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TOPOLOGICAL STRUCTURE

OF THE SOLUTION SET OF SINGULAR EQUATIONS

WITH SIGN CHANGING TERMS

UNDER DIRICHLET BOUNDARY CONDITION

José V. Gonçalves — Marcos R. Marcial — Olimpio H. Miyagaki

Abstract. In this paper we establish existence of connected components

of positive solutions of the equation −∆pu = λf(u) in Ω, under Dirichlet

boundary conditions, where Ω ⊂ RN is a bounded domain with smooth

boundary ∂Ω, ∆p is the p-Laplacian, and f : (0,∞) → R is a continuous

function which may blow up to ±∞ at the origin.

1. Introduction

In this paper we establish existence of a continuum of positive solutions of

(P)λ


−∆pu = λf(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, ∆p is the p-

Laplacian, 1 < p <∞, λ > 0 is a real parameter, f : (0,∞)→ R is a continuous

function which may blow up to ±∞ at the origin.
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Definition 1.1. By a solution of (P)λ we mean a function u ∈ W 1,p
0 (Ω) ∩

C(Ω), with u > 0 in Ω, such that

(1.1)

∫
Ω

|∇u|p−2∇u · ∇ϕdx = λ

∫
Ω

f(u)ϕdx, ϕ ∈W 1,p
0 (Ω).

Definition 1.2. The solution set of (P)λ is

(1.2) S := {(λ, u) ∈ (0,∞)× C(Ω) | u is a solution of (P)λ}.

In the pioneering work [5], Crandall, Rabinowitz and Tartar employed topo-

logical methods, Schauder Theory, and Maximum Principles to prove existence

of an unbounded connected subset in R × C0(Ω) of positive solutions u ∈
C2(Ω) ∩ C(Ω) of the problem−Lu = g(x, u) in Ω,

u = 0 on ∂Ω,

where L is a linear second order uniformly elliptic operator,

C0(Ω) = {u ∈ C(Ω) | u = 0 on ∂Ω}

and g : Ω × (0,∞) → (0,∞) is a continuous function satisfying g(x, t)
t→0+

−−−→ 0

uniformly for x ∈ Ω. A typical example is g(x, t) = tγ , where γ > 0.

Several techniques have been employed in the study of (Pλ). In [11], Gia-

comoni, Schindler and Takac employed variational methods to investigate the

problem 
−∆pu =

λ

uδ
+ uq in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where 1 < p <∞, p−1 < q < p∗−1, λ > 0 and 0 < δ < 1 with p∗ = Np/(N − p)
if 1 < p < N , p∗ ∈ (N,∞) if p = N , and p∗ = ∞ if p > N . Several results

were shown in that paper, among them existence, multiplicity and regularity of

solutions.

In the present work we exploit the topological structure of the solution set

of (Pλ) and our main assumptions are:

(f1) f : (0,∞)→ R is continuous and

lim
u→∞

f(u)

up−1
= 0,

(f2) there are positive numbers a, β,A with β < 1 such that

(i) f(u) ≥ a/uβ for u > A,

(ii) lim sup
u→0

uβ |f(u)| <∞.

The main result of this paper is:
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Theorem 1.3. Assume (f1)–(f2). Then there is a number λ0 > 0 and a

connected subset Σ of [λ0,∞)× C(Ω) satisfying

Σ ⊂ S,(1.3)

Σ ∩ ({λ} × C(Ω)) 6= ∅, λ0 ≤ λ <∞.(1.4)

There is a broad literature on singular problems and we further refer the

reader to Lazer and McKenna in [16], Diaz, Morel and Oswald [8], Gerghu and

Radulescu [10], Goncalves, Rezende and Santos [13], Hai [14, 15], Mohammed

[19], Shi and Yao [21], Hoang Loc and Schmitt [18], Carl and Perera [4], and

their references.

Our result includes examples such as

uq − 1

uβ
, β > 0, 0 < q < p− 1,

1

uβ
− 1

uα
, 0 < β < α < 1,

ln(u).

In the proof of our Theorem 1.3 we shall employ topological arguments to

construct a suitable connected component of the solution set S of (P)λ. More

precisely, we shall use in a nontrivial way Theorem 2.1 from Sun and Song [23]

whose proof is based on the famous lemma of Whyburn, (cf. [26, Theorem 9.3]).

