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THREE SOLUTIONS FOR SECOND-ORDER

IMPULSIVE DIFFERENTIAL INCLUSIONS

WITH STURM–LIOUVILLE BOUNDARY CONDITIONS

VIA NONSMOOTH CRITICAL POINT THEORY

Yu Tian — John R. Graef — Lingju Kong — Min Wang

Abstract. A second-order impulsive differential inclusion with Sturm–

Liouville boundary conditions is studied. By using a nonsmooth version

of a three critical point theorem of Ricceri, the existence of three solutions
is obtained.

1. Introduction

In this paper, we will study a second-order impulsive differential inclusion

subject to Sturm–Liouville boundary conditions

(1.1)


−(ρ(x)Φp(u

′(x)))′ + s(x)Φp(u(x)) ∈ λF (u(x)) + µG(x, u(x))

in [a, b] \ {x1, . . . , xl},
−∆(ρ(xk)Φp(u

′(xk))) = Ik(u(xk)), k = 1, . . . , l,

αu′(a)− βu(a) = 0, γu′(b) + σu(b) = 0,
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where p > 1, Φp(u) := |u|p−2u, ρ, s ∈ C[a, b], ρ(x) > 0, s(x) > 0, α, β, γ, σ > 0,

and a = x0 < x1 < . . . < xl < xl+1 = b.

Here,

∆(ρ(xi)Φp(u
′(xi))) = ρ(x+i )Φp(u

′(x+i ))− ρ(x−i )Φp(u
′(x−i )),

where u′(x+i ) (respectively, u′(x−i )) denotes the right hand limit (respectively,

left hand limit) of u′(x) at x = xi, Ii ∈ C(R,R), i = 1, . . . , l, λ, µ are positive

parameters, F is a multifunction defined on R satisfying:

(F1) F : R→ 2R is upper semicontinuous (u.s.c.) with compact convex values;

(F2) minF,maxF : R→ R are L × B-measurable;

(F3) |ξ| ≤ δ(1 + |s|p−1) for all s ∈ R and ξ ∈ F (s), for some δ > 0;

and G is a multifunction defined on [a, b]×R satisfying:

(G1) G(x, · ) : R → 2R is u.s.c. with compact convex values for almost every

x ∈ [a, b] \ {x1, . . . , xl};
(G2) minG,maxG : [a, b] \ {x1, . . . , xl} ×R→ R are L × B-measurable;

(G3) |ξ| ≤ δ(1 + |s|p−1) for almost every x ∈ [a, b], s ∈ R and ξ ∈ G(x, s).

We shall apply a nonsmooth version of the critical point theory of Ricceri to

prove that, if λ is large enough and µ is small enough, then (1.1) admits at least

three solutions. Moreover, we obtain estimates of the solutions’ norms that are

independent of G, λ, and µ.

The study of impulsive differential equations and inclusions is linked to their

utility in simulating processes and phenomena subject to short-time perturba-

tions during their evolution. The perturbations are considered to take place in

the form of impulses since the perturbations are performed discretely and their

durations are negligible in comparison with the total duration of the processes

and phenomena (see [9], [14]). In recent years, there has been an increasing in-

terest in the study of differential inclusions and impulsive differential inclusions

due to the fact that they often arise in models for control systems, mechanical

systems, economical systems, game theory, and biological systems to name a few

(see [1]–[5], [7], [11]–[13], [15], [19]). The first work dealing with partial differen-

tial inclusions with a general set-valued right hand side via variational methods

was, to the best of our knowledge, that of Frigon [10]. Ribarska et al. [17] de-

fined a single-valued energy functional that was locally Lipschitz and proved

that its critical points were just the solutions of the original problem. With this,

nonsmooth variational methods can be applied to differential inclusions.

In papers [20] and [21], the impulsive differential equations with Sturm–Liou-

ville boundary conditions are studied by variational methods.

