v)〉+ f(µn, v) + J◦(µ̂n; ĝ(µn, v)) + α(µn − v)

]
≤ lim sup

n→∞

(
inf

v∗∈F (v)
〈v∗, g(µn, v)〉

)
+ lim sup

n→∞
f(µn, v)

+ lim sup
n→∞

J◦(µ̂n; ĝ(µn, v)) + lim sup
n→∞

α(µn − v)

≤ inf
v∗∈F (v)

〈v∗, g(µ0, v)〉+ f(µ0, v) + J◦(µ̂0; ĝ(µ0, v)) + α(µ0 − v).

Thus we have the claim. Then G(v) is weakly closed. It follows from the con-

vexity, boundedness and closedness of a subset K in a reflexive Banach space E,

we have that K is weakly compact. Since G(v) ⊂ K, we get that G(v) is weakly

compact for each v ∈ K. Thus, all conditions of Lemma 2.3 are satisfied in the

weak topology and hence we obtain that
⋂
v∈K

G(v) 6= ∅. Taking u0 ∈
⋂
v∈K

G(v),

we have

(4.5) inf
v∗∈F (v)

〈v∗, g(u0, v)〉+ f(u0, v) + J◦(û0; ĝ(u0, v)) + α(u0 − v) ≥ 0,

for all v ∈ K. Let v0 ∈ K be any element and define

un =
1

n
v0 +

(
1− 1

n

)
u0, n ≥ 1.
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Then un ∈ K for all n ≥ 1. For any given u∗0 ∈ F (u0), since F is l.h.c., there

exists a sequence {u∗n} in F (un) converging weakly star to u∗0. From (4.5), for

any n ≥ 1, we have

〈u∗n, g(u0, un)〉+ f(u0, un) + J◦(ûn; ĝ(u0, un)) + α(u0 − un) ≥ 0.

By (a) of Lemma 2.1, (a), (c), (e) and (h) of the assumptions, and the linearity

of T , we have that

0 ≤
〈
u∗n, g

(
u0, u0 +

1

n
(v0 − u0)

)〉
+ f

(
u0, u0 +

1

n
(v0 − u0)

)
+ J◦

(
ûn; ĝ

(
u0, u0 +

1

n
(v0 − u0)

))
+ α

(
1

n
(u0 − v0)

)
≤ 1

n

[
〈u∗n, g(u0, v0)〉+ f(u0, v0) + J◦(ûn; ĝ(u0, v0))

]
+ α

(
1

n
(u0 − v0)

)
,

Multiplying the last inequality by n and letting n→∞, from (b) of Lemma 2.1

and the assumption of α, we obtain that

(4.6) 〈u∗0, g(u0, v0)〉+ f(u0, v0) + J◦(û0; ĝ(u0, v0)) ≥ 0, for all v0 ∈ K.

Since J(ϕ) =
∫
X
j(x, ϕ(x)) dx and j satisfies conditions (2.5) and (2.6) or (2.5)

and (2.7)–(2.8), by Lemma 2.2, we get that∫
X

j◦(x, û(x); ĝ(u, v)(x)) dx ≥ J◦(û; ĝ(u, v)), for all u, v ∈ K.

It follows from (4.6) that

〈u∗0, g(u0, v0)〉+ f(u0, v0) +

∫
X

j◦(x, û0(x); ĝ(u0, v0)(x)) dx ≥ 0, for all v0 ∈ K.

Obviously, we have u0 ∈ D(f). Hence problem (2.1) has at least one solution.

This completes the proof. �

Remark 4.3. (a) Taking α(u) = 〈ζ, u〉2 + C, ζ ∈ E∗, C ∈ R, it is obvious

that α satisfies the conditions in Theorem 4.2.

(b) Theorem 4.2 generalizes and improves some recent results. In fact,

• If α ≡ 0, g(u, v) = v − u, then Theorem 4.2 reduces to Theorem 4.1

of [19].

• If α ≡ 0, g(u, v) = v−u, f ≡ 0, then Theorem 4.2 reduces to Theorem 3.1

of [21].