At first some notations:

Let M = (M,d) be a metric space and denote by {Σn} a sequence of con-

nected components of M . The upper limit of {Σn} is defined by

lim Σn =

{
u ∈M

∣∣∣∣ there is (uni) ⊆
⋃

Σn with uni ∈ Σni and uni → u

}
.

Remark 1.4. lim Σn is a closed subset of M .

Theorem 1.5. Let M be a metric space and {αn}, {βn} ∈ R be sequences

satisfying . . . < αn < . . . < α1 < β1 < . . . < βn < . . . with αn → −∞ and

βn → ∞. Assume that {Σ∗n} is a sequence of connected subsets of R × M

satisfying:

(a) Σ∗n ∩ ({αn} ×M) 6= ∅,
(b) Σ∗n ∩ ({βn} ×M) 6= ∅,

for each n. For each α, β ∈ (−∞,∞) with α < β,

(c)
(⋃

Σ∗n
)
∩ ([α, β]×M) is a relatively compact subset of R×M .

Then there is a number λ0 > 0 and a connected component Σ∗ of lim Σ∗n such

that Σ∗ ∩ ({λ} ×M) 6= ∅ for each λ ∈ (λ0,∞).
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2. Some auxiliary results

We gather below a few technical results. For completeness, a few proofs will

be provided in the appendix. The Euclidean distance from x ∈ Ω to ∂Ω is

d(x) = dist(x, ∂Ω).

The result below derives from Gilbarg and Trudinger [12], and Vàzquez [25].

Lemma 2.1. Let Ω ⊂ RN be a smooth bounded domain. Then:

(a) d ∈ Lip(Ω) and d is C2 in a neighbourhood of ∂Ω,

(b) if φ1 denotes a positive eigenfunction of (−∆p,W
1,p
0 (Ω)) one has

φ1 ∈ C1,α(Ω) with 0 < α < 1,
∂φ1

∂ν
< 0 on ∂Ω,

and there are positive constants C1, C2 such that

C1d(x) ≤ φ1(x) ≤ C2d(x), x ∈ Ω.

The result below is due to Crandall, Rabinowitz and Tartar [5], Lazer and

McKenna [16] in the case p = 2 and Giacomoni, Schindler and Takac [11] in the

case 1 < p <∞.

Lemma 2.2. Let β ∈ (0, 1) and m > 0. Then the problem

(2.1)


−∆pu =

m

uβ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

admits only a weak solution um ∈ W 1,p
0 (Ω). Moreover, um ≥ εmφ1 in Ω for

some constant εm > 0.

Remark 2.3. By the results in [17], [11], there is α ∈ (0, 1) such that um ∈
C1,α(Ω).

The result below, which is crucial in this work, and whose proof is provided

in the appendix, is basically due to Hai [15].

Lemma 2.4. Let g ∈ L∞loc(Ω). Assume that there is β ∈ (0, 1) and C > 0

such that

(2.2) |g(x)| ≤ C

d(x)β
, x ∈ Ω.

Then there is only a weak solution u ∈W 1,p
0 (Ω) of

(2.3)

−∆pu = g in Ω,

u = 0 on ∂Ω.

In addition, there exist constants α ∈ (0, 1) and M > 0, with M depending only

on C, β,Ω such that u ∈ C1,α(Ω) and ‖u‖C1,α(Ω) ≤M .
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Remark 2.5. The solution operator associated to (2.3) is: let

Mβ,∞ =

{
g ∈ L∞loc(Ω)

∣∣∣∣ |g(x)| ≤ C

d(x)β
, x ∈ Ω

}
,

S : Mβ,∞ →W 1,p
0 (Ω) ∩ C1,α(Ω), S(g) := u.

Notice that ‖S(g)‖C1,α(Ω) ≤ M , for all g ∈ MC,d,β,∞, with M depending only

on C, β,Ω.

Corollary 2.6. Let g, g̃ ∈ L∞loc(Ω) with g ≥ 0, g 6= 0 satisfying (2.2). Then,

for each ε > 0, the problem

(2.4)

−∆puε = g χ{d>ε} + g̃ χ{d<ε} in Ω;

uε = 0 on ∂Ω,

admits only a solution uε ∈ C1,α(Ω) for some α ∈ (0, 1). In addition, there is

ε0 > 0 such that

uε ≥
u

2
in Ω for each ε ∈ (0, ε0),

where u is the solution of (2.3).

A proof of the corollary above will be included in the appendix.