In this paper, we apply this approach to impulsive differential inclusion with

Sturm–Liouville boundary conditions. We need to overcome certain difficulties

such as: how to define the weak solutions; how to prove that a weak solution
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is a classical solution of the original problem; and how to verify the regularity

assumptions in view of the presence of impulsive terms. This paper is a gener-

alization of the results on impulsive differential equations with Sturm–Liouville

boundary conditions found in [20] and [21]. We note that the nonsmooth version

of the critical point theory of Ricceri has been studied and applied extensively,

e.g. [11] and [12]. This paper is the further application of nonsmooth version of

the critical point theory.

Our paper is organized as follows. In Section 2, we recall some basic concepts

from nonsmooth analysis and the abstract result we are going to apply. We also

present our main result. In Section 3, we introduce a variational method for

problem (1.1), and in Section 4, we prove our main result and illustrate it with

an example.

2. Some nonsmooth analysis and the main result

We begin by collecting some basic notions and results on nonsmooth analysis,

namely, the calculus for locally Lipschitz functionals developed by Clarke [6], and

Motreanu and Panagiotopoulos [16].

Let (X, ‖ · ‖X) be a Banach space, (X∗, ‖ · ‖X∗) be its topological dual, and

ϕ : X → R be a functional. We recall that ϕ is locally Lipschitz (l.L.) if, for all

u ∈ X, there exist a neighborhood U of u and a real number L > 0 such that

|ϕ(v)− ϕ(w)| ≤ L‖v − w‖X for all v, w ∈ U.

If ϕ is l.L. and u ∈ X, the generalized directional derivative of ϕ at u along the

direction v ∈ X is

ϕ0(u; v) = lim sup
w→u, τ→0+

ϕ(w + τv)− ϕ(w)

τ
.

The generalized gradient of ϕ at u is the set

∂ϕ(u) = {u∗ ∈ X∗ : 〈u∗, v〉 ≤ ϕ0(u; v) for all v ∈ X}.

Thus, ∂ϕ : X → 2X
∗

is a multifunction. We say that ϕ has a compact gradient

if ∂ϕ maps bounded subsets of X into relatively compact subsets of X∗.

Lemma 2.1 ([16, Proposition 1.1]). Let ϕ ∈ C1(X) be a functional. Then ϕ

is l.L. and

ϕ0(u; v) = 〈ϕ′(u), v〉 for all u, v ∈ X;(2.1)

∂ϕ(u) = {ϕ′(u)} for all u ∈ X.(2.2)

Lemma 2.2 ([16, Proposition 1.3]). Let ϕ : X → R be an l.L. functional.

Then

(2.3) ϕ0(u; · ) is subadditive and positively homogeneous for all u ∈ X;
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(2.4) ϕ0(u; v) ≤ L‖v‖ for all u, v ∈ X,

with L > 0 being a Lipschitz constant for ϕ around u.

Lemma 2.3 ([16, Proposition 1.6]). Let ϕ,ψ : X → R be an l.L. functional.

Then

∂(λϕ)(u) = λ∂ϕ(u) for all u ∈ X, λ ∈ R;(2.5)

∂(ϕ+ ψ)(u) ⊆ ∂ϕ(u) + ∂ψ(u) for all u ∈ X.(2.6)

Lemma 2.4 ([11, Lemma 6]). Let ϕ : X → R be a functional with a compact

gradient. Then ϕ is sequentially weakly continuous.

We say that u ∈ X is a critical point of an l.L. functional ϕ if 0 ∈ ∂ϕ(u).

In the proof of our main results, we shall use Theorem 2.6. For this, we first

present an important definition.

Definition 2.5. An operator A : X → X∗ is of type (S)+ if, for any sequence

(un) in X, un ⇀ u and lim sup
n→∞

〈A(un), un − u〉 ≤ 0 imply un → u.

The following theorem is a special case of [11, Theorem 14].

Theorem 2.6. Let (X, ‖ · ‖) be a reflexive Banach space, I ⊆ R be an in-

terval, N ∈ C1(X) be a sequentially weakly l.s.c. functional whose derivative

is of type (S)+, F : X → R be an l.L. functional with a compact gradient, and

ρ ∈ R. Assume that

lim
‖u‖→∞

[N (u)− λF(u)] = +∞ for all λ ∈ I;(2.7)

sup
λ∈I

inf
u∈X

[N (u) + λ(ρ−F(u))] < inf
u∈X

sup
λ∈I

[N (u) + λ(ρ−F(u))].(2.8)

Then, there exist α, β ∈ I (α < β) and r > 0 with the following property: for

any λ ∈ [α, β] and any l.L. functional G : X → R with a compact gradient, there

exists δ > 0 such that, for all µ ∈ [0, δ], the functional ϕλ,µ = N − λF − µG
admits at least three critical points in X, with norms less than r.