• If α ≡ 0, g(u, v) = v−u, f(u, v) = φ(v)−φ(u), where φ : E → R∪{+∞}
is proper, convex and lower semicontinuous function such that Kφ =

K ∩ domφ = D(f), then Theorem 4.2 reduces to Theorem 4.1 of [21].

(c) We present an example in Section 5 to show that the assumptions regard-

ing g, f , F , α are reasonable.
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Next, we omit the boundedness of K in Theorem 4.2, we need to introduce

the concept of f -coercivity.

Proposition 4.4. Consider the following f -coercivity conditions:

(a) There exists a nonempty subset V0 contained in a weakly compact subset

V1 of K such that the set

D =
{
u ∈ K : inf

v∗∈F (v)
〈v∗, g(u, v)〉+ f(u, v) + J◦(û; ĝ(u, v)) ≥ 0, for all v ∈ V0

}
is weakly compact or empty.

(b) There exists n0 ∈ N such that for every u ∈ K \ Bn0
, there exists some

v ∈ K with ‖v‖ < ‖u‖ such that

sup
u∗∈F (u)

〈u∗, g(u, v)〉+ f(u, v) + J◦(û; ĝ(u, v)) ≤ 0.

(c) There exists n0 ∈ N such that for every u ∈ K \ Bn0
, there exists some

v ∈ K with ‖v‖ < ‖u‖ such that

sup
u∗∈F (u)

〈u∗, g(u, v)〉+ f(u, v) +

∫
X

j◦(x, û(x); ĝ(u, v)(x)) dx < 0.

Then we have:

(i) (a)⇒(b), if F is stably (g, f, 0)-quasimonotone with respect to the set

U(J, T ).

(ii) (c)⇒(b), if J(ϕ) =
∫
X
j(x, ϕ(x))dx, and j satisfies conditions (2.5) and

(2.6) or (2.5) and (2.7)–(2.8).

Proof. (i) IfD = ∅, since V0 is nonempty and contained in a weakly compact

subset V1 of K, then there exists a natural number M <∞ such that ‖z‖ < M

for all z ∈ V0. Taking n0 = M , we obtain that for every u ∈ K \ Bn0
, there

exists v ∈ V0 6= ∅ such that v ∈ Bn0
and

(4.7) inf
v∗∈F (v)

〈v∗, g(u, v)〉+ f(u, v) + J◦(û; ĝ(u, v)) < 0.

If D 6= ∅, then D is weakly compact. Since D∪V0 ⊂ D∪V1, which is a weakly

compact subset, we conclude that there exists a natural number M < ∞ such

that ‖Z‖ < M for all z ∈ D ∪ V0. Taking n0 = M , we obtain that for every

u ∈ K \ Bn0 (4.7) holds. Hence, from the proofs of both case we can conclude

that there exists n0 ∈ N such that for every u ∈ K \ Bn0 , there exists some

v ∈ Bn0 such that (4.7) holds. Therefore,

0 > inf
v∗∈F (v)

〈v∗, g(u, v)〉+ f(u, v) + J◦(û; ĝ(u, v))

= inf
v∗∈F (v)

〈v∗, g(u, v)〉+ f(u, v) + 〈z∗u, g(u, v)〉,

and hence

inf
v∗∈F (v)

〈v∗ − (−z∗u), g(u, v)〉+ f(u, v) < 0.
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Since F is stably (g, f, 0)-quasimonotone with respect to the set U(J, T ), we have

sup
u∗∈F (u)

〈u∗ − (−z∗u), g(u, v)〉+ f(u, v) ≤ 0,

and then

sup
u∗∈F (u)

〈u∗, g(u, v)〉+ f(u, v) + J◦(û; ĝ(u, v)) ≤ 0.

(ii) By Lemma 2.2, we get that∫
X

j◦(x, û(x); ĝ(u, v)(x))dx ≥ J◦(û; ĝ(u, v)), for all u, v ∈ E.

