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FIBONACCI-LIKE UNIMODAL INVERSE LIMIT SPACES

AND THE CORE INGRAM CONJECTURE

Henk Bruin — Sonja Štimac

Abstract. We study the structure of inverse limit space of so-called
Fibonacci-like tent maps. The combinatorial constraints implied by the
Fibonacci-like assumption allow us to introduce certain chains that enable
a more detailed analysis of symmetric arcs within this space than is possible
in the general case. We show that link-symmetric arcs are always symmet-
ric or a well-understood concatenation of quasi-symmetric arcs. This leads
to the proof of the Ingram Conjecture for cores of Fibonacci-like unimodal
inverse limits.

1. Introduction

A unimodal map is called Fibonacci-like if it satisfies certain combinatorial

conditions implying an extreme recurrence behavior of the critical point. The

Fibonacci unimodal map itself was first described by Hofbauer and Keller [15]

as a candidate to have a so-called wild attractor. (The combinatorial property

defining the Fibonacci unimodal map is that its so-called cutting times are exactly

the Fibonacci numbers 1, 2, 3, 5, 8, . . .) In [12] it was indeed shown that Fibonacci

unimodal maps with sufficiently large critical order possess a wild attractor,
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whereas Lyubich [18] showed that such is not the case if the critical order is

2 (or ≤ 2 + ε as was shown in [17]). This answered a question in Milnor’s

well-known paper on the structure of metric attracts [20].

In [8] the strict Fibonacci combinatorics were relaxed to Fibonacci-like, see

Definition 2.1. Intricate number-theoretic properties of Fibonacci-like critical

omega-limit sets were revealed in [19] and [13], and [9, Theorem 2] shows that

Fibonacci-like combinatorics are incompatible with the Collet–Eckmann con-

dition of exponential derivative growth along the critical orbit. This makes

Fibonacci-like maps an interesting class of maps in between the regular and the

stochastic unimodal maps in the classification of [1].

Our interest in the Fibonacci-like properties lies in the fact that they allow

us to resolve the Ingram Conjecture for cores of Fibonacci-like inverse limit

spaces. The original conjecture was posed by Tom Ingram in 1991 for tent maps

Ts : [0, 1] → [0, 1] with slope ±s, s ∈ [1, 2], defined as Ts(x) = min{sx, s(1− x)}:

If 1 ≤ s < s′ ≤ 2, then the corresponding inverse limit spaces

lim←−([0, s/2], Ts) and lim←−([0, s′/2], Ts′) are non-homeomorphic.

The first results towards solving this conjecture have been obtained for tent maps

with a finite critical orbit [16], [23], [4]. Raines and Štimac [21] extended these

results to tent maps with an infinite, but non-recurrent critical orbit. Recently

Ingram’s Conjecture was solved for all slopes s ∈ [1, 2] (in the affirmative) by

Barge, Bruin and Štimac in [3], but we still know very little of the structure

of inverse limit spaces (and their subcontinua) for the case that the orbit of a

critical point is infinite and recurrent, see [2], [5], [10]. The inverse limit space

lim←−([0, s/2], Ts) is the union of the core lim←−([c2, c1], Ts) and a ray C, containing the

endpoint 0 := (. . . , 0, 0, 0), converging onto the core. Since the arc-component C

is important in the proof of the Ingram Conjecture in [3], the “core” version of

the Ingram Conjecture for tent maps with an infinite critical orbit stayed open.

It is this version that we solve here for Fibonacci-like tent maps:

Theorem 1.1 (Main Theorem). If 1 ≤ s < s′ ≤ 2 are the parameters of

Fibonacci-like tent-maps, then the corresponding cores of inverse limit spaces

lim←−([c2, c1], Ts) and lim←−([c2, c1], Ts′) are non-homeomorphic.

The set of all Fibonacci-like parameters s ∈ [1, 2] intersects every open subset

of [1, 2] in an uncountable set. The inverse limit spaces of Fibonacci-like maps

share the property that their only subcontinua are points, arcs and sin(1/x)-

continua, see [10], and they are not homeomorphic to the inverse limit spaces of

tent maps with finite or non-recurrent critical orbits.

In this paper we develop tools to use the arc-component of the core which

contains the point (. . . , r, r, r) fixed for the shift homeomorphism, where r =
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s/(s+ 1) is a fixed point of Ts. One key observation of the paper is that this arc-

component is fixed for every self-homeomorphism of the core, see Theorem 4.2.

The other key observation is Proposition 3.2 which implies that every homeo-

morphism maps symmetric arcs to symmetric arcs, not just to quasi-symmetric

arcs. (The difficulty that quasi-symmetric arcs pose was first observed and over-

come in [21] in the setting of tent maps with non-recurrent critical point.) To

prove Proposition 3.2, the special structure of the Fibonacci-like maps is used.

But assuming the result of Proposition 3.2, the proof of Theorem 4.2 and of the

main theorem work for general tent maps. Therefore, this paper is an important

step towards proving the core Ingram Conjecture for all tent maps.

The paper is organized as follows. In Section 2 we set the notation, review

some necessary tools, mostly from [3], and gradually generalize them to obtain

a new, more suitable tool for investigation of the core of Fibonacci-like inverse

limits and its self-homeomorphisms. In Section 3 we show that any homeomor-

phism on the core of the Fibonacci-like inverse limit space maps symmetric arcs

to symmetric arcs, and using this we prove our main theorem in Section 4. Ap-

pendix A is devoted to the construction of the chains C having special properties

that allow us to prove desired properties of folding structure in Appendix B. In

Appendix C, we show that link-symmetric arcs are always symmetric or a well-

understood concatenation of quasi-symmetric arcs.

2. Definitions

2.1. Combinatorics of tent maps. The tent map Ts : [0, 1] → [0, 1] with

slope ±s is defined as Ts(x) = min{sx, s(1−x)}. The critical or turning point is

c = 1/2 and we write ck = T k
s (c), so in particular c1 = s/2 and c2 = s(1 − s/2).

We will restrict Ts to the interval I = [0, s/2]; this is larger than the core

[c2, c1] = [s− s2/2, s/2], but it contains both fixed points 0 and r = s/(s+ 1).

Combinatorics of unimodal maps can be described by cutting times, see

e.g. [7]. The cutting times {Sk}k≥0 are those iterates n (written in increasing

order) for which the central branch of T n
s covers c. More precisely, let Zn ⊂ [0, c]

be the maximal interval with boundary point c on which T n
s is monotone, and

let Dn = T n
s (Zn). Then n is a cutting time if Dn � c. Let N = {1, 2, . . .} be

the set of natural numbers and N0 = N ∪ {0}. It can be shown that the differ-

ence of consecutive cutting times is again a cutting time, so there is a function

Q : N → N0 such that

(2.1) Sk − Sk−1 = SQ(k)

for all k. This function is called the kneading map.

Definition 2.1. A unimodal map is called the Fibonacci map if its kneading

mapQ(k)=max{k−2, 0} (and hence the cutting times {Sk}k≥0={1, 2, 3, 5, 8, . . .}
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are the Fibonacci numbers). A unimodal map is called Fibonacci-like if its knead-

ing map is eventually non-decreasing, and satisfies the condition

(2.2) Q(k + 1) > Q(Q(k) + 1) for all k sufficiently large.

Remark 2.2. Condition (2.2) follows if the Q is eventually non-decreasing

and Q(k) ≤ k− 2 for k sufficiently large. (In fact, since tent maps are not renor-

malizable of arbitrarily high period, Q(k) ≤ k − 2 for k sufficiently large follows

from Q being eventually non-decreasing, see [7, Proposition 1].) Geometrically,

it means that |c− cSk
| < |c− cSQ(k)

|, see Lemma A.4 and also [7].

2.2. Inverse limit spaces. The inverse limit space Ks = lim←−([0, s/2], Ts)

is the collection of all backward orbits

{x = (. . . , x−2, x−1, x0) : Ts(xi−1) = xi ∈ [0, s/2] for all i ≤ 0},

equipped with metric d(x, y) =
∑
n≤0

2n|xn − yn| and induced (or shift) homeo-

morphism

σ(. . . , x−2, x−1, x0) = (. . . , x−2, x−1, x0, Ts(x0)).

Let πk : lim←−([0, s/2], Ts) → [0, s/2], πk(x) = x−k be the k-th projection map.

The arc-component of x ∈ X is defined as the union of all arcs of X containing

x. Since the fixed point 0 ∈ [0, s/2], the endpoint 0 = (. . . , 0, 0, 0) is contained in

lim←−([0, s/2], Ts), and the arc-component of lim←−([0, s/2], Ts) of 0 will be denoted

as C; it is a ray converging to, but disjoint from the core lim←−([c2, c1], Ts) of the

inverse limit space. The other fixed point r ∈ [c2, c1], so the point ρ = (. . . , r, r, r)

is contained in lim←−([c2, c1], Ts). The arc-component of ρ will be denoted as R; it

is a continuous image of R and is dense in lim←−([c2, c1], Ts) in both directions.

We fix s ∈ (
√
2, 2]; for these parameters Ts is not renormalizable and core

lim←−([c2, c1], Ts) is indecomposable.

A point x = (. . . , x−2, x−1, x0) ∈ Ks is called a p-point if x−p−l = c for

some l ∈ N0. The number Lp(x) := l is called the p-level of x. In particular,

x0 = T p+l
s (c). By convention, the endpoint 0 = (. . . , 0, 0, 0) of C and the point

ρ = (. . . , r, r, r) of R are also p-points and Lp(0) = Lp(ρ) := ∞, for every p.

The folding pattern of the arc-component C, denoted by FP (C), is the se-

quence Lp(z
0), . . . , Lp(z

n), . . . where EC
p = {z0, . . . , zn, . . .} is the ordered set of

all p-points of C with z0 = 0, and p is any nonnegative integer. Let q ∈ N, q > p,

and EC
q = {y0, . . . , yn, . . .}. Since σq−p is an order-preserving homeomorphism

of C, it is easy to see that σq−p(zi) = yi and Lp(z
i) = Lq(y

i) for every i ∈ N.

Therefore the folding pattern of C does not depend on p.

The folding pattern of the arc-component R, denoted by FP (R), is the se-

quence

(2.3) . . . , Lp(z
−n), . . . , Lp(z

−1), Lp(z
0), Lp(z

1), . . . , Lp(z
n), . . . ,



Fibonacci-Like Unimodal Inverse Limits and the Core Ingram Conjecture 151

where ER
p = {. . . , z−n, . . . , z−1, z0, z1, . . . , zn, . . .} is the ordered set (indexed

by Z) of all p-points of R with z0 = ρ, and p is any nonnegative integer. Since

r > 1/2, we have πi(ρ) > 1/2 for every i ∈ N0. It is easy to see that for every

i ∈ N0, there exists an arc A = A(i) ⊂ R containing ρ such that πi(A) =

[c, c1]. Therefore two neighboring p-points of ρ have p-levels 0 and 1. From

now on we assume, without loss of generality, that the ordering on R, i.e. the

parametrization of R, is such that Lp(z
−1) = 0 and Lp(z

1) = 1. Let q ∈ N,

q > p, and ER
q = {. . . , y−n, . . . , y−1, y0, y1, . . . , yn, . . .} with y0 = ρ. Since σq−p

is an order-preserving (respectively, order-reversing) homeomorphism ofR if q−p

is even (respectively, odd), σq−p(zi) = yi and Lp(z
i) = Lq(y

i) for every i ∈ Z.

Therefore the folding pattern of R does not depend on p.

Note that every arc of C and of R has only finitely many p-points, but an

arc A of the core of Ks can have infinitely many p-points.

We will mostly be interested in the arc-component R, but also in some other

arc-components ‘topologically similar’ to R. Therefore, unless stated otherwise,

let A ⊂ lim←−([c2, c1], Ts) denote an arc-component which does not contain any

end-point, such that every arc A ⊂ A contains finitely many p-points, and let A

be dense in the core of Ks in both directions. Let EA
p = (ai)i∈Z denote the set

of all p-points of A, where a0 = (. . . , a0−2, a
0
−1, a

0
0) ∈ A is the only p-point of A

with a0−j 
= c for every j ∈ N0, and let by convention Lp(a
0) = ∞ for every p.

Also, we abbreviate Ep := EA
p . The p-folding pattern of the arc-component A,

denoted by FPp(A), is the sequence

. . . , Lp(a
−n), . . . , Lp(a

−1), Lp(a
0), Lp(a

1), . . . , Lp(a
n), . . .

Given an arc A ⊂ A with successive p-points x0, . . . , xn, the p-folding pattern of

A is the sequence

FPp(A) := Lp(x
0), . . . , Lp(x

n).

An arc A in lim←−([0, s/2], Ts) is said to p-turn at cn if there is a p-point a ∈ A

such that a−(p+n) = c, so Lp(a) = n. This implies that πp : A → [0, s/2] achieves

cn as a local extremum at a.

2.3. Chainability and (quasi-)symmetry. A space is chainable if there

are finite open covers C = {�i}Ni=1, called chains, of arbitrarily small mesh

(mesh C = maxi diam �i) with the property that the links �i satisfy �i ∩ �j 
= ∅
if and only if |i − j| ≤ 1. The combinatorial properties of Fibonacci-like maps

allow us to construct chains Cp such that whenever an arc A p-turns in � ∈ Cp,
i.e. enters and exits � through the same neighboring link, then the projections

πp(x) = πp(y) of the first and last p-point x and y of A∩ � depend only on � and

not on A, see Proposition A.6. We will work with the chains Cp which are the

π−1
p images of chains of the interval [0, s/2].
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Definition 2.3. An arc A ⊂ A such that ∂A = {u, v} and A ∩ Ep =

{x0, . . . , xn} is called p-symmetric if πp(u) = πp(v) and Lp(x
i) = Lp(x

n−i), for

every 0 ≤ i ≤ n.