The main hypothesis of Theorem 2.6 above is the minimax inequality (2.8).

An easy way to satisfy it is illustrated by the following result due again to

Ricceri [18].

Lemma 2.7 ([18, Proposition 3.1]). Let X be a nonempty set, N , F : X → R

be functions, ǔ, û ∈ X, and τ > 0 be such that

N (ǔ) = F(ǔ) = 0;(2.9)

N (û) > τ ;(2.10)

sup
N (u)<τ

F(u) <
τF(û)

N (û)
.(2.11)

Then, there exists ρ ∈ R such that (2.8) holds.
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Here is our main result for problem (1.1). We need to define the constant

γ = 21/q ×max

{
1

/(
(b− a)1/p

(
min
x∈[a,b]

s(x)
)1/p)

,

(b− a)1/q
/(

min
x∈[a,b]

ρ(x)
)1/p}

,

where 1/p+ 1/q = 1.

Theorem 2.8. Assume that (F1)–(F3) hold. Furthermore, we assume:

(F4) there exist k > 0 and τ > 0 satisfying

τ min

∫ k

0

F (s) ds

k

p

∫ b

a

s(x) dx−
l∑
i=1

∫ k

0

Ii(s) ds+
ρ(b)σp−1

pγp−1
kp +

ρ(a)βp−1

pαp−1
kp

> sup
|u|<γ(τp)1/p

min

∫ u

0

F (s) ds,

where

k

p

∫ b

a

s(x) dx+
ρ(b)σp−1

pγp−1
kp +

ρ(a)βp−1

pαp−1
kp > τ ;

(F5) min

∫ t

0

F (s) ds ≤ η(1 + |t|l) for t ∈ R, η > 0, 1 < l < p;

(I1) Ii(0) = 0, Ii(x)x ≤ 0 for x ∈ R, i = 1, . . . , l.

Then there exist a nondegenerate interval [α, β] ⊂ (0,+∞) and r > 0 with the

following property: for any λ ∈ [α, β] and any multifunction G satisfying (G1)–

(G2), there exists δ > 0 such that, for all µ ∈ [0, δ], problem (1.1) admits at least

three solutions with norms in X less than r.

3. Variational structure and related lemmas

For convenience, we consider the differential inclusion

(3.1)


−(ρ(x)Φp(u

′(x)))′ + s(x)Φp(u(x)) ∈ H(x, u(x))

in [a, b] \ {x1, . . . , xl},
−∆(ρ(xk)Φp(u

′(xk))) = Ik(u(xk)), k = 1, . . . , l,

αu′(a)− βu(a) = 0, γu′(b) + σu(b) = 0,

where the multifunction H satisfies:

(H1) H(x, · ) : R → 2R is u.s.c. with compact convex values for almost every

x ∈ [a, b] \ {x1, . . . , xl};
(H2) minH,maxH : [a, b] \ {x1, . . . , xl} ×R→ R are L × B-measurable;
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(H3) |ξ| ≤ δ(1 + |s|p−1) for almost every x ∈ [a, b] \ {x1, . . . , xl}, and all s ∈ R
and ξ ∈ H(x, s) for some δ > 0.

Remark 3.1. Notice that condition (H3) implies that ξ ∈ Lq[a, b] where

1/p+ 1/q = 1.

We introduce the Banach space X = W 1,p([a, b]) endowed with the norm

‖u‖X =

(∫ b

a

ρ(x)|u′(x)|p + s(x)|u(x)|p dx
)1/p

for all u ∈ X. Clearly, (X, ‖ · ‖X) is a reflexive Banach space and the norm

‖u‖X is equivalent to the usual one
( ∫ b

a
|u′(x)|p + |u(x)|p dx

)1/p
. Clearly, X is

compactly embedded into Lγ [a, b], endowed with the usual norm ‖ · ‖Lγ for all

γ ≥ 1.