3. Lower and upper solutions

In this section we present two results, due to Hai [15, Theorem 2.1], on

existence of lower and upper solutions of (P)λ. At first some definitions.

Definition 3.1. A function u ∈W 1,p
0 (Ω) with u > 0 in Ω such that∫

Ω

|∇u|p−2∇u · ∇ϕdx ≤ λ
∫

Ω

f(u)ϕdx, ϕ ∈W 1,p
0 (Ω), ϕ ≥ 0,

is a lower solution of (P)λ.

Definition 3.2. A function u ∈W 1,p
0 (Ω) with u > 0 in Ω such that∫

Ω

|∇u|p−2∇u · ∇ϕdx ≥ λ
∫

Ω

f(u)ϕdx, ϕ ∈W 1,p
0 (Ω), ϕ ≥ 0,

is an upper solution of (P)λ.

We establish the existence of a lower solution.

Theorem 3.3. Assume (f1)–(f2). Then there exist λ0 > 0 and a non-negative

function ψ ∈ C1,α(Ω), with ψ > 0 in Ω, ψ = 0 on ∂Ω, α ∈ (0, 1) such that for

each λ ∈ [λ0,∞), u = λrψ with r = 1/(p+ β − 1), is a lower solution of (P)λ.

Proof of Theorem 3.3. See Hai [15, p. 622]. �
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By Lemma 2.2, there are both a function φ ∈ C1,α(Ω), with α ∈ (0, 1), such

that

(3.1)


−∆pφ =

1

φβ
in Ω,

φ > 0 in Ω,

φ = 0 on ∂Ω,

and a constant C1 > 0 such that φ ≥ C1d in Ω.

Next, we establish the existence of an upper solution.

Theorem 3.4. Assume (f1)–(f2) and take Λ > λ0 with λ0 as in Theorem 3.3.

Then for each λ ∈ [λ0,Λ], (P)λ admits an upper solution u = uλ = Mφ where

M > 0 is a constant and φ is given by (3.1).

Proof of Theorem 3.4. See Hai in [15, p. 623]. �

4. Further technical results

At first we introduce some notations, remarks and lemmas. Take Λ > λ0 and

set IΛ := [λ0,Λ]. For each λ ∈ IΛ, by Theorem 3.3,

u = uλ = λrψ

is a lower solution of (P)λ. Pick M = MΛ ≥ Λrδ1/(p−1). By Theorem 3.4,

u = uλ = MΛφ

is an upper solution of (P)λ. It follows that

(4.1) u = λrψ ≤ Λrδ1/(p−1)φ ≤Mφ = u.

The convex, closed subset of IΛ × C(Ω), defined by

GΛ := {(λ, u) ∈ IΛ × C(Ω) | λ ∈ IΛ, u ≤ u ≤ u and u = 0 on ∂Ω}

will play a key role in this work.

For each u ∈ C(Ω) define

(4.2) fΛ(u) = χS1f(u) + χS2f(u) + χS3f(u), x ∈ Ω,

where S1 := {x ∈ Ω | u(x) < u(x)}, S2 := {x ∈ Ω | u(x) ≤ u(x) ≤ u(x)},
S3 := {x ∈ Ω | u(x) < u(x)}, and χSi is the characteristic function of Si.

Lemma 4.1. For each u ∈ C(Ω), fΛ(u) ∈ L∞loc(Ω) and there are C > 0,

β ∈ (0, 1) such that

(4.3) |fΛ(u)(x)| ≤ C

d(x)β
, x ∈ Ω.
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Proof. Indeed, let K ⊂ Ω be a compact subset. Then both u and u achieve

a positive maximum and a positive minimum on K. Since f is continuous in

(0,∞) then fΛ(u) ∈ L∞loc(Ω).

Verification of (4.3): Since Ω =
3⋃
i=1

Si it is enough to show that

|f(u(x))| ≤ C

d(x)β
, x ∈ Si, i = 1, 2, 3.

At first, by (f2)(ii) there are C, δ > 0 such that

|f(s)| ≤ C

sβ
, 0 < s < δ.

Let Ωδ = {x ∈ Ω | d(x) < δ}. Recalling that u ∈ C1(Ω), let

D = max
Ω

d(x), νδ := min
Ωcδ

d(x), νδ := max
Ωcδ

d(x),

and notice that both 0 < νδ ≤ νδ ≤ D <∞ and f([νδ, ν
δ]) are compact.