If A is p-symmetric, then n has to be even and Lp(x
n/2) = max{Lp(x

i) :

xi ∈ A ∩ Ep}. The point xn/2 is called the midpoint of A.

It frequently happens that πp(u) 
= πp(v), but u and v belong to the same

link � ∈ Cp. Let us call the arc-components Au, Av of A ∩ � that contain u

and v respectively the link-tips of A, see Figure 1. Sometimes we can make A

p-symmetric by removing the link-tips. Let us denote this as A \ �-tips. Adding
the closure of the link-tips can sometimes also produce a p-symmetric arc.

�
� �

��

� �
�

A = [u, v]�

�
�

��

link-tips Au and Av

�
�

�
�

�
���

�
�

�
��� �

�
v

u

Figure 1. The arc A is neither p-symmetric, nor quasi-p-symmetric, but
both arcs A \ �-tips and A ∪ Cl(�-tips) are p-symmetric.

Remark 2.4. (a) Let A be an arc and m ∈ A be a p-point of maximal p-level,

say Lp(m) = L. Then πp is one-to-one on both components of σ1−L(A \ {m}),
so m is the only p-point of p-level L. It follows that between every two p-points

of the same p-level, there is a p-point m of higher p-level.

(b) If A � m is the maximal open arc such that m has the highest p-level

on A, then we can write ClA = [x, y] or [y, x] with Lp(x) > Lp(y) > Lp(m) =:

L, and πp is one-to-one on σ−L(ClA). Here Lp(x) = ∞ is possible, but if

Lp(x) < ∞, then A′ := πp ◦σ−L(A) is a neighborhood of c with boundary points

cSk
= πp ◦ σ−L(x) and cSl

= πp ◦ σ−L(y) for some k, l ∈ N such that l = Q(k).

By Lemma A.4 this means that the arc [x,m] is shorter than [m, y].

Definition 2.5. Let A be an arc of A. We say that the arc A is quasi-p-

symmetric with respect to Cp if

(a) A is not p-symmetric;

(b) ∂A belongs to a single link �;

(c) A \ �-tips is p-symmetric;

(d) A∪ �-tips is not p-symmetric. (So A cannot be extended to a symmetric

arc within its boundary link �.)
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Definition 2.6. Let �0, . . . , �k be the links in Cp that are successively visited

by an arc A ⊂ A, and let Ai ⊂ Cl(�i) be the corresponding maximal subarcs of

A. (Hence �i 
= �i+1, �i ∩ �i+1 
= ∅ but �i = �i+2 is possible if A turns in �i+1.)

We call A p-link-symmetric if �i = �k−i for i = 0, . . . , k. In this case, we say that

Ai is p-link-symmetric to Ak−i.

Remark 2.7. Every p-symmetric and quasi-p-symmetric arc is p-link-sym-

metric by definition, but there are p-link-symmetric arcs which are not p-sym-

metric or quasi-p-symmetric. This occurs if A turns both at Ai and Ak−i, but

the midpoint of Ai has a higher p-level than the midpoint of Ak−i and i /∈ {0, k}.
Note that for a p-link-symmetric arc A, if U and V are p-link-symmetric arc-

components which do not contain any boundary point of A, then U contains at

least one p-point if and only if V contains at least one p-point.

Appendix B is devoted to give a precise description of quasi-symmetric arcs

and their concatenations. In Appendix C we use this structure to show that

link-symmetric arcs are always symmetric or a well-understood concatenation of

quasi-symmetric arcs.

2.4. Salient points. In [3, Definition 2.7] we introduced salient p-points

of the arc-component C. Let (si)i∈N be the sequence of all p-points of the arc-

component C such that 0 ≤ Lp(x) < Lp(si) for every p-point x ∈ (0, si). We call

p-points satisfying this property salient.

For every slope s > 1 and p ∈ N0, the folding pattern of C starts as

∞ 0 1 0 2 0 1 . . ., and since by definition Lp(s1) > 0, we have Lp(s1) = 1. Also,

since si = σi−1(s1), Lp(si) = i, for every i ∈ N. Note that the salient p-points

depend on p: if p ≥ q, then the salient p-point si equals the salient q-point

si+p−q.

Definition 2.8. Recall that R is the arc-component containing the point

ρ = (. . . , r, r, r) where r = s/(s+ 1) is fixed by Ts. Let (ti)i∈Z ⊂ ER
p be the

bi-infinite sequence of all p-points of the arc-component R such that for every

i ∈ N ⎧⎪⎪⎨
⎪⎪⎩
t0 = ρ,

Lp(t
i) > Lp(x) for every p-point x ∈ (ρ, ti),

Lp(t
−i) > Lp(x) for every p-point x ∈ (t−i, ρ).

Note that p-points (ti)i∈Z ⊂ R are defined similarly as salient p-points

(si)i∈N; we call them R-salient p-points, or simply salient p-points when it is

clear which arc-component they belong to. There is an important difference be-

tween the sets (si)i∈N ⊂ C and (ti)i∈Z ⊂ R, namely Lp(si) = i for every i ∈ N,

whereas Lp(t
i) 
= |i| for all i ∈ Z \ {1}.
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Lemma 2.9. For (ti)i∈Z ⊂ R we have

Lp(t
i) =

⎧⎨
⎩
2i− 1 if i > 0,

−2i if i < 0.

Proof. Since r is the positive fixed point of Ts, the p-points closest to

ρ = (. . . , r, r, r) have p-levels 0 and 1. Also σ(ρ) = ρ implies σ(R) = R. The

parametrization of R, chosen in Section 2 below (2.3), is such that for ρ ∈
[x−1, x1] we have Lp(x

−1) = 0 and Lp(x
1) = 1, thus x1 = t1. Since σ(ρ) = ρ ∈

σ([x−1, x1]) ⊂ R and σ|R is order reversing, we have σ(x−1) = x1, σ(x1) ≺ x1,

i.e. σ([x−1, x1]) = [x−2, x1] with Lp(x
−2) = 2. Note that x−2 = t−1. For the

same reason, σ([x−2, x1]) = [x−2, xj ], where xj is the first p-point to the right

of x1 such that Lp(x
j) = 3, i.e. xj = t2. The claim of the lemma follows by

induction. �

Analogously, we define A-salient p-points of an arc-component A of the core

of Ks.

Definition 2.10. Let (ui)i∈Z ⊂ EA
p = (ai)i∈Z be the bi-infinite sequence of

all p-points of the arc-component A such that for every i ∈ N⎧⎪⎪⎨
⎪⎪⎩
u0 = a0,

Lp(u
i) > Lp(x) for every p-point x ∈ (u0, ui),

Lp(u
−i) > Lp(x) for every p-point x ∈ (u−i, u0).

This fixes an orientation on A; the choice of orientation is immaterial, as long as

we make one.

Lemma 2.11. If there exist J, J ′,K ∈ N0 such that for every j ∈N, Lp(u
J+j)

= 2(K + j)− 1 and Lp(u
−(J′+j)) = 2(K + j), then A = R.

In other words, the asymptotic shape of this folding pattern is unique to R.

Proof. Let J, J ′,K ∈ N0 be as in the statement of the lemma. Then, for

every j ∈ N, we have:

(i) Lp(u
−(J′+j))− Lp(u

J+j) = Lp(u
J+j+1)− Lp(u

−(J′+j)) = 1,

(ii) Lp(x) < Lp(u
J+j) for every p-point x ∈ (u−(J′+j), uJ+j), and

(iii) Lp(x) < Lp(u
−(J′+j)) for every p-point x ∈ (u−(J′+j), uJ+j+1).

Therefore,

πp+2(K+j)−1 : [u
−(J′+j), uJ+j ] → [c, c1],

πp+2(K+j) : [u
−(J′+j), uJ+j+1] → [c, c1]

are bijections, implying that FPp([u
−(J′+j), uJ+j]) and FPp([u

−(J′+j), uJ+j+1])

are uniquely determined by T
2(K+j)−1
s and T

2(K+j)
s , respectively, for every j ∈ N.
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Thus we have the following:⎧⎨
⎩
FPp([u

−(J′+j), uJ+j ]) = FPp([t
−(K+j), tK+j ]),

FPp([u
−(J′+j), uJ+j+1]) = FPp([t

−(K+j), tK+j+1]),

whence FPp([u
−(J′+j), uJ+j+1]) = FPp(σ([u

−(J′+j), uJ+j])) for every j ∈ N. It

follows that FPp(σ(A)) = FPp(A) = FPp(R) implying A = R. �

Note that in general J, J ′,K in the above lemma are not related since u0 = a0

can be any point, but there exists a point a ∈ A such that for u0 = a, we have

J = J ′ = K.

3. Homeomorphisms and symmetric arcs

Note that in this section all proofs except the proof of Proposition 3.2 work

in general, only the proof of Proposition 3.2 uses the special structure of the

Fibonacci-like inverse limit spaces revealed in this paper.

Let h : lim←−([c2, c1], Ts) → lim←−([c2, c1], Ts) be a homeomorphism on the core of

a (Fibonacci-like) inverse limit space. Let q, p, g ∈ N0 be such that Cq, Cp and Cg
are chains as in Proposition A.6, and such that

h(Cq) � Cp � h(Cg).

It is straightforward that any q-link-symmetric arc A ⊂ lim←−([c2, c1], Ts) maps to

a p-link-symmetric arc h(A) ⊂ lim←−([c2, c1], Ts).

In Appendix A, we construct special chains by which we are able to describe

the structure of link-symmetric arcs (see Definition 2.6) precisely. The Fibonacci-

like structure, and the extra structure of these chains, allow us to conclude

the stronger statement that q-symmetric arcs map to p-symmetric arcs. This

is a rather technical undertaking, but let us paraphrase Remark C.6 so as to

make this section understandable (although for the fine points we will still refer

forward to Appendix). Link-symmetric arcs tend to be composed of smaller

(basic) quasi-symmetric arcs Ak (see Definition B.1) that are ordered linearly

such that Ak and Ak+1 overlap, and the midpoint of Ak+1 is the endpoint of

Ak. An entire concatenation of such arcs is called decreasing quasi-symmetric

(respectively increasing quasi-symmetric, see Definition C.1) if the levels of the

successive midpoints (also called nodes) – all contained in, alternately, one of

two given links – are decreasing (respectively, increasing). The concatenation

is called maximal decreasing quasi-symmetric (respectively, maximal increasing

quasi-symmetric, see Definition C.5) if it cannot be extended to a concatenation

with more components. The last endpoint (respectively, the first endpoint),

namely, of the arc with midpoint of the lowest level, is then no longer a p-point.

For a point x, we denote a link of Cp which contains x by �xp , and the arc-

component of �xp which contains x by Ax.
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Definition 3.1. Let x ∈ EA
q ⊂ A be a q-point, and let Ah(x) ⊂ �

h(x)
p be the

arc-component of �
h(x)
p which contains h(Ax) (and therefore h(x)). Let a, b ∈ N,

a ≤ b, be such that h
( b⋃

i=a

�iq

)
⊆ �

h(x)
p , h(�a−1

q ) � �
h(x)
p and h(�b+1

q ) � �
h(x)
p . Let

Âx be an arc-component of
b⋃

i=a

�iq such that h(Âx) ⊆ Ah(x) ⊂ �
h(x)
p . We call Âx

the extended arc-component of the q-point x. If a p-point u is the midpoint of

Ah(x), then we write u � h(x).

The extended arc-component Âx is obtained by extending Ax so much on

both sides that h(Âx) fits almost exactly in the p-link containing h(Ax). Note

that the arc-component Ax of a q-point x depends on the chain Cq, while the

extended arc-component Âx of the q-point x also depends on the chain Cp. But
we still can define its midpoint as the q-point z ∈ Âx such that Lq(z) ≥ Lq(y)

for every q-point y ∈ Âx = Âz . If a q-point x is the midpoint of its extended

arc-component Âx we call it a qp-point.

Proposition 3.2. Let x, y ∈ EA
q ⊂ A be qp-points and let u � h(x) and

v � h(y). Then Lq(x) = Lq(y) implies Lp(u) = Lp(v).

Since the endpoints of a symmetric arc have the same level, and q-link sym-

metric arcs are mapped to p-link-symmetric arcs by a homeomorphism h, Propo-

sition 3.2 implies that h maps symmetric arcs to symmetric arcs.

Proof. Without loss of generality we suppose that between x and y, there

are no q-points with q-level Lq(x). Then the arc A = [x, y] is q-symmetric. The

midpoint m of A is a qp-point. Let w � h(m).

Let us assume by contradiction that Lp(u) 
= Lp(v). Then D = [u, v] is not p-

symmetric with midpoint w. Since A is q-symmetric, D is p-link symmetric. By

Proposition C.8 and Remark C.6, D is contained either in an extended maximal

decreasing/increasing (basic) quasi-p-symmetric arc, or in a p-symmetric arc

which is concatenation of two arcs, one of which is a maximal increasing (basic)

quasi-p-symmetric arc, and the other one is a maximal decreasing (basic) quasi-

p-symmetric arc.