Lemma 3.2 ([20, Lemma 2.3]). For u ∈ X, we have ‖u‖C0 ≤ γ‖u‖X , where

the constant λ is defined before Theorem 2.8.

Definition 3.3. A function u ∈ X is said to be a weak solution of problem

(3.1) if there exists u∗ ∈ L1([a, b], X) such that u∗(x) ∈ H(x, u(x)) for almost

every x ∈ [a, b], and

(3.2)

∫ b

a

ρ(x)Φp(u
′(x))v′(x) + s(x)Φp(u(x))v(x)− u∗(x)v(x) dx

−
l∑
i=1

Ii(u(xi))v(xi) + ρ(b)Φp

(
σu(b)

γ

)
v(b) + ρ(a)Φp

(
βu(a)

α

)
v(a) = 0

for all v ∈ X and for almost every x ∈ [a, b].

Definition 3.4. By a solution of the differential inclusion (3.1) we mean

a function u : [a, b]\{x1, . . . , xl} → R that is of class C1 with Φp(u
′) being abso-

lutely continuous and satisfying
−(ρ(x)Φp(u

′(x)))′ + s(x)Φp(u(x)) ∈ H(x, u(x)) in [a, b] \ {x1, . . . , xl},
−∆(ρ(xk)Φp(u

′(xk))) = Ik(u(xk)), k = 1, . . . , l,

αu′(a)− βu(a) = 0, γu′(b) + σu(b) = 0.

Lemma 3.5. If a function u ∈ X is a weak solution of (3.1), then u is

a (classical) solution of (3.1).

Proof. Let u ∈ X be a weak solution of (3.1). Then there exists u∗ ∈
H(x, u(x)) satisfying (3.2) for all v ∈ X and u∗ ∈ H(x, u(x)) for almost every

x ∈ [a, b]. So (3.2) holds for all v ∈ C∞0 (a, x1) with v(x) = 0 for x > x1. Then,

(3.2) becomes∫ x1

a

ρ(x)Φp(u
′(x))v′(x) + s(x)Φp(u(x))v(x)− u∗(x)v(x) dx = 0.
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Hence, ρ(x)Φp(u
′(x)) has a weak derivative (ρ(x)Φp(u

′(x)))′ and

(3.3) −(ρ(x)Φp(u
′(x)))′ + s(x)Φp(u(x))− u∗(x) = 0

for x ∈ (0, x1). Similarly,

−(ρ(x)Φp(u
′(x)))′ + s(x)Φp(u(x))− u∗(x) = 0

holds for x ∈ [a, b]\{x1, . . . , xm}. Since u ∈ X and u∗ ∈ L1[a, b], ρ(x)Φp(u
′(x)) is

continuous in [a, b]\{x1, . . . , xm} and absolutely continuous. So u is a solution of

the differential inclusion (3.1). We need to show that the boundary and impulsive

conditions hold.

Integration of the equality

(ρ(x)Φp(u
′(x)))′v(x)

=

(∫ x

a

(ρ(s)Φp(u
′(s)))′ dsv(x)

)′
−
∫ x

a

(ρ(s)Φp(u
′(s)))′ dsv′(x)

from a to b gives∫ b

a

(ρ(x)Φp(u
′(x)))′v(x) dx(3.4)

=

∫ b

a

[(∫ x

a

(ρ(s)Φp(u
′(s)))′ dsv(x)

)′
−
∫ x

a

(ρ(s)Φp(u
′(s)))′ dsv′(x)

]
dx

=

∫ b

a

(ρ(x)Φp(u
′(x)))′ dxv(b)

−
∫ b

a

[
ρ(x)Φp(u

′(x))− ρ(a)Φp(u
′(a))

−
∑

a≤xi<x

∆(ρ(xi)Φp(u
′(xi)))

]
v′(x) dx

=

[
ρ(b)Φp(u

′(b))− ρ(a)Φp(u
′(a))−

l∑
i=1

∆(ρ(xi)Φp(u
′(xi)))

]
v(b)