On the other hand, applying Theorems 3.3, 3.4, Lemmas 2.1 and 2.2 we infer

that 0 < λr0ψ ≤ λrψ = u ≤ u = Mφ in Ω and

1

uβ
,

1

uβ
≤ 1

(λr0ψ(x))β
≤ C

d(x)β
, x ∈ Ωδ.

To finish the proof, we distinguish three cases:

(1) x ∈ S1. In this case, fΛ(u(x)) = f(u(x)). If x ∈ S1 ∩ Ωδ we infer that

|fΛ(u(x))| ≤ C

u(x)β
≤ C

d(x)β
.

If x ∈ S1 ∩ Ωcδ pick positive numbers di, i = 1, 2, such that d1 ≤ u(x) ≤ d2,

x ∈ Ωcδ. Hence

|fΛ(u(x))| ≤ C

d(x)β
, x ∈ Ω.

(2) x ∈ S2. In this case, 0 < λr0ψ ≤ u ≤Mφ and, as a consequence,

|f(u(x))| ≤ C

u(x)β
, x ∈ Ωδ.

Hence, there is a positive constant C̃ such that |f(u(x))| ≤ C̃, x ∈ Ωcδ. Thus

|f(u(x))| ≤

C̃ if x ∈ Ωcδ,
C

d(x)β
if x ∈ Ωδ.

On the other hand,

1

Dβ
≤ 1

d(x)β
, x ∈ Ωcδ,
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and therefore there is a constant C > 0 such that

|f(u(x))| ≤


C

Dβ
if x ∈ Ωcδ,

C

d(x)β
if x ∈ Ωδ.

Therefore,

|f(u(x))| ≤ C

d(x)β
, x ∈ S2, u ∈ GΛ.

(3) x ∈ S3. In this case fΛ(u(x)) = f(u(x)). If x ∈ S3 ∩ Ωδ we infer that

|fΛ(u(x))| ≤ C

u(x)β
≤ C

d(x)β
.

If x ∈ S3 ∩ Ωcδ. Pick positive numbers di, i = 1, 2, such that d1 ≤ u(x)) ≤ d2,

x ∈ Ωcδ. Hence

|fΛ(u(x))| ≤ C

d(x)β
, x ∈ Ω.

This ends the proof of Lemma 4.1. �

Remark 4.2. By Lemmas 2.4, 4.1 and Remark 2.5, for each v ∈ C(Ω) and

λ ∈ IΛ,

(4.4) λfΛ(v) ∈ L∞loc(Ω) and |λfΛ(v)| ≤ CΛ

dβ(x)
in Ω,

where CΛ > 0 is a constant independent of v and β ∈ (0, 1). So for each v,

(4.5)

−∆pu = λfΛ(v) in Ω,

u = 0 on ∂Ω,

admits only a solution u = S(λfΛ(v)) ∈W 1,p
0 (Ω) ∩ C1,α(Ω).

Set FΛ(u)(x) = fΛ(u(x)), u ∈ C(Ω), and consider the operator

T : IΛ × C(Ω)→W 1,p
0 (Ω) ∩ C1,α(Ω),

T (λ, u) = S(λFΛ(u)) if λ0 ≤ λ ≤ Λ, u ∈ C(Ω).

Notice that if (λ, u) ∈ IΛ × C(Ω) satisfies u = T (λ, u) then u is a solution of−∆pu = λfΛ(u) in Ω,

u = 0 on ∂Ω.

Lemma 4.3. If (λ, u) ∈ IΛ × C(Ω) and u = T (λ, u) then (λ, u) ∈ GΛ.

Proof. Indeed, let (λ, u) ∈ IΛ × C(Ω) such that T (λ, u) = u. Then∫
Ω

|∇u|p−2∇u.∇ϕdx = λ

∫
Ω

fΛ(u)ϕdx, ϕ ∈W 1,p
0 (Ω).
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We claim that u ≥ u. Assume on the contrary, that ϕ := (u− u)+ 6≡ 0. Then∫
Ω

|∇u|p−2∇u · ∇ϕdx =

∫
u<u

|∇u|p−2∇u · ∇ϕdx

= λ

∫
u<u

fΛ(u) · ϕdx = λ

∫
u<u

f(u) · ϕdx

≥
∫
u<u

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

|∇u|p−2∇u · ∇ϕdx.