(1) Let us assume that D is contained in an extended maximal increasing

(basic) quasi-p-symmetric arc G. Let B′ and B be the link-tips of G, so G =

[B′, B]. Then, by Remark C.6, B′ does not contain any p-point and hence

B′ 
= Au.

(a) Suppose first that the p-point z ∈ G, such that Lp(z) ≥ Lp(d) for all

p-points d ∈ G, does not belong to the open arc (u, v). Then B 
= Av.

Let b′ be any point of B′ and let b be the midpoint of B. Then b′ and b are

nodes of G (see Remark C.6 for the definition of a node). Since Lp(u) 
= Lp(v),

u and v are also nodes of G, as well as w and z.
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N ′

x m y

N︸ ︷︷ ︸
M

A︷ ︸︸ ︷
�
h

h(N ′) = B′

b′

Au

u w

Av

v

h(N)

z

B

b

︸ ︷︷ ︸
G

D︷ ︸︸ ︷

�
�
�
��

σq−g
�

�
�

��

σq−g ◦ h−1

Aσq−g◦h−1(b′)

a′ x′ m′ y′

Aσq−g◦h−1(b)

a

︸ ︷︷ ︸
H︸ ︷︷ ︸

K

︸ ︷︷ ︸
σq−g(A)

Figure 2. The relations between points and arcs in Cq (left), Cp (right),
and Cg (bottom).

Let a � σq−g ◦ h−1(b) (note that b is a pg-point, i.e. b is the midpoint of

the extended arc-component Âb such that σq−g ◦ h−1(Âb) ⊆ Aσq−g◦h−1(b) =

Aa ⊂ �ag ∈ Cg). If the arc-component Aσq−g◦h−1(b′) contains a g-point, let a′

be its midpoint; otherwise let a′ be any point of Aσq−g◦h−1(b′). Let us consider

the arc H = [a′, a], see Figure 2. Let x′ � σq−g ◦ h−1(u), y′ � σq−g ◦ h−1(v),

z′ � σq−g ◦ h−1(z) and m′ � σq−g ◦ h−1(w). Since Cp ≺ h(Cg), the arc H is

g-link-symmetric and g-points a′, x′,m′, y′, a are some of its nodes. Note that

x′ = σq−g(x) and y′ = σq−g(y), thus the arc [x′, y′] is g-symmetric. Since there

is at least one node in H on either side of [x′, y′], Remark C.6 says that H is

contained in the maximal g-symmetric arc K with midpoint m′. Therefore the

arc M = σ−q+g(K) ⊃ A is q-symmetric with midpoint m.

Let j, k ∈ N, j ≤ k, be such that h
( k⋃

i=j

�iq

)
⊆ �b

′

p , h(�
j−1
q ) � �b

′

p and h(�k+1
q ) �

�b
′

p . Let N
′ be an arc-component of

k⋃
i=j

�iq such that h(N ′) = B′ ⊂ �b
′

p . Obviously,

N ′ ⊂ M . Since M is q-link symmetric, there exists an arc-component N of
k⋃

i=j

�iq such that the arc [N ′, N ] ⊂ M is q-symmetric with midpoint m. Then

h(N) ⊂ h(M) is an arc-component of �b
′

p . Since [N ′, N ] is q-symmetric, the

arc-component h(N ′) contains a p-point if and only if the arc-component h(N)

contains a p-point. Since h(N ′) = B′, the arc-components h(N ′) and h(N) do

not contain any p-point, see Figure 2.

On the other hand, the arc [h(N ′), h(N)] is p-link-symmetric with mid-

point w. Recall that w is also the midpoint of the arc D ⊂ [h(N ′), h(N)],

D is not p-symmetric by assumption, and D ⊂ G, where G is an extended max-

imal increasing (basic) quasi-p-symmetric arc. The arc-component h(N) can be

contained in the arc [Av, B], as in Figure 2. In this case h(N) does contain at

least one p-point, a contradiction.
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The other possibility is that h(N) is not contained in [Av, B], i.e. h(N) is on

the right hand side of B. Since [h(N ′), h(N)] is p-link symmetric and h(N ′) = B′

contains a node b′ of G, we have that h(N) also contains a node of G, say n.

Hence, on the right hand side of z (which is the p-point with the highest p-level

in G), there are at least two nodes, b and n. Therefore, by Remark C.6, G

is contained in a p-symmetric arc with midpoint z and this arc conatins h(N),

implying that h(N) does contain at least one p-point, a contradiction.

(b) Let us assume now that B = Av. Then z ∈ (u, v). Let a′, x′,m′, z′, y′

and H be defined as in case (a). Since b′, u, w, z, v are nodes of G, we have

that a′, x′,m′, z′, y′ are also nodes of H . Moreover, since [x′, y′] is g-symmetric

with midpoint m′, there is z′′ ∈ [x′,m′] such that [z′′, z′] is g-symmetric with

midpoint m′, and z′′ is a node of H . Thus, the arc between nodes z′′ and z′ is g-

symmetric, and on either side of [z′′, z′] there is at least one additional node. By

Remark C.6, H is contained in the maximal g-symmetric arc K with midpoint

m′, and the arc M = σ−q+g(K) ⊃ A is q-symmetric with midpoint m. Now the

proof follows in the same way as in case (a).

If D is contained in an extended maximal decreasing (basic) quasi-p-symme-

tric arc G, the proof is analogous.

(2) Let us assume that D is contained in a p-symmetric arc G which is

concatenation of two arcs, one of which is a maximal increasing (basic) quasi-

p-symmetric arc, and the other one is a maximal decreasing (basic) quasi-p-

symmetric arc. Let B′ and B be the link-tips of G, thus G = [B′, B]. Then,

by Remark C.6, B′ and B do not contain any p-point and hence B′ 
= Au and

B 
= Av. If for the midpoint z of G we have z 
∈ (u, v), we are in case (1). If

z ∈ (u, v) (note z 
= m since the arc D is not p-symmetric), then the proof is

analogous to the proof of case (1a) (since B 
= Av). �

Definition 3.3. Let κ ∈ N, κ > 2, be the smallest integer with cκ < c. It is

easy to see that κ is odd. Set Λκ := N \ {1, 3, 5, . . . , κ− 4}.

Lemma 3.4. Let x, y be q-points of A. Then there exist qp-points x
′, z′ and y′

such that the arc A = [x′, z′] is q-symmetric with midpoint y′, Lq(x
′) = Lq(z

′) =

Lq(x) and Lq(y
′) = Lq(y) if and only if Lq(y)− Lq(x) ∈ Λκ.

This is proven in Lemma 46 of [16] and in Lemmas 3.13 and 3.14 of [22].

Although [16] deals with the periodic case and [22] with the finite orbit case, the

proofs of the mentioned lemmas work in the general case, as stated above.

Proposition 3.5. Let x, y ∈ EA
q ⊂ A be qp-points and let u � h(x) and

v � h(y). Then Lq(x) < Lq(y) implies Lp(u) < Lp(v).

Proof. (1) Let us first assume that Lq(y) − Lq(x) ∈ Λκ. Then, by Lem-

ma 3.4, there exist qp-points x′, z′ and y′ such that the arc A = [x′, z′] is q-

symmetric with midpoint y′, Lq(x
′) = Lq(z

′) = Lq(x), Lq(y
′) = Lq(y) and
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between x′ and z′ there are no qp-points with q-level Lq(x
′). Let u � h(x),

v � h(y), u′ � h(x′), v′ � h(y′), w′ � h(z′). By Proposition 3.2, we have

Lp(u) = Lp(u
′) = Lp(w

′), Lp(v) = Lp(v
′) and between the points u′ and w′

there are no p-points with the p-level Lp(u
′). Therefore, the arc [u′, w′] is p-

symmetric with midpoint v′, implying Lp(v) = Lp(v
′) > Lp(u

′) = Lp(u), which

proves the proposition in this case. Note that also we have Lp(v)− Lp(u) ∈ Λκ.���x . . . . . . . . . ���y

���x′ 	
���y′ 	
���z′

�h

���u . . . . . . . . . ���v

���u′ 	
���v′ 	
���w′

Figure 3. The points x and y, their companion arc A = [x′, z′] and their
images under h. Dots indicate some shape of the arc [x, y] and [u, v]; the
shape of [x, y] can be very different from the shape of [x′, y′] and similar
for the shapes of [u, v] and [u′, v′].

(2) Let us now assume that Λκ 
= N, Lq(y) − Lq(x) ∈ {1, 3, . . . , κ − 4}, and
that for u � h(x) and v � h(y) we have, by contradiction, Lp(u) > Lp(v).

Without loss of generality we suppose that x has the smallest q-level among

all qp-points which satisfy the above assumption and that, for this choice of x,

the qp-point y (which also satisfies the above assumption) is such that Lq(y) −
Lq(x) > 0 is the smallest difference of q-levels.

Claim 1. Lq(y)− Lq(x) = 1.

Let us assume, by contradiction, that Lq(y)− Lq(x) > 1, and let z be a qp-

point such that Lq(y)− Lq(z) = 2. Note first that Lq(z) 
= Lq(x) since Lq(y)−
Lq(x) 
= 2 by assumption. Therefore, Lq(z) > Lq(x).

Let w � h(z) and recall u � h(x) and v � h(y). By the choice of qp-points

x and y and since Lq(z)− Lq(x) < Lq(y)− Lq(x), we have Lp(w) > Lp(u) and

Lp(u) > Lp(v), implying Lp(w) > Lp(v).

On the other hand, Lq(y)− Lq(z) ∈ Λκ and by (1) we have Lp(v) > Lp(w),

a contradiction. This proves Claim 1.

Claim 2. Lp(u)− Lp(v) = 1.

Let us assume, by contradiction, that Lp(u)−Lp(v) > 1. For a qp-point z let

w denote the p-point with w � h(z). We will show that the above assumption

implies that there is no qp-point z such that Lp(w) = Lp(v)+1. This contradicts

assumption that both arc-components A and h(A) are dense in lim←−([c2, c1], Ts)

in both directions.

By the choice of qp-points x and y, for every qp-point z such that Lq(z) <

Lq(x) < Lq(y) = Lq(x)+1 we have Lp(w) < Lp(v) and hence Lp(w) 
= Lp(v)+1.
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Let Lq(z) = Lq(x) + 2. Since Lq(z)− Lq(x) ∈ Λκ, by (1) we have Lp(w) >

Lp(u) > Lp(v) + 1.

Let Lq(z) = Lq(x) + 3. Then Lq(z)− Lq(y) ∈ Λκ (recall Lq(y) = Lq(x) + 1

by Claim 1 and again by (1) we have Lp(w) > Lp(v) and Lp(w) − Lp(v) ∈ Λκ).

Note that Lp(w)−Lp(v) 
= 1 since 1 
∈ Λκ (recall Λκ 
= N by assumption). Hence

Lp(w) > Lp(v) + 1.

It follows now by induction that for every i ∈ N, Lq(z) = Lq(x) + 3 + i

implies Lp(w) > Lp(v) + 1. To see this, for a qp-point z′ let w′ denote the

p-point with w′ � h(z′). Take j ∈ N such that Lq(z) = Lq(x) + 3 + i implies

Lp(w) > Lp(v) + 1 for every i < j. Let Lq(z
′) = Lq(x) + 1 + j and Lq(z) =

Lq(x) + 3 + j. Then Lq(z) − Lq(z
′) ∈ Λκ and by (1) we have Lp(w) > Lp(w

′).

Since Lp(w
′) > Lp(v) + 1, we have Lp(w) > Lp(v) + 1. This proves Claim 2.

Claim 3. For a qp-point z let w denote the p-point with w � h(z). For every

i ∈ N, Lq(z) = Lq(x) + 2i implies Lp(w) = Lp(u) + 2i, and Lq(z) = Lq(y) + 2i

implies Lp(w) = Lp(v) + 2i.

Let Lq(z) = Lq(x) + 2 = Lq(y) + 1. Note first that Lp(w) 
= Lp(u) + 1,

since by (1), Lq(z) − Lq(x) ∈ Λκ implies Lp(w) − Lp(u) ∈ Λκ. Note also that

Lq(z) − Lq(y) 
∈ Λκ. Therefore, Lp(w) = Lp(v) + L = Lp(u) − 1 + L, where

1 < L < κ− 2 is odd.

For qp-points z
′ and z′′, let w′ and w′′ denote the p-points with w′ � h(z′) and

w′′ � h(z′′), respectively. Let us assume that Lq(z
′) = Lq(y) + 2 and Lp(w

′) 
=
Lp(v) + 2 = Lp(u) + 1. Then Lp(w

′) > Lp(v) + 2 and for every qp-point z
′′ with

Lq(z
′′) > Lq(z

′) we have Lp(w
′′) > Lp(v) + 2. This implies that there is no qp-

point z′′ such that Lp(w
′′) = Lp(v) + 2 = Lp(u) + 1, a contradiction. Therefore,

Lp(w
′) = Lp(v) + 2, and by Claims 1 and 2, Lp(w) = Lp(v) + 3 = Lp(u) + 2.

The proof of Claim 3 follows by induction in the same way.

Lq(x) Lq(y) = Lq(x) + 1 Lq(x) + 2 Lq(x) + 3 . . . Lq(x) + κ− 3 Lq(z) = Lq(x) + κ− 2

Lq(z)−Lq(x)=κ−2︷ ︸︸ ︷
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Lp(v) Lp(u) = Lp(v) + 1 Lp(v) + 2 Lp(v) + 3 . . . Lp(w) = Lp(v) + κ− 3 Lp(v) + κ− 2︸ ︷︷ ︸
Lp(w)−Lp(u)=κ−4

Figure 4. The configuration of levels that cannot exist.