−
∫ b

a

ρ(x)Φp(u
′(x))v′(x)dx+ ρ(a)Φp(u

′(a))[v(b)− v(a)]

+

l∑
j=0

∫ xj+1

xj

∑
a≤xi<x

∆(ρ(xi)Φp(u
′(xi)))v

′(x) dx

= ρ(b)Φp(u
′(b))v(b)− ρ(a)Φp(u

′(a))v(a)

−
l∑
i=1

∆(ρ(xi)Φp(u
′(xi)))v(b)−

∫ b

a

ρ(x)Φp(u
′(x))v′(x) dx

+

l∑
i=1

∆(ρ(xi)Φp(u
′(xi)))v(b)−

l∑
i=1

∆(ρ(xi)Φp(u
′(xi)))v(xi)
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= ρ(b)Φp(u
′(b))v(b)− ρ(a)Φp(u

′(a))v(a)

−
l∑
i=1

∆(ρ(xi)Φp(u
′(xi))v(xi))−

∫ b

a

ρ(x)Φp(u
′(x))v′(x) dx.

Substituting (3.4) into (3.2), we have∫ b

a

[−(ρ(x)Φp(u
′(x)))′ + s(x)Φp(u(x))− u∗(x)]v(x) dx

+ ρ(b)

[
Φp(u

′(b)) + Φp

(
σu(b)

γ

)]
v(b) + ρ(a)

[
− Φp(u

′(a)) + Φp

(
βu(a)

α

)]
v(a)

−
l∑
i=1

[∆(ρ(xi)Φp(u
′(xi))) + Ii(u(xi))]v(xi) = 0.

Since u satisfies (3.3), for all v ∈ X, we have

(3.5) ρ(b)

[
Φp(u

′(b)) + Φp

(
σu(b)

γ

)]
v(b)

+ ρ(a)

[
− Φp(u

′(a)) + Φp

(
βu(a)

α

)]
v(a)

−
l∑
i=1

[∆(ρ(xi)Φp(u
′(xi))) + Ii(u(xi))]v(xi) = 0.

We shall show that u satisfies the impulsive conditions in (3.1). If this is not

the case, without loss of generality, we may assume that there exists i ∈ {1, . . . , l}
such that

(3.6) ∆(ρ(xi)Φp(u
′(xi))) + Ii(u(xi)) 6= 0.

Let v(x) =
l+1∏

j=0, j 6=i
(x− xj). Substituting v(x) into (3.5), we have

ρ(b)

[
Φp(u

′(b)) + Φp

(
σu(b)

γ

)]
v(b)(3.7)

−
l∑

k=1

[∆(ρ(xk)Φp(u
′(xk))) + Ik(u(xk))]v(xk)

+ ρ(a)

[
− Φp(u

′(a)) + Φp

(
βu(a)

α

)]
v(a)

= ρ(b)

[
Φp(u

′(b)) + Φp

(
σu(b)

γ

)] l+1∏
j=0, j 6=i

(xl+1 − xj)

+ ρ(a)

[
− Φp(u

′(a)) + Φp

(
βu(a)

α

)] l+1∏
j=0, j 6=i

(x0 − xj)
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−
l∑

k=1

[∆(ρ(xk)Φp(u
′(xk))) + Ik(u(xk))]

l+1∏
j=0, j 6=i

(xk − xj)

= − [∆(ρ(xi)Φp(u
′(xi))) + Ii(u(xi))]

l+1∏
j=0, j 6=i

(xi − xj) 6= 0,

which contradicts (3.5). Thus, x satisfies the impulsive conditions in (3.1). Si-

milarly, u satisfies the boundary conditions. Therefore, u is a solution of prob-

lem (3.1). �

Lemma 3.6. Let R(u) = ‖u′‖pLp for u ∈ X. Then R(u) is weakly lower

semi-continuous.

Proof. First we show that ‖u′n‖
p
Lp is lower semi-continuous. Let un ∈ X

be such that un → u as n→∞. Hence,

(3.8) ‖u′n − u′‖
p
Lp → 0

as n→∞. Recall that

(3.9) ‖x+ y‖Lp ≤ ‖x‖Lp + ‖y‖Lp for any x, y ∈ Lp[0, T ].