Hence ∫
Ω

[|∇u|p−2∇u− |∇u|p−2∇u] · ∇(u− u) dx ≤ 0.

It follows, by Lemma 1.2, that
∫

Ω
|∇(u−u)|p dx ≤ 0, contradicting ϕ 6≡ 0. Thus,

(u− u)+ = 0, that is, u− u ≤ 0, and so u ≤ T (λ, u).

We claim that u ≥ u. Assume on the contrary that ϕ := (u − u)+ 6≡ 0. We

have∫
Ω

|∇u|p−2∇u · ∇ϕdx =

∫
u<u

|∇u|p−2∇u · ∇ϕdx

= λ

∫
u<u

fΛ(u) · ϕdx = λ

∫
u<u

f(u) · ϕdx

≤
∫
u<u

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

|∇u|p−2∇u · ∇ϕdx.

Therefore, ∫
Ω

[|∇u|p−2∇u− |∇u|p−2∇u] · ∇(u− u) dx ≤ 0,

contradicting ϕ 6≡ 0. Thus (u − u)+ = 0 so that u − u ≤ 0, which gives u ≥
T (λ, u). As a consequence of the arguments above u ∈ GΛ, showing Lemma 4.3.�

Remark 4.4. By the definitions of fΛ and GΛ, for each (λ, u) ∈ GΛ

(4.6) fΛ(u) = f(u), x ∈ Ω.

Remark 4.5. By Remark 2.5, there is RΛ > 0 such that GΛ ⊂ B(0, RΛ) ⊂
C(Ω) and

T (IΛ ×B(0, RΛ)) ⊆ B(0, RΛ).

Notice that, by (4.6) and Lemma 4.3, if (λ, u) ∈ IΛ × C(Ω) satisfies u = T (λ, u)

then (λ, u) is a solution of (P)λ. By Remark 4.4, to solve (P)λ it suffices to look

for fixed points of T .

Lemma 4.6. T : IΛ ×B(0, RΛ)→ B(0, RΛ) is continuous and compact.

Proof. Let {(λn, un)} ⊆ IΛ ×B(0, RΛ) be a sequence such that

λn → λ and un
C(Ω)−−−→ u, as n→∞.
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Set vn = T (λn, un) and v = T (λ, u) so that vn = S(λnFΛ(un)) and v =

S(λFΛ(u)). It follows that∫
Ω

(|∇vn|p−2∇vn − |∇v|p−2∇v) · ∇(vn − v) dx

= λn

∫
Ω

(fΛ(un)− fΛ(u))(vn − v) dx ≤ C
∫

Ω

|fΛ(un)− fΛ(u)| dx.

Since

|fΛ(un)− fΛ(u)| ≤ C

d(x)β
∈ L1(Ω) and fΛ(un(x))→ fΛ(u(x)) a.e. x ∈ Ω,

as n→∞, it follows by Lebesgue’s theorem that∫
Ω

|fΛ(un)− fΛ(u)| dx→ 0, as n→∞.

Therefore vn → v, as n→∞ in W 1,p
0 (Ω). On the other hand, since un

C(Ω)−−−→ u,

as n→∞, by the proof of Lemma 4.1,

λnfΛ(un) ∈ L∞loc(Ω) and |λnfΛ(un)| ≤ CΛ

dβ(x)
in Ω.

By Lemma 2.4, there is a constant M > 0 such that ‖vn‖C1,α(Ω) ≤ M so that

vn
C(Ω)−−−→ v. This shows that T : IΛ ×B(0, RΛ)→ B(0, RΛ) is continuous.

The compactness of T follows from the arguments in the five lines above. �

5. Bounded connected sets of solutions of (Pλ)

By applying the previous technical results and the Leray–Schauder Contin-

uation theorem (see [6]) which we state below regarding the use of its notations,

we get

Theorem 5.1. Let D be an open bounded subset of the Banach space X. Let

a, b ∈ R with a < b and assume that T : [a, b]×D → X is compact and continuous.

Consider Φ: [a, b]×D → X defined by Φ(t, u) = u− T (t, u). Assume that

(a) Φ(t, u) 6= 0, t ∈ [a.b], u ∈ ∂D,

(b) deg(Φ(t, · ), D, 0) 6= 0 for some t ∈ [a, b],

and set Sa,b = {(t, u) ∈ [a, b] × D | Φ(t, u) = 0}. Then, there is a connected

compact subset Σa,b of Sa,b such that

Σa,b ∩ ({a} ×D) 6= ∅ and Σa,b ∩ ({b} ×D) 6= ∅.