Finally, to complete the proof of the proposition, let us consider a qp-point

z such that Lq(z) − Lq(x) = κ − 2 ∈ Λκ. Then, by Claim 3 (see Figure 4),

Lp(w)− Lp(u) = κ− 4 
∈ Λκ, a contradiction. Therefore, Lq(x) < Lq(y) implies

Lp(u) < Lp(v), which proves the proposition. �
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4. Proof of the main theorems

Consider the arc-component A := h(R) ⊂ lim←−([c2, c1], Ts), and let EA
p =

(yi)i∈Z ⊂ A be the set of all p-points of A such that y0 = h(ρ). Let (ui)i∈Z ⊂ EA
p

be the set of all salient p-points of A, i.e. the set of all A-salient p-points, with

u0 = h(ρ). Recall that R is dense in lim←−([c2, c1], Ts) in both directions. Since

h is a homeomorphism, A and in fact hi(R), i ∈ Z, are also dense in the core

lim←−([c2, c1], Ts) in both directions.

We want to prove that A = R. For a p-point y we write y ≈ x if y ∈ Ax.

Lemma 4.1. There exist M,M ′ ∈ Z such that h(ti) ≈ ui+M and h(t−j) ≈
u−j−M ′

, for every i, j ∈ N with i+M > 0, j +M ′ > 0, if h is order preserving,

or h(ti) ≈ u−i−M and h(t−j) ≈ uj+M ′+1 if h is order reversing.

Proof. If h : R → A is order reversing, then h ◦ σ : R → A is order preserv-

ing, and also if the proposition works for h ◦ σ, it works for h. Therefore we can

assume without loss of generality that h is order preserving.

Let j ∈ N, and let Bj be the maximal q-symmetric arc with midpoint tj .

Since s >
√
2, ρ ∈ Bj . Therefore, for every qp-point x ∈ (ρ, tj) there exists

a qp-point y ∈ (tj , tj+1), such that the arc [x, y] is q-symmetric with midpoint tj

and Lq(x) = Lq(y). Let u and v be p-points such that u � h(x) and v � h(y).

By Proposition 3.2, we have Lp(u) = Lp(v). Note that for the midpoint w of

the arc [u, v] we also have w � h(tj). This implies, by Remark 2.4 (a), that

Lp(w) > Lp(z) for every z ∈ (u0, w). Therefore, w is a salient p-point, i.e.

w ∈ (ui)i∈N.

Let k, l ∈ N, k < l, be such that uk � h(tj) and ul � h(tj+1). We want to

prove that l = k + 1. Let us assume by contradiction that l > k + 1. Since

Lp(u
k+1) > Lp(u

k), there exists a qp-point x ∈ (tj , tj+1) such that uk+1 � h(x).

But x ∈ (tj , tj+1) implies Lq(x) < Lq(t
j), contradicting Proposition 3.5.

In this way we have proved that h(ti) ≈ ui+M for some M ∈ Z and every

i ∈ N with M + i > 0. In an analogous way we can prove that h(t−i) ≈ u−i−M ′

for some M ′ ∈ Z and for every i ∈ N with M ′ + i > 0. �

Theorem 4.2. Every self-homeomorphism h of lim←−([c2, c1], Ts) preserves R:

h(R) = R.

Proof. Let h : R → A, as before. We want to prove that A = R. Note

that h ◦ σi : R → A and σi ◦ h : R → σi(A) are homeomorphisms for every

i ∈ Z, and σi(A) = R if and only if A = R. By using h−1 instead of h if

necessary, we can assume that M ≥ 0 (with M as in Lemma 4.1). Also, instead

of studying h, we can study σ1−a ◦ h : R → σ1−a(A), where a = Lp(u
1+M )

(recall that h(t1) ≈ u1+M ). Therefore, without loss of generality we can assume

that h(t1) ≈ u1 and Lp(u
1) = 1. Recall that Lq(t

1) = 1, Lq(t
−1) = 2 and for
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every i ∈ N, Lq(t
−i) − Lq(t

i) = Lq(t
i+1) − Lq(t

−i) = 1. If Lp(u
−i) − Lp(u

i) =

Lp(u
i+1)− Lp(u

−i) = 1, then A = R by Lemma 2.11.

Recall that h(t−1) ≈ u−1−M ′
, where M ′ is as in Lemma 4.1. Since

Lq(t
1) < Lq(t

−1) < Lq(t
2) < Lq(t

−2) < . . . ,

by Proposition 3.5, we have

1 = Lp(u
1) < Lp(u

−1−M ′
) < Lp(u

2)

< Lp(u
−2−M ′

) < . . . < Lp(u
n) < Lp(u

−n−M ′
) < . . .

Let Lp(u
n) = 1 + a1 + b1 + . . .+ an−1 + bn−1 and Lp(u

−n−M ′
) = 1 + a1 + b1 +

. . . + an−1 + bn−1 + an, for every n ∈ N and some a1, . . . , an, b1, . . . , bn−1 ∈ N.

We want to prove that ai = bi = 1 for every i ∈ N.

Assume by contradiction that k ∈ N is the smallest integer with ai = bi = 1

for all i < k and ak > 1. Then, by Proposition 3.5, there is no salient p-point

u ∈ (ui)i∈Z with Lp(u) = Lp(u
k) + 1. Thus, Proposition 3.2 implies that A

does not contain any p-point with p-level Lp(u
k) + 1, contradicting that A is

dense in lim←−([c2, c1], Ts) in both directions. If k ∈ N is the smallest integer with

ai = bi = 1 for all i < k, ak = 1 and bk > 1, the proof follows in an analogous

way. �

Remark 4.3. If h is order-preserving, then by proof of Theorem 4.2 we have

M ′ = M , where M and M ′ are as in Lemma 4.1. Also, by Lemmas 2.9, 4.1 and

Theorem 4.2 we have Lp(u
i+M ) = 2(i+M)− 1 = (2i− 1) + 2M = Lq(t

i) + 2M

for i > 0 and Lp(u
i−M ) = 2(−i + M) = −2i + 2M = Lq(t

i) + 2M for i < 0.

Moreover, by Proposition 3.2, for every qp-point x, and for the p-point u with

u � h(x), we have Lp(u) = Lq(x) + 2M .

We finish with the

Proof of Theorem 1.1. Let 1 ≤ s ≤
√
2 < s′ ≤ 2. Then lim←−([c2, c1], Ts)

is decomposable, lim←−([c2, c1], Ts′) is indecomposable, and the proof follows.

Since Lemmas 2.1 and 2.2 of [3] show how to reduce the case 1 ≤ s < s′ ≤
√
2

to the case
√
2 < s < s′ ≤ 2, it suffices to prove the latter case.

Let
√
2 < s < s′ ≤ 2. Suppose that there exists a homeomorphism

h : lim←−([c2, c1], Ts′) → lim←−([c2, c1], Ts).

Let r′ := s′/(s′ + 1) be the positive fixed point of Ts′ and ρ′ := (. . . , r′, r′, r′) ∈
Cs′ = lim←−([c2, c1], Ts′). Let R′ denote the arc-component containing ρ′. Let

r, ρ and R be the analogous objects of Cs = lim←−([c2, c1], Ts), as before. Take

q, p ∈ N0 such that h(Cq) ≺ Cp. Let (ti)i∈Z be the sequence of salient q-points of

R′ with t0 = ρ′. Let (ui)i∈Z be the sequence of salient p-points of R.
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Let f = h−1 ◦ σ ◦ h, and assume by contradiction that h(R′) = A 
= R.

Since R is the only arc-component in lim←−([c2, c1], Ts) that is fixed by σ, we have

σ(A) 
= A implying f(R′) 
= R′. But this contradicts Theorem 4.2. Therefore

h(R′) = R.

We want to prove that FP (R′) = FP (R). Without loss of generality we

suppose that h is order-preserving and that M > 0 (with M as in Remark 4.3).

Claim 1. Let l ∈ N and let x be a q-point with Lq(x) = l. Then u := h(x) ∈
�u

l+2M

p and the arc component Au ⊂ �u
l+2M

p containing u, also contains a p-point

y such that Lp(y) = l + 2M .

Note that Claim 1 is the same as Proposition 4.2 (1) of [3]. The proof is

analogous:

By Remark 4.3, Claim 1 is true for all salient q-points and for all qp-points.

Note that there exists j ∈ N such that every q-point x ∈ [t−j , tj ] is also a qp-

point. Therefore Claim 1 is true for all q-points x ∈ [t−j , tj ], i.e. for every

q-point x ∈ [t−j , tj ] the arc-component Ah(x) containing h(x), also contains a p-

point y such that Lp(y) = Lq(x) + 2M . Also h([t−j , tj ]) = [a−j, aj ], u
−j−2M ∈

Aa−j and uj+2M ∈ Aaj . Let q-point x1 ∈ [t−j , tj ] be such that the open arc

(x1, t
j+1) is q-symmetric with midpoint tj . Such x1 exists since Lq(t

j+1) −
Lq(t

j) = 2 and Lq(t
−j) − Lq(t

j) = 1. Then h((x1, t
j+1)) is p-link-symmetric

with midpoint uj+2M . Since there exists a unique p-point b1 such that the

open arc (b1, u
j+1+2M ) is p-symmetric with midpoint uj+2M , for every q-point

x′ ∈ (tj , tj+1) the arc-component Ah(x′) containing h(x′), also contains a p-point

y′ such that Lp(y
′) = Lp(y) = Lq(x) + 2M = Lq(x

′) + 2M , see Figure 5.

. . . t−j−1 . . . t−j . . . x−1 . . . x1 . . . x . . . tj . . . x′ . . . tj+1 . . .

︷ ︸︸ ︷
︸ ︷︷ ︸
q-symmetric

︸ ︷︷ ︸
q-symmetric

�
�
�
��

h

. . . u−j−1−2M . . . u−j−2M . . . b−1 . . . b1 . . . y . . . uj+2M . . . y′ . . . uj+1+2M . . .

︷ ︸︸ ︷
︸ ︷︷ ︸

p-symmetric
︸ ︷︷ ︸
p-symmetric

Figure 5. The configuration of symmetric arcs.

Let us consider now the arc h([t−j−1, tj+1]) = [a−j−1, aj+1], u
−j−1−2M ∈

Aa−j−1 and uj+1+2M ∈ Aaj+1 . Let the q-point x−1 ∈ [t−j , tj+1] be such that the
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open arc (t−j−1, x−1) is q-symmetric with midpoint t−j. Such x−1 exists since

Lq(t
−j−1)−Lq(t

−j) = 2 and Lq(t
j+1)−Lq(t

−j) = 1. Therefore h((t−j−1, x−1)) is

p-link-symmetric with midpoint u−j−2M . Since there exists a unique p-point b−1

such that the open arc (u−j−1−2M , b−1) is p-symmetric with midpoint u−j−2M ,

for every q-point x′′ ∈ (t−j−1, t−j) the arc-component Ah(x′′) containing h(x′′),

also contains a p-point y′′ such that Lp(y
′′) = Lq(x

′′)+2M , as before. The proof

of Claim 1 follows by induction.

Claim 2. For l ∈ N0 and i ∈ N, the number of q-points in [t−i, ti] with

q-level l is the same as the number of p-points in [u−i−2M , ui+2M ] with p-level

l + 2M .

Claim 2 is the same as Proposition 4.2 (2) of [3]. The proof is very similar

and we omit it. Claims 1 and 2 show that

FPq([t
−i, ti]) = FPp+2M ([u−i−2M , ui+2M ]) = FPp([u

−i, ui]),

for every positive integer i, and therefore FP (R′) = FP (R). This proves the

Ingram Conjecture for cores of the Fibonacci-like inverse limit spaces. �

Appendix A. The construction of chains

We turn now to the technical part, i.e. the construction of special chains that

will eventually allow us to show that symmetric arcs map to symmetric arcs (see

Proposition 3.2). Let β(n) = n− sup{Sk < n} for n ≥ 2 and find recursively the

images of the central branch of T n
s (the levels in the Hofbauer tower, see e.g. [7]

and [6]) as

D1 = [0, c1] and Dn = [cn, cβ(n)].

It is not hard to see that Dn ⊂ Dβ(n) for each n, see [7], and that if J ⊂ [0, s/2]

is a maximal interval on which T n
s is monotone, then T n

s (J) = Dm for some

m ≤ n.

If x and y are two adjacent p-points on the same arc-component, then

πp([x, y]) = Dn for some n, so πp(x) = cn and πp(y) = cβ(n) or vice versa. Let us

call x and y (or πp(x) and πp(y)) β-neighbors in this case. Notice, however, that

there may be many post-critical points between πp(x) and πp(y). Obviously,

every p-point of C and R has exactly two β-neighbors, except the endpoint 0

of C whose β-neighbor (w.r.t. p) is by convention the first proper p-point in C,

necessarily with p-level 1. The condition that Q(k) → ∞ has consequence on

the structure of the critical orbit:

Lemma A.1. If Q(k) → ∞, then |Dn| → 0 as n → ∞, c is recurrent and

ω(c) is a minimal Cantor set.