On one hand, by (3.8)–(3.9), we have

(3.10) ‖u′n‖
p
Lp − ‖u

′‖pLp ≤ (‖u′n − u′‖Lp + ‖u′‖Lp)p − ‖u′‖pLp → 0

as n→∞. On the other hand, we have

(3.11) ‖u′n‖
p
Lp − ‖u

′‖pLp =

∥∥∥∥u′n + u′

2
+
u′n − u′

2

∥∥∥∥p
Lp
−
∥∥∥∥u′n + u′

2
+
u′ − u′n

2

∥∥∥∥p
Lp

≥
(∥∥∥∥u′n + u′

2

∥∥∥∥
Lp
−
∥∥∥∥u′n − u′2

∥∥∥∥
Lp

)p
−
(∥∥∥∥u′n + u′

2

∥∥∥∥
Lp

+

∥∥∥∥u′ − u′n2

∥∥∥∥
Lp

)p
→ 0

as n→∞. From (3.10) and (3.11), it follows that lim
n→∞

‖u′n‖
p
Lp = ‖u′‖pLp and so

R(u) is lower semi-continuous. Also, since R(u) is convex, R(u) is weakly lower

semi-continuous (see [22, Proposition 38.7]). �

Let

(3.12) N (u) =
1

p
‖u‖pX−

l∑
i=1

∫ u(xi)

0

Ii(s) ds+
ρ(b)σp−1

pγp−1
|u(b)|p+

ρ(a)βp−1

pαp−1
|u(a)|p.

Then,

〈N ′(u), v〉 =

∫ b

a

ρ(x)Φp(u
′(x))v′(x) + s(x)Φp(u(x))v(x) dx

−
l∑
i=1

Ii(u(xi))v(xi) + ρ(b)Φp

(
σu(b)

γ

)
v(b) + ρ(a)Φp

(
βu(a)

α

)
v(a)

holds for all v ∈ X.
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Lemma 3.7. N ′ : X → X∗ is of type (S)+.

Proof. Let un ⇀ u and lim sup
n
〈N ′(un), un − u〉 ≤ 0. In view of Defini-

tion 2.5, we need to show that un → u. Assume, to the contrary, that there exist

ε > 0 and a subsequence (unk) such that

(3.13) ‖unk − u‖X ≥ ε.

Since un ⇀ u, we have ‖un‖X ≤ M1, ‖u′n‖
p
Lp ≤ M2, Mi > 0, i = 1, 2, un → u

in C[a, b], and ‖u′nk‖
p
Lp has a convergent subsequence, which without loss of

generality, we again denote by (u′nk), i.e.

(3.14) ‖u′nk‖
p
Lp → c1.

Since lim sup
n
〈N ′(un), un − u〉 ≤ 0, we have

lim sup
n
〈N ′(un), un − u〉

= lim sup
n

[ ∫ b

a

ρ(x)Φp(u
′
n(x))(u′n(x)− u′(x)) + s(x)Φp(un(x))(un(x)− u(x)) dx

+

l∑
i=1

Ii(un(xi))(un(xi)− u(xi))

+ ρ(b)Φp

(
σun(b)

γ

)
[un(b)− u(b)] + ρ(a)Φp

(
βun(a)

α

)
[un(a)− u(a)]

]
≤ 0.

Since un → u in C[a, b], it follows from the above inequality that

(3.15) lim sup
n

∫ b

a

ρ(x)Φp(u
′
n(x))(u′n(x)− u′(x)) dx ≤ 0.

From (3.14)–(3.15) and the convexity of |u|p, we have

(3.16)

∫ b

a

|u′(x)|p dx ≥
∫ b

a

|u′nk(x)|p dx+

∫ b

a

Φp(u
′
nk

(x))(u′(x)− u′nk(x)) dx

≥ ‖u′nk‖
p
Lp → c1.

By Lemma 3.6, we have

(3.17) ‖u′‖pLp ≤ lim inf
nk

‖u′nk‖
p
Lp = c1,

so from (3.16)–(3.17),

(3.18) ‖u′‖pLp = c1.