We will be able to show the following auxiliary result.

Theorem 5.2. Assume (f1)–(f2). Then there is a number λ0 > 0 and for

each Λ > λ0 there is a connected set ΣΛ ⊂ ([λ0,Λ]× C(Ω) satisfying:

ΣΛ ⊂ S, ΣΛ ∩ ({λ0} × C(Ω)) 6= ∅, ΣΛ ∩ ({Λ} × C(Ω)) 6= ∅.
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Proof of Theorem 5.2. At first, some notations and technical results are

needed. The Leray–Schauder theorem above will be applied to the operator

T in the settings of Section 4. Remember that T is continuous, compact and

T (IΛ ×B(0, RΛ)) ⊂ B(0, RΛ).

Consider Φ: IΛ ×B(0, R)→ B(0, R)) defined by Φ(λ, u) = u− T (λ, u).

Lemma 5.3. Φ satisfies:

(a) Φ(λ, u) 6= 0 (λ, u) ∈ IΛ × ∂B(0, RΛ),

(b) deg(Φ(λ, · ), B(0, RΛ), 0) 6= 0 for each λ ∈ IΛ.

Proof. The verification of (a) is straightforward since T (IΛ ×B(0, RΛ)) ⊂
B(0, RΛ).

To prove (b) set R = RΛ, take λ ∈ IΛ and consider the homotopy

Ψλ(t, u) = u− tT (λ, u), (t, u) ∈ [0, 1]×B(0, R).

It follows that 0 /∈ Ψλ(I×∂B(0, R)). By the invariance under homotopy property

of the Leray–Schauder degree

deg(Ψλ(t, · ), B(0, R), 0) = deg(Ψλ(0, · ), B(0, R), 0) = 1, t ∈ [0, 1].

Setting Φ(λ, u) = u− T (λ, u), (λ, u) ∈ IΛ ×B(0, R), we also have

deg(Φ(λ, · ), B(0, R), 0) = 1, λ ∈ IΛ.

Set SΛ = {(λ, u) ∈ IΛ × B(0, R) | Φ(λ, u) = 0} ⊂ GΛ. By the Leray–Schauder

Continuation theorem, there is a connected component ΣΛ ⊂ SΛ such that

ΣΛ ∩ ({λ∗} ×B(0, R)) 6= ∅ and ΣΛ ∩ ({Λ} ×B(0, R)) 6= ∅.

We point out that SΛ is the solution set of the auxiliary problem−∆pu = λfΛ(u) in Ω,

u = 0 on ∂Ω,

and, since ΣΛ ⊂ SΛ ⊂ GΛ, it follows using the definition of fΛ that−∆pu = λf(u) in Ω,

u = 0 on ∂Ω,

for (λ, u) ∈ ΣΛ, showing that ΣΛ ⊂ S. This ends the proof of Theorem 5.2. �

6. Proof of Theorem 1.3

Consider Λ as introduced in Section 5 and take a sequence {Λn} such that

λ0 < Λ1 < Λ2 < . . . with Λn →∞. Set βn = Λn and take a sequence {αn} ⊂ R
such that αn → −∞ and . . . < αn < . . . < α1 < λ0.
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Following the notations of Section 4, consider the sequence of intervals In =

[λ0,Λn]. Set M = C(Ω) and let

GΛn := {(λ, u) ∈ In ×BRn | u ≤ u ≤ u, u = 0 on ∂Ω},

where Rn = RΛn . Consider the sequence of compact operators

Tn : [λ0,Λn]×BRn → BRn

defined by

Tn(λ, u) = S(λFΛn(u))) if λ0 ≤ λ ≤ Λn, u ∈ BRn .

Next consider the extension of Tn, namely T̃n : R×BRn → BRn , defined by

T̃n(λ, u) =


Tn(λ0, u) if λ ≤ λ0,

Tn(λ, u) if λ0 ≤ λ ≤ Λn,

Tn(Λn, u) if λ ≥ Λn.

Notice that T̃n is continuous and compact.

Applying Theorem 5.1 to T̃n : [αn, βn] × BRn → BRn , we get a compact

connected component Σ∗n of Sn = {(λ, u) ∈ [αn, βn] × BRn | Φn(λ, u) = 0},
where

Φn(λ, u) = u− T̃n(λ, u).