For the proof see [11, Lemma 2.1].
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Remark A.2. As was shown by Hofbauer [14], a kneading map Q belongs

to a unimodal map (with infinitely many cutting times) if and only if

(A.1) {Q(k + j)}j≥1 ≥lex {Q(Q2(k) + j)}j≥1

for all k ≥ 1, where ≥lex indicates lexicographical order. Clearly, condition

(2.2) is compatible with (and for large k implies) condition (A.1). The condition

{Q(k+ j)}j≥1 ≥lex {Q(l+ j)}j≥1 is equivalent to |c− cSk
| < |c− cSl

|. Therefore,
because cSk−1

∈ (ζQ(k)−1, ζQ(k)), we find by taking the T
SQ(k)
s -images, that cSk

∈
[cSQ2(k)

, c] and (A.1) follows. The other direction, namely that (A.1) is sufficient

for admissibility is much more involved, see [14], [7].

As mentioned before, we will work with the chains which are the π−1
p images

of chains of the interval [0, s/2]. More precisely, we will define a finite collection

of points G = {g0, . . . , gN} ⊂ [0, s/2] such that |gm − gm+1| ≤ s−pε/2 for all

0 ≤ m < N and |0 − g0| and |s/2− gN | positive but very small. From this one

can make a chain C = {�n}2Nn=0 by setting

(A.2)

⎧⎨
⎩
�2m+1 = π−1

p ((gm, gm+1)) 0 ≤ m < N,

�2m = π−1
p ((gm − δ, gm + δ) ∩ [0, s/2]) 0 ≤ m ≤ N,

where min{|0− g0|, |s/2− gN |} < δ � min
m

{|gm− gm+1|}. Any chain of this type

has links of diameter < ε.

Remark A.3. We could have included all the points
⋃
j≤p

T−j
s (c) in G to

ensure that T p
s |(gm,gm+1) is monotone for each m, but that is not necessary.

Naturally, there are chains of lim←−([0, s/2], Ts) that are not of this form. For

a component A of C ∩ �, we have the following two possibilities:

(a) C goes straight through � at A, i.e. A contains no p-point and πp(∂A) =

∂πp(�); in this case A enters and exits � from different sides.

(b) C turns in �: A contains (an odd number of) p-points x0, . . . , x2n of

which the middle one xn has the highest p-level, and πp(∂A) is a single

point in ∂πp(�), in this case A enters and exits � from the same side.

Before giving the details of the p-chains we will use, we need two lemmas.

Lemma A.4. If the kneading map of Ts satisfies (2.2), i.e. Q(k + 1) >

Q(Q(k) + 1) for all k sufficiently large, then

(A.3) |cSk
− c| < |cSQ(k)

− c| and |cSk
− c| < 1

2
|cSQ2(k)

− c|

for all k sufficiently large.

Proof. For each cutting time Sk, let ζk ∈ ZSk
be the point such that

T Sk
s (ζk) = c. Then ζk together with its symmetric image ζ̂k := 1− ζk are closest
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precritical points in the sense that T j
s ((ζk, c)) 
� c for 0 ≤ j ≤ Sk. Consider the

points ζk−1, ζk and c, and their images under T Sk
s , see Figure 6.

�
cSQ(k)

�
c

�
cSk

�
cS

Q2(k)

�̂ζ
Q(Q2(k)+1)+1 �̂ζ

Q(Q2(k)+1)

︸ ︷︷ ︸
DSk

�
TSk
s

�
ζk−1

�
ζk

�
c

Figure 6. The points ζk−1, ζk and c, and their images under T
Sk
s .

Note that ZSk
= [ζk−1, c] and T Sk

s ([ζk−1, c]) = DSk
= [cSQ(k)

, cSk
]. Since

Sk+1 = Sk + SQ(k+1) is the first cutting time after Sk, the precritical point of

lowest order on [c, cSk
] is ζQ(k+1) or its symmetric image ζ̂Q(k+1). Applying this

to cSk
and cQ(k), and using (2.2), we find

cSk
⊂ (ζQ(k+1)−1, ζ̂Q(k+1)−1) ⊂ (ζQ(Q(k)+1), ζ̂Q(Q(k)+1)) ⊂ (cSQ(k)

, ĉSQ(k)
).

Therefore |cSk
− c| < |cSQ(k)

− c|. Since T Sk
s |[ζk−1,c] is affine, also the preimages

ζk−1 and ζk of cSQ(k)
and c satisfy |ζk − c| < |ζk−1 − ζk|. Applying (2.2) twice

we obtain

(A.4) Q(k + 1) > Q(Q2(k) + 1) + 1,

for all k sufficiently large. Therefore there are at least two closest precriti-

cal points (ζ̂Q(Q2(k)+1) and ζ̂Q(Q2(k)+1)+1 in Figure 6) between cSk
and cSQ2(k)

.

Therefore

(A.5) |cSk
− c| < |ζ̂Q(Q2(k)+1)+1 − c| < 1

2
|ζ̂Q(Q2(k)+1) − c| < 1

2
|cSQ2(k)

− c|,

proving the lemma. �

Lemma A.5. If the kneading map Q of Ts is eventually non-decreasing and

satisfies condition (A.4), then for all n ∈ N there are arbitrarily small numbers

ηn > 0 with the following property: If n′ > n is such that n ∈ orbβ(n
′), then

either |cn′ − cn| > ηn or |cn′′ − cn| < ηn for all n ≤ n′′ ≤ n′ with n′′ ∈ orbβ(n
′).

To clarify what this lemma says, Figure 7 shows the configuration of levels

Dk that should be avoided, because then ηn cannot be found.

Proof. We will show that the pattern in Figure 7 (namely with cm1 <

cm2 < . . . and cmi−1 < cki for each i) does not continue indefinitely. To do this,

we redraw the first few levels from Figure 7, and discuss four positions in Dm1

where the precritical point T−r
s (c) ∈ Dm1 of lowest order r could be, indicated

by points a1, . . . , a4, see Figure 8.
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��
��

��
��

Dm1 cn

Dk1 ,m1 = β(k1)

Dm2

Dk2 ,m2 = β(k2)

Dm3

Dk3 ,m3 = β(k3)

Dm4

Dk4 ,m4 = β(k4)

. . . . . .
. . .

·

Figure 7. Linking of levels Dmi with β(m1) = β(m2) = β(m3) = . . . = n.
The semi-circles indicates that two intervals have an endpoint in common.

��
��

��

Dm1

�
cn

�
cm1

�ck1Dk1 ,m1 = β(k1)

Dm2

�
cn

�
cm2

�ck2
Dk2 ,m2 = β(k2)

Dm3

Dk3 ,m3 = β(k3) �
cn

�
cm3

�ck3

a1 a2 a3 a4

Figure 8. Linking of levels Dmi , i = 1, 2, 3 and three possible positions of

the precritical point aj = T−r
s (c) ∈ Dm1 of lowest order r.

Case 1. a1 ∈ (cm1 , cm2). Take the r + 1-st iterate of the picture, which

moves Dm1 and Dk1 to levels with lower endpoint c1. Then we can repeat the

argument, until we arrive in one of the cases below.

Case 2. a2 ∈ (cm2 , ck1). Take the r-th iterate of the picture, which moves

Dm1 ,Dk1 ,Dm2 and Dk2 all to cutting levels and cr+k2 ∈ (c, cr+k3). But m2 >

m1, whence k2 > k1, and this contradicts that |cSk2
− c| < |cSk1

− c|. (If

a2 ∈ (cm3 , ck2), then the same argument would give that r+k2 < r+k3 are both

cutting times, but |c− cr+k2 | < |c− cr+k3 |.)

Case 3. a3 ∈ (ck1 , cm3). Take the r-th iterate of the picture, which moves

Dm1 ,Dm2 and Dk2 to cutting levels, and Dm3 to a non-cutting level Du with



168 H. Bruin — S. Štimac

u := m3 + r such that

Sj := n+ r = β(u) = β(m2 + r) = β2(k2 + r).

The integer u such that cu is closest to c is for u = Si + Sj where j is minimal

such that Q(i+1) > i, and in this case, the itineraries of Ts(c) and Ts(cu) agree

for at most SQ2(i+1)+1 − 1 iterates (if Q(i + 1) = j + 1) or at most SQ(j+1) − 1

iterates (if Q(i+1) > j+1). Call Sh := k2+r, then j = Q2(h) and the itineraries

of Ts(cSh
) and c agree up to SQ(h+1)− 1 iterates. By assumption (A.4), we have

Q(j + 1) ≤ Q2(i + 1) + 1 = Q(j + 1) + 1 = Q(Q2(h) + 1) + 1 < Q(h+ 1),

but this means that Du and DSh
cannot overlap, a contradiction.

Case 4. a4 ∈ (ck2 , cn). Then take the r + 1-st iterate of the picture, which

has the same structure, with cn replaced by T r+1
s (a1) = c1. Repeating this

argument, we will eventually arrive at Case a2 or a3 above.

Therefore we can find ηn such that cn − ηn separates cn from all levels Dki ,

β2(ki) = n that intersect Dm1 . Indeed, in Case a2, we place cn − ηn just to the

right of ck1 and in Case a3 (and hence ck1 ∈ Dk2), we place cn − ηn just to the

right of ck2 . �

Proposition A.6. Under the assumption of Lemma A.5, given ε > 0, there

exists p ∈ N and a chain C = Cp of lim←−([0, s/2], Ts) with the following properties:

(a) The links of C have diameter < ε.

(b) For each n ∈ N, there is exactly one link � ∈ C such that every x ∈
lim←−([0, s/2], Ts) that p-turns at cn belongs to �.

(c) If y ∈ � is a p-point not having the lowest p-level of p-points in �, then

both β-neighbors of y belong to �.

(d) If y 
∈ � is a β-neighbor of x above, then the other β-neighbor of y either

lies outside �, or has p-level n as well.

Proof. We will construct the chain C as outlined in the beginning of this

section, see (A.2). So let us specify the collection G by starting with at least

�2sp/ε� approximately equidistant points gm ∈ [0, s/2] so that no gm lies on the

critical orbit, and then refining this collection inductively to satisfy parts (b)–(d)

of the proposition.

Start the induction with n = 1, i.e. the point c1. Note that c1 /∈ G, so

there will be only one link � ∈ C with c1 ∈ πp(�). Let η1 ∈ (0, s−pε/2) be as in

Lemma A.5. Then, since each k contains 1 in its β-orbit, each Dk intersecting

(c1 − η1, c1] is either contained in (c1 − η1, c1] or has c1 as lower endpoint (i.e.

β(k) = 1). In the latter case, also Dl ∩ (c1 − η1, c1] = ∅ for each l with β(l) = k.

Hence by inserting c1 − η1 into G, we can refine the chain C so that properties

3. and 4. hold for the link � with πp(�) � c1.
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Suppose we have refined the chain to accommodate links � such that πp(�) �
ci for each i < n. Then cn does not belong to the set G created so far, so there

will be only one link � ∈ C with πp(�) � cn. Again, find ηn ∈ (0, s−pε/2) as in

Lemma A.5 and extend G with cn + ηn if cn is a local minimum of T n
s or with

cn − ηn if cn is a local minimum of T n
s .

We skip the induction step if Dn already belongs to complementary interval

to G extended with all point ci±ηi created so far. Since |Dn| → 0, the induction

will eventually cease altogether, and then the required set G is found. �

Appendix B. Symmetric and quasi-symmetric arcs

From now on all chains Cp are as in Proposition A.6. Also, we assume that

the slope s is such that Ts is Fibonacci-like and we abbreviate T := Ts. Suppose

A = [u, v] ⊂ A is a quasi-p-symmetric arc with u, v ∈ �, and let Au and Av be

arc-components of � that contain u and v respectively. We will sometimes say,

for simplicity, that the arc [Au, Av] between Au and Av, including Au and Av,

is quasi-p-symmetric.

� � � � � 	
������� ��� ��� � ���� � ����

	
 	

	


	



	


 


	




	




	




	




	




	




	



︸ ︷︷ ︸

1

︸︷︷︸
14

︸︷︷︸
9

︸︷︷︸
27

︸ ︷︷ ︸
6

︸︷︷︸
4

�
0

︸ ︷︷ ︸
3

︸︷︷︸
2

�

�

�

�

�

�x17

�x0�x1

�x3

�x4 �x2 �
x30
�x6

�x8�x32

Figure 9. The arc A with folding pattern as in (B.1), with p-points of
p-level 1 and 14 in a single link �.

Definition B.1. A quasi-p-symmetric arc A = [u, v] with midpoint m is

called basic if there is no p-point w ∈ (u, v) such that either [u,w] ⊂ [u,m] or

[w, v] ⊂ [m, v] is a quasi-p-symmetric arc.
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Example B.2. Let us consider the Fibonacci map and the corresponding

inverse limit space. Then the arc-component C (as well as an arc-component A)

contains the arc A = [x0, x33] such that the folding pattern of A is as follows

(see Figure 9):

(B.1) 27 6

quasi-p-symmetric︷ ︸︸ ︷
12 143 1 6 16︸ ︷︷ ︸

basic

0 3 0 1 0 2 0 1 4 19 1 4 1 0 2 0 1 0 3 , 0 1 6 130︸ ︷︷ ︸
sym

0 3 0

(for easier orientation we write sometimes for example 12 which means that the

p-level 1 belongs to the p-point x2). We can choose a chain Cp such that p-points

with p-levels 1 and 14 belong to the same link.

The arc [x2, x6] with the folding pattern 1 14 1 6 1 is a basic quasi-p-symmetric

arc; the arc [x2, x30] with the folding pattern as in (B.1) under the wide brace is

also a quasi-p-symmetric but not basic, because it contains [x2, x6]. Notice also

that the arc [x3, x30] is a quasi-p-symmetric arc for which Proposition B.11 and

Proposition B.9 do not work (see the folding patterns to the left of [x3, x30] and

to the right of [x3, x30]).