Combining with (c), we get (b). �

Remark 4.5. (a) If α ≡ 0, g(u, v) = v − u, then the f -coercivity conditions

of Proposition 4.4 reduce to f -coercivity conditions of Proposition 4.3 of [19];

(b) If α ≡ 0, g(u, v) = v − u, f ≡ 0, then the f -coercivity conditions of

Proposition 4.4 reduce to coercivity conditions of Proposition 3.1 of [21];

(c) If α ≡ 0, g(u, v) = v−u, f(u, v) = φ(v)−φ(u) as (b) of Remark 4.3, then

the f -coercivity conditions of Proposition 4.4 reduce to φ-coercivity conditions

of Proposition 4.1 of [18].

Next, we present the result for the unbounded constrained set.

Theorem 4.6. Let K be a nonempty, unbounded, closed and convex subset

of a real reflexive Banach space E. Assume that g, f, J, T, α, F are the mappings

satisfying the conditions as in Theorem 4.2. If condition (b) of Proposition 4.4

holds, then problem (2.1) has at least one solution.

Proof. Take m > n0. Since Bm is bounded and convex, from (4.4) or

(4.6) in Theorem 4.2, we can conclude that there exists um ∈ Bm ∩ D(f) and

u∗m ∈ F (um) such that

(4.8) 〈u∗m, g(um, v)〉+ f(um, v) + J◦(ûm; ĝ(um, v)) ≥ 0, for all v ∈ Bm ∩K.

Now, we consider two cases.

Case 1. If ‖um‖ = m, then ‖um‖ > n0. Since condition (b) of Proposition 4.4

holds, there is some v0 ∈ K with ‖v0‖ < ‖um‖ = m such that

(4.9) 〈u∗m, g(um, v0)〉+ f(um, v0) + J◦(ûm; ĝ(um, v0)) ≤ 0.

Let v ∈ K. Since ‖v0‖ < ‖um‖ = m, there is t ∈ (0, 1) such that vt :=

v0 + t(v − v0) ∈ Bm ∩K. Note that T is linear mapping and f(x, · ) is a convex
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function. By (4.8), (4.9) and (a) of Lemma 2.1, it follows that

0 ≤〈u∗m, g(um, vt)〉+ f(um, vt) + J◦(ûm; ĝ(um, vt))

= 〈u∗m, g(um, (1− t)v0 + tv)〉

+ f(um, (1− t)v0 + tv) + J◦(ûm; ĝ(um, (1− t)v0 + tv))

≤ (1− t)
[
〈u∗m, g(um, v0)〉+ f(um, v0) + J◦(ûm; ĝ(um, v0))

]
+ t
[
〈u∗m, g(um, v)〉+ f(um, v) + J◦(ûm; ĝ(um, v))

]
≤ t
[
〈u∗m, g(um, v)〉+ f(um, v) + J◦(ûm; ĝ(um, v))

]
,

for all v ∈ K. Dividing by t, we have that

(4.10) 〈u∗m, g(um, v)〉+ f(um, v) + J◦(ûm; ĝ(um, v)) ≥ 0, for all v ∈ K.

Case 2. If ‖um‖ < m, then for any v ∈ K, there is t ∈ (0, 1) such that

v′t := um + t(v − um) ∈ Bm ∩K. Note that T is linear mapping and f(x, · ) is

a convex function. By (4.10) and (a) of Lemma 2.1, it follows that

0 ≤〈u∗m, g(um, v
′
t)〉+ f(um, v

′
t) + J◦(ûm; ĝ(um, v

′
t))

≤ t
[
〈u∗m, g(um, v)〉+ f(um, v) + J◦(ûm; ĝ(um, v))

]
,

for all v ∈ K. Dividing by t, we have that (4.10) holds.

Since J(ϕ) =
∫
X
j(x, ϕ(x))dx and j satisfies conditions (2.5) and (2.6) or

(2.5) and (2.7)–(2.8), by Lemma 2.2, we get that∫
X

j◦(x, û(x); ĝ(u, v)(x)) dx ≥ J◦(û; ĝ(u, v)), for all u, v ∈ E,

and hence

0 ≤
[
〈u∗m, g(um, v)〉+ f(um, v) + J◦(ûm; ĝ(um, v))

]
≤〈u∗m, g(um, v)〉+ f(um, v) +

∫
X

j◦(x, ûm(x); ĝ(um, v)(x)) dx,

for all v ∈ K. This shows that problem (2.1) has at least one solution. �

Remark 4.7. (a) If α ≡ 0, g(u, v) = v − u, then Theorem 4.6 reduces to

Theorem 4.5 of [19];

(b) If α ≡ 0, g(u, v) = v − u, f ≡ 0, then then Theorem 4.6 reduces to

Theorem 3.2 of [21];

(c) If α ≡ 0, g(u, v) = v − u, f(u, v) = φ(v) − φ(u) as (b) of Remark 4.3,

then Theorem 4.6 reduces to Theorem 4.2 of [18].