Notice that Σ∗n is also a connected subset of R ×M . By Theorem 1.5, there is

a connected component Σ∗ of lim Σ∗n such that

Σ∗ ∩ ({λ} ×M) 6= ∅ for each λ ∈ R.

Set Σ = ([λ∗,∞)×M) ∩ Σ∗. Then Σ ⊂ R×M is connected and

Σ ∩ ({λ} ×M) 6= ∅, λ0 ≤ λ <∞.

We claim that Σ ⊂ S. Indeed, at first notice that

(6.1) T̃n+1

∣∣
([λ0,Λn]×BRn )

= T̃n
∣∣
([λ0,Λn]×BRn )

= Tn.

If (λ, u) ∈ Σ with λ > λ0, there is a sequence (λni , uni) ∈
⋃

Σ∗n with (λni , uni) ∈
Σ∗ni such that λni → λ and uni → u, as ni → ∞. Then u ∈ BRN for some

integer N > 1.

We can assume that (λni , uni) ∈ [λ0,ΛN ]×BRN . On the other hand, by (6.1),

uni = Tni(λni , uni) = TN (λni , uni).

Passing to the limit we get u = TN (λ, u) which shows that (λ, u) ∈ ΣN and so

(λ, u) ∈ S := {(λ, u) ∈ (0,∞)× C(Ω) | u is a solution of (P)λ}.

This ends the proof of Theorem 1.3. �
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Appendix A

In this section we present proofs of Lemma 2.4, Corollary 2.6 and recall some

results referred to in the paper. We begin with the Browder–Minty theorem, (cf.

Deimling [6]). Let X be a real reflexive Banach space with dual space X∗. A map

F : X → X∗ is monotone if

〈Fx− Fy, x− y〉 ≥ 0, x, y ∈ X,

F is hemicontinuous if

F (x+ ty)
∗
⇀ Fx as t→ 0,

and F is coercive if
〈Fx, x〉
|x|

→ ∞ as |x| → ∞.

Theorem 1.1. Let X be a real reflexive Banach space and let F : X → X∗ be

a monotone, hemicontinous and coercive operator. Then F (X) = X∗. Moreover,

if F is strictly monotone then it is a homeomorphism.

The inequality below, (cf. [22], [20]), is very useful when dealing with the

p-Laplacian.

Lemma 1.2. Let p > 1. Then there is a constant Cp > 0 such that

(A.1) (|x|p−2x− |y|p−2y, x− y) ≥


Cp|x− y|p if p ≥ 2,

Cp
|x− y|p

(1 + |x|+ |y|)2−p if p ≤ 2,

where x, y ∈ RN and ( · , · ) is the usual inner product of RN .

Recall the Hardy inequality (cf. Brézis [3]).

Theorem 1.3. There is a positive constant C such that∫
Ω

∣∣∣∣ud
∣∣∣∣β dx ≤ C ∫

Ω

|∇u|p, u ∈W 1,p
0 (Ω).

Proof of Lemma 2.4. By the Hölder inequality,

(A.2)

∫
Ω

|∇u|p−1|∇v| dx ≤ ‖u‖1,p′‖v‖1,p,

where 1/p+ 1/p′ = 1, and so the expression

(A.3) 〈−∆pu, v〉 :=

∫
Ω

|∇u|p−2∇u · ∇v dx, u, v ∈W 1,p
0 (Ω),

defines a continuous, bounded (nonlinear) operator, namely

∆p : W 1,p
0 (Ω)→W−1,p′(Ω), u 7→ ∆pu.

By (A.1), −∆p it is strictly monotone and coercive, that is

〈−∆pu− (−∆pv), u− v〉 > 0, u, v ∈W 1,p
0 (Ω), u 6= v



86 J.V. Gonçalves — M.R. Marcial — O.H. Miyagaki

and
〈−∆pu, u〉
‖u‖1,p

‖u‖1,p→∞−−−−−−−−→∞.

By the Browder–Minty theorem, ∆p : W 1,p
0 (Ω) → W−1,p′(Ω) is a homeomor-

phism.

Consider

Fg(u) =

∫
Ω

gu dx, u ∈W 1,p
0 (Ω).

Claim. Fg ∈W−1,p′(Ω).