Lemma B.3. Let Cp be a chain and [x, y] a quasi-p-symmetric arc with respect

to this chain (not contained in a single link) with midpoint m and such that

Lp(x) ≥ Lp(m). Let Ax be the link-tip of [x, y] which contains x. Then Lp(m) >

Lp(z) for all p-points z ∈ [x, y] \ ({m} ∪ Ax).

Proof. Let A = [a, b] � m be the smallest arc with p-points a, b of higher

p-level than Lp(m), say m ∈ [a, b] and Lp(m) ≤ Lp(a) ≤ Lp(b). By part (a)

of Remark 2.4 we obtain L := Lp(m) < Lp(a) < Lp(b). Since Lp(x) ≥ Lp(m),

[x,m] contains one endpoint of A. We can assume that [x,m] \A is contained in

a single link, because otherwise [x, y] \ �-tips is not p-symmetric. If [y,m] does

not contain the other endpoint of A, then the statement is proved.

Let us now assume by contradiction that A ⊂ [x, y]. Again, we can assume

that [y,m] \ A is contained in a single link, because otherwise [x, y] \ �-tips is

not p-symmetric. By part (a) of Remark 2.4 once more we have πp+L([a, b]) =

[cSl
, cSk

] � c = πp+L(m) for some k and l = Q(k), and |πp+L(a)−c| > |πp+L(b)−
c|, see the top line of Figure 10. It follows that [a, b] contains a symmetric

open arc (b′, b) where b′ ∈ (a, b) is the unique point such that T (πp+L(b
′)) =

T (πp+L(b)). Since [x, y] \ �-tips is p-symmetric, Lp(b) > Lp(m) implies b, b′ ∈ �-

tips. Moreover, the arc [a, b′] is contained in the same link � as b.

If k and l are relatively small, then π−1
p (cSl

) and π−1
p (cSk

) belong to dif-

ferent links of Cp, so we can assume that they are so large that we can apply

condition (2.2).

Let r = Q(k + 1) and r′ = Q(l + 1) be the lowest indices such that the

closest precritical points ζ̂r′ ∈ [cSl
, c] and ζr ∈ [c, cSk

]. By (2.2), r′ = Q(l + 1)
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πp+L(a) = cSl cSk = πp+L(b)c = πp+L(m)

ζ̂r′

πp+L(b
′)

ζ̂r ζr = πp+L(n)

�

T Sr′ = T SQ(l+1)

cSl+1

cSQ(l+1)
= πp+L−Sr′ (m)

c ζt �
cSk+Sr′

�

T St = T Sr−Sr′

��cSQ(Q(k+1))
= cSt cSQ(k+1)

= πp+L−Sr (m)
c �

cSk+1

�

T

��c1+St c1 = πp+L−Sr−1(n)
���c1+SQ(k+1)

= πp+L−Sr−1(m) �c1�
c1+Sk+1

πp+L−Sr (b
′)

Figure 10. The image of πp+L([x, y]) � c = πp+L(m) under appropriate
iterates of T .

= Q(Q(k) + 1) < Q(k + 1) = r. Consider the image of [cSl
, cSk

] first under

T Sr′ and then under T Sr (second and third level in Figure 10). By the choice

of r, we obtain πp+L−Sr ([m, b]) = [cSk+1
, cSQ(k+1)

], and πp+L−Sr([a, b
′]) � cSt for

t = Q(Q(k + 1)). As in (A.5), |cSt − c| > |cSQ(k+1)
− c| > |cSk+1

− c|, and taking

one more iterate, we see that [c1+Sk+1
, c1] ⊂ [c1+SQ(k+1)

, c1] ⊂ [1 + cSt , c1] (last

level in Figure 10).

Let n ∈ [m, b] be such that πp+L(n) = ζr, see the first level in Figure 10.

Since [a, b′] belongs to a single link � ∈ Cp, m ∈ � as well. Suppose that [a,m] is

not contained in �. Then there is a maximal symmetric arc [d′, d] with midpoint

n such that the points d, d′ /∈ �. Then the arcs [d′, a] and [d,m] both enter the

same link � but they have different ‘first’ turning levels in �, contradicting the

properties of Cp from Proposition A.6.

This shows that [a,m] ⊂ �. In the beginning of the proof we argued that

the components of [x, y] \ A belong to the same link, so that means that the

entire arc [x, y] is contained in a single link, contradicting the assumptions of the

proposition. �

Remark B.4. In fact, this proof shows that the p-point b ∈ ∂A of the highest

p-level belongs to [m,x]. Indeed, if a ∈ [m,x], then because [m, b] has shorter

arc-length than [m, a], either a and b, and therefore x and y do not belong to
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the same link � (whence [x, y] is not quasi-p-symmetric), or the arc [a, b] itself is

quasi-p-symmetric and contradicts Lemma B.3.

Corollary B.5. Let A = [x, y] ⊂ A be a quasi-p-symmetric arc with mid-

point m. Let Ax, Ay be the link-tips of A containing x and y respectively. If x is

the midpoint of Ax, and y is the midpoint of Ay, then either Lp(x) > Lp(m) >

Lp(y), or Lp(x) < Lp(m) < Lp(y).

Remark B.6. Note that in general there are quasi-p-symmetric arcs [x, y]

with midpoint m such that Lp(x) > Lp(y) > Lp(m). For example, if a tent map

Ts has a preperiodic critical point, then for every quasi-p-symmetric arcs [x, y]

with midpoint m either Lp(x) > Lp(y) > Lp(m), or Lp(y) > Lp(x) > Lp(m).

Corollary B.7. Let [x, y] ⊂ A be a quasi-p-symmetric arc with midpoint

m, not contained in a single link, such that Lp(x) > Lp(m) > Lp(y). If [m,x]

is longer than [y,m] measured in arc-length, then there exists a p-point y′ ∈ Ax

such that [y, y′] is p-symmetric.

Proof. As in the previous proof, b ∈ [x,m] and y ∈ [m, b′] and take y′ ∈
[m, b] such that πp+L(y

′) = πp+L(y). ��

�

�

�

�	
v��� 	
m′��� 	
�� 	
��x � 	
�� 	
 u��� 	
m��� 	
 y���w �
Figure 11. The configuration in Proposition B.9 where the existence of p-
pointm′ is proved. v is the first p-point ’beyond’ x such that Lp(v) > Lp(x)
and u is such that [u, y] is p-symmetric with midpoint m.

Remark B.8. If Ax � x and Ay � y are maximal arc-components of A ∩ �

(with still Lp(x) > Lp(m) > Lp(y)), and my is the midpoint of Ay , then there

is y′ ∈ Ax such that [y′,my] is p-symmetric.

In other words, when A enters and turns in a link �, then it folds in a sym-

metric pattern, say with levels L1, . . . , Lm−1, Lm, Lm−1, . . . , L1. The nature of

the chain Cp is such that L1 depends only on �. The Corollary B.7 does not

say that the rest of the pattern is the same also, but only that if A ⊂ A is
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such that A \ �-tips is p-symmetric, then the folding pattern at the one link-tip

is a subpattern (stopping at a lower center level) of the folding pattern at the

other link-tip.

Proposition B.9 (Extending a quasi-p-symmetric arc at its higher level

endpoint). Let A = [x, y] ⊂ A be a basic quasi-p-symmetric arc, not contained

in a single link, such that the p-points x, y ∈ � are the midpoints of the link-tips

of A and Lp(x) > Lp(y). Let m be the midpoint of A. Then there exists a p-point

m′ such that the arc [m,m′] is (quasi-)p-symmetric with x as its midpoint.

Remark B.10. The conditions are all crucial in this lemma:

(a) It is important that y is a p-point. Otherwise, if A goes straight through

� at y, then it is possible that x is the single p-point in Ax (where Ax is

the arc-component of A∩� containing x) and [v, x] is shorter than [x,m],

and the lemma would fail.

(b) Without the assumption that [x, y] is basic the lemma can fail. If Figure 9

the quasi-p-symmetric arc [x, y] = [x3, x30] is not basic, and indeed there

is no p-point m′ ∈ [x, v] = [x3, x0] with Lp(m
′) = Lp(m) = Lp(x

17) = 9.

Proof. Since [u, y] is p-symmetric, Lp(u) = Lp(y) < Lp(m) and x 
= u. Let

w be the first p-point ‘beyond’ y such that Lp(w) > Lp(x). Take L = Lp(x);

Figure 12 shows the configuration of the relevant points on [w, v] and their images

under πp ◦ σ−L denoted by˜-accents. Clearly x̃ = c.

�w �y �m �u �x �u′ �v�a′

�
πp ◦ σ−L

�w̃ �ỹ �m̃ �ũ �x̃ = c �ũ′ �ṽ�ã′�ã�ũ′′

�
T r

����������	 	
��c �Tr(ũ)�Tr(ũ′′)�T r(m̃) �
T r(ṽ)

�T r(x̃)

Figure 12. The configuration of points on [w, v] and their images under
πp ◦ σ−L and an additional T r.

Case I. |w̃− c| < |ṽ− c|. Then by Remark 2.4 (b), w̃ = cSl
and ṽ = cSk

with

k = Q(l). The points ỹ, m̃, ũ have symmetric copies ỹ′, m̃′, ũ′ (i.e. T (ỹ) = T (ỹ′),

etc.) in reverse order on [c, ṽ], and the pre-image under σL ◦ π−1
p of the copy of

m̃′ yields the required point m′.
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Case II. |w̃ − c| > |ṽ − c|, so in this case, l = Q(k). We can in fact

assume that |m̃ − c| > |ṽ − c| because otherwise we can find m′ precisely as in

Case I. Now take the p-point a′ ∈ (x, v) of maximal p-level, and let a ∈ [m,x]

be such that their πp ◦ σ−L-images ã and ã′ are each other symmetric copies.

Let r be such that T r(ã) = c; the bottom part of Figure 12 shows the image

of [m̃, ṽ] under T r. The point T r(x̃) and T r(v) are each others β-neighbors,

and since Lp(v) > Lp(x), and by (2.2), |T r(x̃) − c| > |T r(v) − c|. Therefore

[T r+j(x̃), T r+j(ã′)] ⊃ [T r+j(ṽ), T r+j(ã′)] for all j ≥ 1.

If a, a′ ∈ �, then since [x, a] ⊂ �, this would imply that [a′, v] ⊂ � as well,

contrary to the fact that x is the midpoint of Ax.

If on the other hand a, a′ /∈ �, then there is a point u′′ ∈ [m, a] such that

T r(ũ′′) and T r(ũ) are each other symmetric copies. It follows that [u′′, x] is

a quasi-p-symmetric arc properly contained in [x, y], contradicting that [x, y] is

basic. �

Proposition B.11 (Extending a quasi-p-symmetric arc at its lower level

endpoint). Let A = [x, y] ⊂ A be a basic quasi-p-symmetric arc, not contained

in a single link, such that x and y are the midpoints of the link-tips of A and

Lp(x) > Lp(y). Let m be the midpoint of A. Then there exists a point a such

that [m, a] is a quasi-p-symmetric arc with y as the midpoint.

Remark B.12. The assumption that [x, y] is basic is essential. Without it,

we would have a counter-example in [x, y] = [x3, x30] in Figure 9. The quasi-p-

symmetric arc [x3, x30] is indeed not basic, because [x3, x6] is a shorter quasi-p-

symmetric arc in the figure. There is a point n = x32 beyond y with Lp(n) =

Lp(x
32) = 3 > 1 = Lp(y), making it impossible that y is the midpoint of a quasi-

p-symmetric arc stretching unto m.

� 

� 	
� 

� 	x�
� 

� 	y′�
� 


� 	b′�� 

m
�� 	b�

� 

� 	y�
� 


��n�

� 

� 	
� 


�

�

�

�
�

�
�

�
��m

A B

Figure 13. The arcs A and B and the relevant points for Proposition B.11,
which is meant to show that the point n does not exist in B.
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Proof.A quasi-p-symmetric arc is not contained in a single link, so [x,m] 
⊂�.

Let H = [x, n] ⊃ A be the smallest arc containing a point n ‘beyond’ y with

Lp(n) > Lp(y).

Corollary B.7 implies that the arc [x,m] contains a p-point y′ with Lp(y
′) =

Lp(y). Let b and b′ be the p-points having the highest p-level on the arcs [y,m)

and [y′,m), respectively. By symmetry, Lp(b) = Lp(b
′), and possibly b = y,

b′ = y′. Let z ∈ [x, y′] be the point closest to y′ such that Lp(z) > Lp(b);

possibly z = x. Since b′ ∈ [y′,m), we have

Lp(y) = Lp(y
′) ≤ Lp(b) = Lp(b

′) < Lp(m).

Take L := Lp(b) and let H̃ = πp ◦σ−L(H). Since y is the midpoint of its link-tip,

[y, n] 
⊂ �. Therefore π−1
p (c)∩σ−L(H) ⊃ {σ−L(b), σ−L(b′)}, and z̃ = πp ◦σ−L(z)

and ñ = πp◦σ−L(n) have m̃ = πp◦σ−L(m) as common β-neighbor, see Figure 14.