From Lemma 3.6, it follows that

(3.19) c1 = ‖u′‖pLp ≤ lim inf
nk

∥∥∥∥u′ + u′nk
2

∥∥∥∥p
Lp
.
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From [8, Theorem 2], for any x, y ∈ Lp[0, T ],

(3.20)

∥∥∥∥x+ y

2

∥∥∥∥p
Lp

+

∥∥∥∥x− y2

∥∥∥∥p
Lp
≤ 1

2
(‖x‖pLp + ‖y‖pLp), p ≥ 2,

and

(3.21)

∥∥∥∥x+ y

2

∥∥∥∥q
Lp

+

∥∥∥∥x− y2

∥∥∥∥q
Lp
≤
[

1

2
(‖x‖pLp + ‖y‖pLp)

]q−1
, 1 < p < 2.

By (3.13), (3.14), (3.18) and (3.20), for p ≥ 2 we have

(3.22) lim sup
nk→∞

∥∥∥∥u′ + u′nk
2

∥∥∥∥p
Lp

≤ lim sup
nk→∞

[
1

2
(‖u′‖pLp + ‖u′nk‖

p
Lp)−

∥∥∥∥u′ − u′nk2

∥∥∥∥p
Lp

]
≤ c1 − ε1,

for some ε1 > 0, which contradicts (3.19) and proves un → u in X.

Now by (3.13), (3.14), (3.18) and (3.21), for 1 < p < 2 we have

(3.23) lim sup
nk→∞

∥∥∥∥u′ + u′nk
2

∥∥∥∥p
Lp

≤ lim sup
nk→∞

{[
1

2
(‖u′‖pLp + ‖u′nk‖

p
Lp)

]q−1
−
∥∥∥∥u′ − u′nk2

∥∥∥∥q
Lp

}p/q
≤ (cq−11 − ε2)p/q < c1

for some ε2 > 0. Again, this contradicts (3.19) and so un → u in X. Therefore,

N ′ is of type (S)+. �

We introduce, for almost every x ∈ [a, b] and all s ∈ R, the Aumann-type

set-valued integral∫ s

0

H(x, t) dt =

{∫ s

0

h(x, t) dt

∣∣∣∣ h : [0, T ]×R→ R

is a measurable selection of H

}
and set

H(u) =

∫ b

a

min

∫ u

0

H(x, s) ds dx for all u ∈ Lγ [a, b].

Lemma 3.8 ([12, Lemma 7]). Assume that (H1)–(H3) hold. Then the func-

tional H : Lγ [a, b] → R, γ > 1, is well defined and Lipschitz on any bounded

subset of Lγ [a, b]. Moreover, for all u ∈ Lγ [a, b] and all u∗ ∈ ∂H(u), we have

u∗(x) ∈ H(x, u(x)) for almost every x ∈ [a, b].

We define an energy functional for the problem (3.1) by setting, for all u ∈ X,

ϕ(u) =
1

p
‖u‖pX−H(u)−

m∑
i=1

∫ u(xi)

0

Ii(s) ds+
ρ(b)σp−1

pγp−1
|u(b)|p+

ρ(a)βp−1

pαp−1
|u(a)|p.
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Lemma 3.9. The functional ϕ : X → R is l.L. Moreover, for each critical

point u ∈ X of ϕ, u is a weak solution of (3.1).

Proof. For any u, v in a bounded domain Ω of X, we shall show that ϕ is

Lipschitz in Ω. Let ϕ(u) = ϕ1(u) + ϕ2(u), where

ϕ1(u) =
1

p
‖u‖pX −

m∑
i=1

∫ u(xi)

0

Ii(s) ds+
ρ(b)σp−1

pγp−1
|u(b)|p +

ρ(a)βp−1

pαp−1
|u(a)|p,

ϕ2(u) = −H(u). Clearly ϕ1 ∈ C1(X). By Lemma 2.1, ϕ1 is l.L. on X. By

Lemma 3.8, ϕ2 is locally Lipschitz on Lp[a, b]. Moreover, X is compactly em-

bedded into Lp[a, b]. So ϕ2 is l.L. on X. Therefore, ϕ is l.L. on X.