If the constrained set K is bounded, then the solution set of problem (2.1) is

obviously bounded. In the case of constrained set K is unbounded, the solution

set of problem (2.1) may be unbounded. In the sequel, we provide a sufficient

condition to guarantee the boundedness of the solution set of problem (2.1), when

K is unbounded. The following result also generalized Theorem 4.5 of [18].
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Theorem 4.8. Let K be a nonempty, closed, unbounded and convex subset

of a real reflexive Banach space E. Assume that g, f, J, T, α, F are the mappings

satisfying the conditions as in Theorem 4.2. If condition (c) of Proposition 4.4

holds, then the solution set of problem (2.1) is nonempty and bounded.

Proof. From Proposition 4.4, we have (c)⇒(b). By Theorem 4.6, we know

that the solution set of problem (2.1) is nonempty. If the solution set is un-

bounded, then there exist u0 ∈ D(f) and u∗0 ∈ F (u0) such that ‖u0‖ > n0

and

(4.11) 〈u∗0, g(u0, v)〉+ f(u0, v) +

∫
X

j◦(x, û0(x); ĝ(u0, v)(x))dx ≥ 0,

for all v ∈ K. Since ‖u0‖ > n0, it follows from condition (c) of Proposition 4.4

that, there exists v0 ∈ K with ‖v0‖ < ‖u0‖ such that

sup
u∗∗
0 ∈F (u0)

〈u∗∗0 , g(u0, v0)〉+ f(u0, v0) +

∫
X

j◦(x, û0(x); ĝ(u0, v0)(x)) dx < 0,

which is a contradiction with (4.11). �

Remark 4.9. (a) If α ≡ 0, g(u, v) = v − u, then Theorem 4.8 reduces to

Theorem 4.7 of [19].

(b) If α ≡ 0, g(u, v) = v − u, f ≡ 0, then then Theorem 4.8 reduces to

Theorem 3.3 of [21].

(c) If α ≡ 0, g(u, v) = v − u, f(u, v) = φ(v) − φ(u) as (b) of Remark 4.3,

then Theorem 4.8 reduces to Theorem 4.3 of [18].

5. Example

We consider the following example to present the generalized monotonicity

in Definition 3.1 and Theorem 4.2.

Example 5.1. Let a > 0, E = R3 and K = [−a, a] × {0} × [−a, a]. Let

g : K×K → E, f : K×K → R, α : K → R, F : K ⇒ E∗ defined by, respectively,

g(u, v) = v − u, f(u, v) = v1(v1 − u1), α(u) = u2
1,

F (u) = {(u∗1, u∗2, 0) ∈ R3 : 3a ≤ u∗1 ≤ 4a, a ≤ u∗2 ≤ 2a},

where u = (u1, 0, u3), v = (v1, 0, v3). Let Ω = (0, 1) ⊂ R and j : Ω× R3 → R be

defined by

j(x, y) = |y2|, for all x ∈ Ω and for all y = (y1, y2, y3) ∈ R3.

Let J : L2(Ω,R3)→ R be defined by

J(ϕ) =

∫
Ω

j(x, ϕ(x)) dx,
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and T : R3 → L2(Ω,R3) be defined by

T (u) = T (u1, u2, u3) = ϕ = (ϕ1, ϕ2, ϕ3),

where ϕk = uk (k = 1, 2, 3) for all x ∈ Ω. Then

(i) F is (g, f, α)-quasimonotone, but not (g, f, α)-pseudomonotone;

(ii) F is stably (g, f, α)-quasimonotone with respect to the set V := {(0,m, 0) :

m ∈ R} ⊂ R3;

(iii) the set U(J, T ) ⊆ V .