Since Lp(z) > Lp(b) there is k such that z̃ = cSk
. Also take l such that ñ = cSl

��x̃���z̃ = cSk �� m̃ = cSj�
cSl = ñ

�̃
a c = πp ◦ σ−L(b)ỹ

ỹ′ ũ
H̃

�

T
Sj
s

�
�

�
�
���

T
Sj
s

���������������

T
Sj
s

�
cSl−1

�
cSk−1c

Figure 14. The arc ˜H drawn as multiple curve, its preimage under T
Sj
s

and the relevant points on them.

and j such that m̃ = cSj . Let ỹ = πp ◦ σ−L(y) and ỹ′ = πp ◦ σ−L(y′).

We claim that there is a point a ∈ [n,m] such that

ã := πp ◦ σ−L(a) ∈ [cSl
, ỹ] and Ts(ã) = Ts(m̃).

Since cSj is a β-neighbor to both cSl
and cSk

, we have three cases:

(1) j = Q(k) and l = Q(j), so l = Q2(k). In this case, Equation (2.2) and

Remark 2.2 imply that |c − cSl
| > |c − cSQ(k)

|, so [cSl
, c] contains the required

point ã with Ts(ã) = Ts(m̃). By the same token, |cSk
− c| < |cSj − c| = 1

2 |ã− m̃|.
Since |ỹ − c| = |ỹ′ − c| < |cSk

− c|, we indeed obtain that ã ∈ [cSl
, ỹ].

(2) j = Q(l) and k = Q(j), so k = Q2(l). Then Remark A.2 implies that

|c − cSk
| > |c − cSl

|. But this would mean that the arc [n,m] is shorter than

[z,m] and in particular that [y, n] ⊂ �, contradicting that y is the midpoint of

its link-tip.
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(3) j = Q(k) = Q(l). In this case, we pull H̃ back for another Sj iterates,

or more precisely, we look at the arc πp ◦ σ−Sj−L(H). The endpoints of this arc

are cSk−1
and cSl−1

which are therefore β-neighbors. If l − 1 = Q(k − 1), then

we find

Q(k) = Q(l) = Q(Q(k − 1) + 1)

which contradicts condition (2.2) with k replaced by k − 1. If k − 1 = Q(l − 1),

then we find

Q(l) = Q(k) = Q(Q(l − 1) + 1)

which contradicts condition (2.2) with k replaced by l−1. This proves the claim.

Suppose now that ỹ 
= c (i.e. y 
= b). Then b, b′ /∈ � because y has the largest

p-level in its link-tip. Since |cSk
−c| < |c−m̃|, there is a point u ∈ [z,m] such that

ũ = πp ◦ σ−L(u) ∈ [c, m̃] and Ts(ũ) = Ts(ỹ). This means that [x, u] is a quasi-

p-symmetric arc properly contained in [x,m], contradicting the assumption that

[x, y] is a basic quasi-symmetric arc.

Therefore y = b, so there are no p-points between y and m of level higher

than Lp(y). Instead, the arc [a,m] has the midpoint y, and is the required

quasi-p-symmetric arc, proving the lemma. �

Remark B.13. Let A = [x, y] be a basic quasi-p-symmetric arc such that x

and y are the midpoints of the link-tips of A and Lp(x) > Lp(y). Let �
m be the

link which contains the midpoint m of A, and let Am be the arc-component of

�m containing m. Then, by the lemma above, A\ (�-tips ∪Am) does not contain

any p-point z with Lp(z) ≥ Lp(y).

Appendix C. Link-symmetric arcs

Definition C.1. We say that an arc [x, y] is decreasing (basic) quasi-p-

symmetric if it is the concatenation of (basic) quasi-p-symmetric arcs where the

p-levels of the midpoints decrease, i.e. if there are p-points x = x0, x1, . . . , xn−1

and xn = y can be a p-point or not, such that the following hold:

(a) [xi−1, xi+1] is a (basic) quasi-p-symmetric arc with midpoint xi, for i =

1, . . . , n−1. (By definition of a (basic) quasi-p-symmetric arc, the points

x2i all belong to a single link, and the points x2i−1 belong to a single

link as well.)

(b) Lp(x
i) > Lp(x

i+1), for i = 1, . . . , n − 1 (and if y is a p-point then also

Lp(x
n−1) > Lp(y)).

Similarly, we say that the arc [x, y] is increasing (basic) quasi-p-symmetric if it

is the concatenation of (basic) quasi-p-symmetric arcs where the p-levels of the

midpoints increase.
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� 	� 
�x = x1

� 	� 
� 	�
x2

� 
� 	� 
�
x3

� 	

� 
�
x5

�x6 = y�x4

�

�

�

�

�

�

�

�
�̂

�

Figure 15. Illustration of a basic decreasing quasi-p-symmetric arc. The

point y is not a p-point here; instead, the arc A goes straight through ̂�
at y.

Example C.2. Consider the Fibonacci inverse limit space, and let our chain

Cp be such that p-points with p-levels 1 and 14 belong to the same link �, but

p-points with p-level 9 are not contained in �. Since p-points with p-level 14

belong to the same link � as p-points with p-level 1, also p-points with p-levels

22, 35, 56 and 77 belong to �. Let p-points with p-level 43 belong to the same

link as p-points with p-level 9.

(1) Example of a basic decreasing quasi-p-symmetric arc. Let A =

[y0, y12] be an arc with the following folding pattern (where the subscripts count

important p-points):

122772 221 9 436 9 1︸ ︷︷ ︸
basic

basic︷ ︸︸ ︷
229 1 911 112 .

Let xi be as in the above definition. Then x1 = y2, x2 = y6, x3 = y9,

x4 = y11, and x5 = y12. So [y2, y9] is basic quasi-p-symmetric with midpoint

y6, [y6, y11] is basic quasi-p-symmetric with midpoint y9, and [y9, y12] is basic

quasi-p-symmetric with the midpoint y11. Also Lp(y
2) = 77 > Lp(y

6) = 43 >

Lp(y
9) = 22 > Lp(y

11) = 9 > Lp(y
12) = 1.

(2) Example of a non-basic decreasing quasi-p-symmetric arc. Let

[y0, y72] be an arc with the following folding pattern:

quasi-p-symmetric︷ ︸︸ ︷
1221563 12219 1︸ ︷︷ ︸

basic

4 1 0 2 0 1 0 3 0 1 6 114135231141 6 1 0 3 0 1 0 2 0 1 4 1 9 1︸︷︷︸
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basic︷ ︸︸ ︷
2241 1 9 1 4 1 0 2 0 1 0 3 0 1 6114571 6 1 0 3 0 1 0 2 0 1 4

sym︷ ︸︸ ︷
1 9 172︸ ︷︷ ︸

quasi-p-symmetric

.

Let xi be again as in the above definition. Then x1 = y3, x2 = y23, x3 = y41,

x4 = y57, and x5 = y72. So, arcs [y3, y41], [y23, y57] and [y41, y72] are quasi-p-

symmetric, and Lp(y
3) = 56 > Lp(y

23) = 35 > Lp(y
41) = 22 > Lp(y

57) = 14 >

Lp(y
72) = 1.

(3) Example of an arc that is the concatenation of two quasi-p-

symmetric arcs (one of them is basic), but is not decreasing quasi-p-

symmetric. Let [y0, y40] be an arc with the following folding pattern:

122772 221 9 436 9 1︸ ︷︷ ︸
basic

229 1 911112 4 1 0 2 0 1 0 3 0 1 611425 1 6 1 0 3 0 1 0 2 0 1 41 9140︸ ︷︷ ︸
quasi-p-symmetric

.

Then [y2, y9] is basic quasi-p-symmetric with midpoint y6, [y6, y11] is basic

quasi-p-symmetric with midpoint y9, and [y9, y12] is basic quasi-p-symmetric

with the midpoint y11. However, [y9, y40] is quasi-p-symmetric with midpoint

y25 and [y6, y25] is neither basic quasi-p-symmetric, nor quasi-p-symmetric. So

A = [y0, y40] is not a decreasingly quasi-p-symmetric arc. Note that [y0, y12] is

a decreasing quasi-p-symmetric arc.

Proposition C.3. Let A be a non-basic quasi-p-symmetric arc. Then there

are k, n,m, d ∈ N, d < k, such that

A ∩ Ep = {x0, . . . , xk, . . . , xk+n, . . . , xk+n+m},

[x0, xk] is a basic quasi-p-symmetric arc with midpoint xk−d and [xk, xk+n] is

p-symmetric. Moreover,

(a) If [xk+n, xk+n+m] is p-symmetric, then [x−k+m/2, xk+n+3m/2] is not p-

link-symmetric.

(b) If [xk+n, xk+n+m] is a basic quasi-p-symmetric arc, then A is contained

in a decreasing quasi-p-symmetric arc consisting of at least two quasi-p-

symmetric arcs. More precisely, [x−k−n/2, xk+n/2], [xk+n/2, xk+2m+3n/2]

are the quasi-p-symmetric arcs contained in the decreasing quasi-p-sym-

metric arc [x−k−n/2, xk+2m+3n/2] containing A.

Proof. Since A is a non-basic quasi-p-symmetric arc, there is a basic quasi-

p-symmetric arc which we can label [x0, xk]. The arc [xk, xk+n] in the middle

is p-symmetric by definition of quasi-p-symmetry, and it has the same midpoint

xk+n/2 as A. The arc [xk+n, xk+n+m] could be either p-symmetric or basic quasi-

p-symmetric.
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(a) Assume that [xk+n, xk+n+m] is p-symmetric. Without loss of generality

we can suppose that x0 and xk+n+m are the midpoints of the link-tips of A,

and also that xk and xk+n are the midpoints of their arc-components. Since the

point xk+n+m/2 is the midpoint of the p-symmetric arc [xk+n, xk+n+m], and the

symmetry of the arc [xk, xk+n] can be extended to the midpoints of its neigh-

boring (quasi-)symmetric arcs, we obtain that d = m/2 and the point xk−m/2 is

the midpoint of the basic quasi-p-symmetric arc [x0, xk]. Proposition B.9 implies

that we can extend [x0, xk−m/2] beyond x0 to obtain the arc [x−k+m/2, xk−m/2]

which is either p-symmetric, or quasi-p-symmetric, and hence p-link-symmetric.

First, let us assume that Lp(x
k+n+m) = 1. Let us consider the arc [xk+n+m/2,

xk+n+3m/2]. Its midpoint xk+n+m has p-level 1.

If Lp(x
k+n+m−1) = Lp(x

k+n+m+1), then Lp(x
k+n+m−1) = 0. Furthermore

xk+n+m−1 
= xk+n+m/2 since a midpoint cannot have p-level zero. It follows that

xk+n+m−2 and xk+n+m+2 have different p-levels, and are not in the same link,

since by Lemma B.3 there is no quasi-p-symmetric arc whose both boundary

points are p-points and whose midpoint has p-level 1.

If Lp(x
k+n+m−1) 
= Lp(x

k+n+m+1) then again xk+n+m−1 and xk+n+m+1 are

not in the same link (by Lemma B.3 there is no quasi-p-symmetric arc whose both

boundary points are p-points and whose midpoint has p-level 1). In either case,

[xk+n+m/2, xk+n+3m/2] is not p-link-symmetric and hence [x−m/2, xk+n+3m/2] is

not p-link-symmetric. This proves (a) in the case that Lp(x
k+n+m)=1.

Now for the general case, let L := Lp(x
k+n+m). The basic idea is to shift

[x0, xk+n+m] back by L− 1 iterates, and use the above argument. Note that the

arcs [xk, xk+n] and [xk+n, xk+n+m] are p-symmetric and hence Lp(x
k+n/2) >

Lp(x
k+n) = Lp(x

k+n+m) = L. Then σ−L+1(A) is also a quasi-p-symmetric arc

which is not basic, the arc σ−L+1([x0, xk]) is a basic quasi-p-symmetric arc and

Lp(σ
−L+1(xk+n+m)) = 1. Let

σ−L+1(A) ∩ Ep = {u0, . . . , u
̂k, . . . , u

̂k+n̂, . . . , u
̂k+n̂+m̂},

where u
̂i = σ−L+1(xi). (Note that k̂ ≤ k, n̂ ≤ n and m̂ ≤ m, since not every

σ−L+1(xi) needs to be a p-point.) Then G = [u−̂k+m̂/2, u
̂k+n̂+3m̂/2] is an arc with

‘boundary arcs’ [u−̂k+m̂/2, u
̂k−m̂/2] and [uk+n+m̂/2, uk+n+3m̂/2] and the midpoint

of the latter has p-level 1. The above argument shows that this arc cannot be

p-link-symmetric, and therefore the whole arc G is not p-link-symmetric with

midpoint u = σ−L+1(xk+n/2).

We want to prove that σj(G) is also not p-link-symmetric with the mid-

point σj(u) for j = L − 1. Let us assume by contradiction that σj(G) is p-link-

symmetric. Since [x−k+m/2, xk−m/2] is p-symmetric, σj([u
̂k+n̂+m̂/2, u

̂k+n̂+3m̂/2])

is also p-link-symmetric. But [u
̂k+n̂+m̂/2, u

̂k+n̂+3m̂/2] has its midpoint at p-

level 1, and hence is not p-link-symmetric. Therefore, there exists l < j such
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that σl([u
̂k+n̂+m̂/2, u

̂k+n̂+3m̂/2]) is not p-link-symmetric and σl+1([u
̂k+n̂+m̂/2,

u
̂k+n̂+3m̂/2]) is p-link-symmetric.