Assume for a while the claim has been proved. Since −∆p : W 1,p
0 (Ω) →

W−1,p′(Ω) is a homeomorphism, there is only u ∈ W 1,p
0 (Ω) such that −∆pu =

Fg, that is

〈−∆pu, v〉 =

∫
Ω

gv dx, v ∈W 1,p
0 (Ω)

Verification of Claim. Let V be an open neighborhood of ∂Ω such that

0 < d(x) < 1 for x ∈ V so that

1 <
1

d(x)β
<

1

d(x)
, x ∈ V.

Now, if v ∈W 1,p
0 (Ω) we have

|Fg(v)| ≤
∫

Ω

|g||v| dx =

∫
V c
|g||v| dx+

∫
V

|g||v| dx ≤ C‖v‖1,p +

∫
Ω

∣∣∣∣vd
∣∣∣∣ dx.

Applying the Hardy inequality in the last term above, we get to

|Fg(v)| ≤ C‖v‖1,p,

showing that Fg ∈W−1,p′(Ω), proving the claim.

Regularity of u. At first we treat the case p = 2. By [5], there is a solution v of
−∆v = 1/vβ in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

which belongs to C1(Ω) and by the Hopf theorem ∂v/∂ν < 0 on ∂Ω. Since also

d ∈ C1(Ω) and ∂d/∂ν < 0 on ∂Ω there a constant C > 0 such that v ≤ Cd in Ω.

Moreover, −∆v = 1/vβ ≥ C/dβ . Consider the problem−∆ũ = |g| in Ω,

ũ = 0 on ∂Ω.

By [11, theorem B.1], ũ ∈ C1,α(Ω) and ‖ũ‖C1,α(Ω) ≤ M0 for some positive

constant M0. By the Maximum Principle, ũ ≤ v ≤ Cd in Ω.
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Setting u = u + ũ we get −∆u = g + |g| ≥ 0 in Ω and by the arguments

above, u ≤ Cd in Ω. Thus, as a consequence of [11, Theorem B.1], there are

α ∈ (0, 1) and M0 > 0 such that

u, ũ ∈ C1,α(Ω) and ‖u‖C1,α(Ω), ‖ũ‖C1,α(Ω) ≤M0,

ending the proof of Lemma 2.4 in the case p = 2.

In what follows we treat the case p > 1. Let u be a solution of (2.3). It

follows that

−∆pu = g ≤ C

dβ
and −∆p(−u) = (−1)p−1g ≤ C

dβ
.

By Lemma 2.2, the problem−∆pv = C/vβ in Ω,

v = 0 on ∂Ω,

admits only a positive solution v ∈ W 1,p
0 (Ω) ∩ C1,α(Ω) for some α ∈ (0, 1) with

v ≤ Cd in Ω. Hence,

−∆p(v) =
C

vβ
≥ 1

dβ
in Ω.

Therefore,

−∆p|u| ≤
C

dβ
≤ −∆pv.

By the Weak Comparison Principle, |u| ≤ v ≤ Cd in Ω, showing that u ∈ L∞(Ω).

Pick w ∈ C1,α(Ω) such that

−∆w = g in Ω, w = 0 on ∂Ω.

We have

div(|∇u|p−2∇u−∇w) = 0 in Ω

in the weak sense. By Lieberman [17, Theorem 1] the proof of Lemma 2.4 ends.�

Proof of Corollary 2.6. Existence of uε follows directly by Lemma 2.4.

Moreover, there are M > 0 and α ∈ (0, 1) such that

‖u‖C1,α(Ω), ‖uε‖C1,α(Ω) < M.

By Vázquez [25, Theorem 5], ∂u/∂ν < 0 on ∂Ω and recalling that d ∈ C1(Ω)

and ∂d/∂ν < 0 on ∂Ω it follows that

(A.4) u ≥ Cd in Ω.

Multiplying the equation

−∆pu− (−∆puε) = g − (hχ[d(x)>ε] + g̃χ[d(x)<ε])

by u− uε and integrating we have∫
Ω

(|∇u|p−2∇u− |∇uε|p−2∇uε) · ∇(u− uε) dx ≤ 2M

∫
d(x)<ε

|g − g̃| dx.
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Using Lemma 1.2, we infer that ‖u − uε‖1,p → 0 as ε → 0. By the compact

embedding C1,α(Ω) ↪→ C1(Ω), it follows that

‖u− uε‖C1(Ω) ≤
C

2
d,

and, using (A.4),

uε ≥ u−
C

2
d ≥ u− u

2
=
u

2
. �
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