Proof. (i) Firstly, we show that F is (g, f, α)-quasimonotone. In fact, let

u = (u1, 0, u3), v = (v1, 0, v3) ∈ K and u∗ = (u∗1, u
∗
2, 0) ∈ F (u) be such that

〈u∗, v − u〉+ f(u, v) > −α(u− v).

Since

〈u∗, v − u〉 = 〈(u∗1, u∗2, 0), (v1 − u1, 0, v3 − u3〉 = u∗1(v1 − u1),

f(u, v) = v1(v1 − u1), −α(u− v) = −(u1 − v1)2,

we have (u∗1 + 2v1 − u1)(v1 − u1) > 0. Since u∗1 + 2v1 − u1 ≥ 0 we have and

u∗1 + 2v1 − u1 6= 0 and v1 − u1 > 0.

On the other hand,

〈v∗, v − u〉 = 〈(v∗1 , v∗2 , 0), (v1 − u1, 0, v3 − u3)〉 = v∗1(v1 − u1),

hence, (v∗1 + 2v1−u1)(v1−u1) ≥ 0. Consequently, F is (g, f, α)-quasimonotone.

Next, we check that F is not (g, f, α)-pseudomonotone. Choose u0 = (a, 0, 0),

v0 = (−a, 0, 0) ∈ K, u∗0 = (3a, a, 0) ∈ F (u0), and v∗0 = (4a, 2a, 0) ∈ F (v0). We

have

〈u∗0, v0 − u0〉+ f(u0, v0) + α(u0 − v0) = 0,

〈v∗0 , v0 − u0〉+ f(u0, v0) + α(u0 − v0) = −a2 < 0.

This implies that F is not (g, f, α)-pseudomonotone.

(ii) Let u = (u1, 0, u3), v = (v1, 0, v3) ∈ K, u∗ = (u∗1, u
∗
2, 0) ∈ F (u), v∗ =

(v∗1 , v
∗
2 , 0) ∈ F (v) and ζ = (0,m, 0) ∈ V be such that

〈u∗ − ζ, v − u〉+ f(u, v) > −α(u− v).

Since

〈u∗ − ζ, v − u〉 = 〈(u∗1, u∗2 −m, 0), (v1 − u1, 0, v3 − u3〉 = u∗1(v1 − u1),

f(u, v) = v1(v1 − u1), −α(u− v) = −(u1 − v1)2,

we have (u∗1 + 2v1 − u1)(v1 − u1) > 0. Since u∗1 + 2v1 − u1 ≥ 0 we have and

u∗1 + 2v1 − u1 6= 0 and v1 − u1 > 0.

On the other hand,

〈v∗ − ζ, v − u〉 = 〈(v∗1 , v∗2 −m, 0), (v1 − u1, 0, v3 − u3〉 = v∗1(v1 − u1),
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hence (v∗1 + 2v1 − u1)(v1 − u1) ≥ 0, therefore,

〈u∗ − ζ, v − u〉+ f(u, v) ≥ −α(u− v),

which shows that F − ζ is (g, f, α)-quasimonotone for all ζ ∈ V . Consequently,

F is stably (g, f, α)-quasimonotone with respect to the set V .

(iii) In fact, it follows from (iii) of Example 4.1 in [21] that U(J, T ) ⊆ V .

Combining (ii) and (iii), we conclude that F is stably (g, f, α)-quasimonotone

with respect to the set U(J, T ). �

Remark 5.2. It is easy to verify that g, f, α satisfy the conditions in Theo-

rem 4.2. Then in this situation problem (2.1) has at least one solution.

6. Conclusions

In this paper, we establish some existence results for the a class of hemivari-

ational inequalities problems in the case when the constraint set K is compact,

bounded and unbounded, respectively. When the set K is bounded in a reflex-

ive Banach space, we introduce the concept of stable (g, f, α)-quasimonotonicity

and use the properties of Clarke’s generalized directional derivative, Clarke’s

generalized gradient, and KKM technique. When the set K is unbounded, we

give a coerciveness condition for the existence of the solution and a coerciveness

condition for the existence and boundedness of solution. The results presented

in this paper extend and improve some known results.
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