By Proposition A.6, and since Lp(σ
l(u

̂k+n̂+m̂)) = l + 1 
= 0, there exist v ∈
σl([u

̂k+n̂+m̂/2, u
̂k+n̂+m̂]) and w ∈ σl([u

̂k+n̂+m̂, u
̂k+n̂+3m̂/2]) such that Lp(v) =

Lp(w) = 0, see Figure 16.
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Figure 16. The configuration of p-levels that does not exist. Here x =

σl(u
̂k+n̂+m̂/2), y = σl(u

̂k+n̂+m̂) and z = σl(u
̂k+n̂+3m̂/2).

Since σl+1(u
̂k+n̂+m̂/2) and σl+1(u

̂k+n̂+3m̂/2) belong to the same link and

Lp(σ
l+1(u

̂k+n̂+m̂/2)) 
= Lp(σ
l+1(u

̂k+n̂+3m̂/2)), Proposition A.6 implies that

σl+1(u
̂k+n̂+m̂/2) and σl+1(u

̂k+n̂+3m̂/2) belong to the same link as σ(v) and σ(w).

But then σl(u
̂k+n̂+m̂/2) and σl(u

̂k+n̂+3m̂/2) belong to the same link as v and w,

contradicting the choice of l.

(b) The rough idea of this proof is as follows: Whenever [xk+n, xk+n+m] is not

p-symmetric, there exists N ∈ N such that σ−N (A) is a basic quasi-p-symmetric

arc and we can apply Propositions B.9 and B.11 to obtain the arc B ⊃ σ−N (A)

which is decreasing basic quasi-p-symmetric. Then σN (B) ⊃ A is the required

decreasing quasi-p-symmetric arc.

Let us assume now that [xk+n, xk+n+m] is basic quasi-p-symmetric. Let us

denote by � the link which contains x0. Then xk, xk+n, xk+n+m ∈ �. We can

assume without loss of generality that xk and xk+n are the p-points in the link-

tips of [xk, xk+n] furthest away from the midpoint xk+n/2 and, similarly, x0 and

xk+n+m are the p-points in the link-tips of [x0, xk+n+m] furthest away from the

midpoint xk+n/2. Then from the properties of the chain in Proposition A.6 we

conclude that Lp(x
0) = Lp(x

k) = Lp(x
k+n) = Lp(x

k+n+m). Let us denote

by xa and xb the midpoints of arc-components which contains x0 and xk+n+m
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respectively. Then xa, xb ∈ � and xb 
= xk+n+m. Without loss of generality we

can assume that Lp(x
a) > Lp(x

b).

Since xk−d is the midpoint of [x0, xk] and A is quasi-p-symmetric, xk+n+d is

the midpoint of [xk+n, xk+n+m]. By Proposition B.9, Lp(x
−d) = Lp(x

k−d) and

Lp(x
k+n+d) = Lp(x

k+n+m+d), see Figure 17.

�x �x−d

Ad

�
x0

�
xa

�xk−2d�xk−d�
xk

�xk+n/2 �
xk+n

�xk+n+d�xk+n+2d�
xb

�
xk+n+m

�xk+n+m+d

�
σ−L+1

�u−n̂ An�
u

�
u0

�
uâ

Aa �
u2â

�
u2â+n̂

�
u2â+2n̂

�u2â+3n̂

Figure 17. The configuration of points on [x−d, xk+n+m+2d] and their
images under σ−L+1 as in (b).

Let us denote by �d the link which contains x−d, and byAd the arc-component

of �d which contains x−d.

Claim. x−d is the midpoint of its arc-component Ad.

Consider the arc σ−L+1(A), where L := Lp(x
b). Since

Lp(x
a) > Lp(x

k+n/2) > Lp(x
b) = L,

the preimage σ−L+1(A) contains the points σ−L+1(xb) with Lp(σ
−L+1(xb)) = 1,

σ−L+1(xa) and σ−L+1(xk+n/2) is the midpoint of σ−L+1(A).

By Corollary B.7, the arc-component containing xa also contains p-points

x′ and x′′ with the property that [x′, x′′] is p-symmetric with midpoint xa and

Lp(x
′) = Lp(x

′′) = Lp(x
b). Assume also that x′ and x′′ are furthest away from xa

with these properties. Therefore, σ−L+1(A) ∩Ep ⊇ {u0, uâ, u2â, u2â+n̂, u2â+2n̂},
where uâ = σ−L+1(xa), u2â+n̂ = σ−L+1(xk+n/2), u2â+2n̂ = σ−L+1(xb), u0 =

σ−L+1(x′), u2â = σ−L+1(x′′) and Lp(u
0) = Lp(u

2â) = 1.

Let us suppose that σ−L+1(A) is not contained in a single link. Since

σ−L+1(xa) and σ−L+1(xb) are contained in the same link, σ−L+1(A) is a ba-

sic quasi-p-symmetric arc. Let �n be the link containing u2â+n̂, and let A2a+n

be the arc component of �n containing u2â+n̂. Since Lp(u
2â+2n̂) = 1, by Remark

B.13, (u2â+n̂, u2â+2n̂) \ A2a+n can contain at most one p-point and its p-level

is 0. Therefore (u2â, u2â+n̂) \ A2a+n can also contain at most one p-point and

its p-level is 0. By Proposition B.9, [u−n̂, u2â+n̂] is either a p-symmetric arc,

or a basic quasi-p-symmetric arc, see Figure 17. Let us denote by An the arc-

component of �n containing u−n̂. Then (u−n̂, u0) \An also does not contain any

p-point with non-zero p-level.
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Assume by contradiction that x−d is not the midpoint of its arc-compo-

nent Ad. Let us denote the midpoint of Ad by x, and let u := σ−L+1(x). Since

Lp(x) > Lp(x
a), also Lp(u) > Lp(u

â). Let �a be the link which contains uâ, and

let Aa be the arc-component of �a containing uâ. Then u ∈ An and [u−n̂, u2â+n̂]

is basic quasi-p-symmetric. But, since u2â+n̂ ∈ �n and σL−1(u2â+n̂) = xk+n/2,

xk+n/2 ∈ �d. Since the arc [x, xk−d] is quasi-p-symmetric, [xk−d, xk+n/2] is

also quasi-p-symmetric and Lp(x
a) > Lp(x

k−d) implies Lp(x
k−d) > Lp(x

k+n/2),

a contradiction.

Let us assume now that σ−L+1(A) is contained in a single link. Since

Lp(u) > Lp(u
â) and Lp(u

0) = 1, we have πp([u, u
0]) ⊂ πp([u

â, u0]). Then

σL−1([uâ, u0]) ⊂ � implies σL−1([u, uâ]) ⊂ � and hence [x−d, xk−d] ⊂ �, a contra-

diction. These two contradictions prove the claim.

In the same way we can prove that xk+n+m+d is the midpoint of its arc-

component, and by Proposition B.11 the arc [u2â+n̂, u2â+3n̂] is either p-symme-

tric, or quasi-p-symmetric.

So we have proved that the arcs [u−n̂, u2â+n̂] and [u2â+n̂, u2â+3n̂] are both

either p-symmetric, or quasi-p-symmetric. Since [xa, xb] = σL−1([uâ, u2â+2n̂]) is

quasi-p-symmetric, the arcs σL−1([u−n̂, u2â+n̂]) and σL−1([u2â+n̂, u2â+3n̂]) are

both either p-symmetric, or quasi-p-symmetric. This implies that [x−2d−n/2,

xk+n/2] and [xk+n/2, xk+n+m+2d+n/2] are contained in the decreasing quasi-p-

symmetric arc [x−2d−n/2, xk+n+m+2d+n/2] containing A. �

Example C.4 (Example for (b) of Proposition C.3). Let us consider the

Fibonacci map and the corresponding inverse limit space. The arc-component C

contains an arc A = [x0, x77] with the following folding pattern:

1 91 12 2215612219 1︸ ︷︷ ︸
basic

4 1 0 2 0 1 0 3 0 1 6

quasi-p-symmetric︷ ︸︸ ︷
122 1413511416 1︸ ︷︷ ︸

basic

0 3 0 1 0 2 0 1 4 1 912219 1 4 1 0 2 0 1 0 3 0 1 6 114160︸ ︷︷ ︸
basic

6 1 0 3 0 1 0 2 0 1 4 1 9 174︸ ︷︷ ︸
sym

4751 0.

We can choose a chain Cp such that p-points with p-levels 1, 14, 22, 35 and 56

belong to the same link. Then the arc [x22, x60] is quasi-p-symmetric, and it is

not basic. The arc σ−13([x22, x60]) is basic quasi-p-symmetric with the folding

pattern 1 22 1 9 1. So we can apply Propositions B.9 and B.11 as in the above

proof. The arc [x2, x74] is decreasing quasi-p-symmetric. Note that the arc

[x1, x75] is not p-link-symmetric.

Definition C.5. An arc A = [x, y] is called maximal decreasing (basic)

quasi-p-symmetric if it is decreasing (basic) quasi-p-symmetric and there is no
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decreasing (basic) quasi-p-symmetric arc B ⊃ A that consists of more (basic)

quasi-p-symmetric arcs than A. Similarly we define a maximal increasing (basic)

quasi-p-symmetric arc.

Remark C.6. (a) Propositions B.9 and B.11 imply that A = [x, y] is a max-

imal decreasing basic quasi-p-symmetric arc if and only if A is a decreasing

basic quasi-p-symmetric and for x = x0, x1, . . . , xn−1, xn = y which satisfy (a)

of Definition C.1, there exists a point x−1 such that [x−1, x1] is p-symmetric

with midpoint x0 and xn is not a p-point. The arc [x−1, xn] we call the ex-

tended maximal decreasing basic quasi-p-symmetric arc. The points x−1, x =

x0, x1, . . . , xn−1, xn = y we call the nodes of [x−1, xn].

The analogous statement holds if A is a maximal increasing basic quasi-p-

symmetric arc: If A = [x0, xn+1] is an extended maximal increasing basic quasi-p

symmetric arc, then x0 is not a p-point, Lp(x
n) > Lp(z) for every p-point z ∈ A,

z 
= xn, and Lp(x
n−1) = Lp(x

n+1).

(b) Let A = [x0, xn+1] be an extended maximal increasing basic quasi-p

symmetric arc. If there exists an additional p-point xn+2 such that the arc

[xn, xn+2] is quasi-p symmetric with midpoint xn+1, Propositions B.9 and B.11

imply that A is contained in an p-symmetric arc B = [x0, x2n] where the arc

[xn−1, x2n] is an extended maximal decreasing basic quasi-p-symmetric arc.

The analogous statement holds if A is a maximal decreasing basic quasi-p-

symmetric arc.

Lemma C.7. Every (basic) quasi-p-symmetric arc A can be extended to a ma-

ximal decreasing/increasing (basic) quasi-p-symmetric arc B ⊃ A.

Proof. We take the largest decreasing (basic) quasi-p-symmetric arc B con-

taining A. The only thing to prove is that there really is a largest B. If this were

not the case, then there would be an infinite sequence (xi)i≥0 with x0 ∈ ∂A,

Lp(xi) < Lp(xi+1) and [xi, xi+2] is a (basic) quasi-p-symmetric arc for all i ≥ 0.

By the definition of (basic) quasi-p-symmetric arc, there are two links � and �̂

containing xi for all even i and odd i respectively. (Note that � = �̂ is possi-

ble.) By Lemma B.3 for the basic case, the p-points in
⋃
i≥0

[x0, xi] \ (� ∪ �̂) can

only have finitely many different p-levels. By the construction in the proof of

Proposition C.3 (ii), the same conclusion is true for the non-basic case as well.

But
⋃
i≥0

[x0, xi] is a ray, and contains p-points of all (sufficiently high) p-levels.

Since the closure of πp({x : Lp(x) ≥ N}) contains ω(c) for all N , this set is not

contained in the πp-images of the two links � and �̂ only. So we have a contra-

diction. �

Proposition C.8. Let A be a p-link-symmetric arc with midpoint m and

∂A = {x, y} ⊂ Ep. Then A is p-symmetric, or is contained in an extended
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maximal decreasing/increasing (basic) quasi-p-symmetric arc, or is contained in

a p-symmetric arc which is the concatenation of two arcs, one of which is a max-

imal increasing (basic) quasi-p-symmetric arc, and the other one is a maximal

decreasing (basic) quasi-p-symmetric arc.

Proof. Let A ∩ Ep = {x−k′
, . . . , x−1, x0, x1, . . . xk} and x0 = m. Without

loss of generality we assume that x−k′
and xk are the midpoints of the link-tips

of A. If Lp(x
−i) = Lp(x

i), for i = 1, . . . ,min{k′, k}, then the arc A is either

p-symmetric, or (basic) quasi-p-symmetric. Hence in this case the theorem is

true.

Let us assume that there exists j < min{k′, k} such that Lp(x
−i) = Lp(x

i),

for i = 1, . . . , j − 1, and Lp(x
−j) 
= Lp(x

j). The arc [x−j , xj ] is (basic) quasi-p-

symmetric and by Lemma C.7 and Remark C.6, there exists an extended maxi-

mal decreasing/increasing (basic) quasi-p-symmetric arc which contains [x−j , xj ].

Hence in this case the theorem is also true. �

References

[1] A. Avila, M. Lyubich and W. de Melo, Regular or stochastic dynamics in real analytic

families of unimodal maps, Invent. Math. 154 (2003), 451–550.

[2] M. Barge, K. Brucks and B. Diamond, Self-similarity in inverse limit spaces of the

tent family, Proc. Amer. Math. Soc. 124 (1996), 3563–3570.
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