Now we show that each critical point u of ϕ is a weak solution of (3.1). Let

u ∈ X be a critical point of ϕ. Then,

(3.24) 0 ∈ ∂ϕ = {u∗ ∈ X∗ : 〈u∗, v〉 ≤ ϕ0(u; v) for all v ∈ X}.

Set

〈A(u), v〉 =

∫ b

a

ρ(x)Φp(u
′(x))v′(x) + s(x)Φp(u(x))v(x) dx

−
m∑
i=1

Ii(u(xi))v(xi) + ρ(b)Φp

(
σu(b)

γ

)
v(b) + ρ(a)Φp

(
βu(a)

α

)
v(a)

for all u, v ∈ X. By (2.2), (2.5), (2.6), and (3.24), 0 ∈ A(u) − ∂H(u), i.e. there

exists u∗ ∈ ∂H(u) satisfying

(3.25) A(u) = u∗ in X∗.

We extend u∗ to an element of Lq[a, b]. Hence, we regard X as a closed subspace

of Lp[a, b].

First we observe that u∗, as a linear functional on X, is also continuous with

respect to the topology induced by the norm ‖ · ‖Lp . By Lemma 3.8, H admits

a Lipschitz constant L around u with respect to ‖·‖Lp . Then, by (2.4), we obtain

(3.26) 〈u∗, v〉 ≤ L‖v‖Lp for all v ∈ X.

Moreover, H0(u; · ) is a subadditive, positively homogeneous function on Lp[a, b]

and

(3.27) 〈u∗, v〉 ≤ H0(u; v)

for all v ∈ X. By the Hahn–Banach theorem, u∗ extends to a bounded linear

functional defined on Lp[a, b] satisfying (3.27) for all v ∈ Lp[a, b]. This implies

two facts. First, by Lemma 3.8, we have u∗(x) ∈ H(x, u(x)) for almost every

x ∈ [a, b]. This implies u∗(x) ∈ Lq[a, b] (see Remark 3.1).

Second, we may rewrite (3.25) as
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a

ρ(x)Φp(u
′(x))v′(x) + s(x)Φp(u(x))v(x)− u∗(x)v(x) dx

−
l∑
i=1

Ii(u(xi))v(xi) + ρ(b)Φp

(
σu(b)

γ

)
v(b) + ρ(a)Φp

(
βu(a)

α

)
v(a) = 0.

Thus, by Definition 3.3, u is a weak solution of (3.1). �

4. Proof of main results

Proof of Theorem 2.8. We shall apply Theorem 2.6 to prove Theorem 2.8.

The operator N is defined above in (3.12). We define F : X → R by

F(u) =

∫ b

a

min

∫ u(x)

0

F (s) ds dx

for every u ∈ X. Clearly, N is a sequentially weak l.s.c. functional. By

Lemma 3.7, N ′ is of type (S)+. By Lemma 3.8, F : X → R is Lipschitz on

bounded subsets of X.

To prove that the gradient ∂F : X → 2X
∗

is compact, choose a bounded

sequence (un) in X with u∗n ∈ ∂F(un) for all n ∈ N . Let L > 0 be a Lipschitz

constant for F , restricted to a bounded set containing the sequence (un); then

‖u∗n‖X∗ ≤ L for all n ∈ N . A subsequence of (u∗n), which we again denote by

(u∗n), weakly converges to some u∗ in X∗. We shall show that the convergence

is strong.

Assume, to the contrary, that there exists ε > 0 and a subsequence (unk) of

(un) such that ‖u∗nk − u
∗‖X∗ > ε for all k ∈ N . Then, for all k ∈ N , we can find

vk ∈ X with ‖vk‖X < 1 and

(4.1) 〈u∗nk − u
∗, vk〉 > ε.

Passing if necessary to a subsequence, we can assume that vk ⇀ v in X, while

vk → v in L1[a, b] and Lp[a, b]. From (F3) and the Hölder’s inequality,

〈u∗nk − u
∗, vk〉 = 〈u∗nk , vk − v〉+ 〈u∗nk − u

∗, v〉+ 〈u∗, v − vk〉

≤ L‖vk − v‖Lp + 〈u∗nk − u
∗, v〉+ 〈u∗, v − vk〉 → 0

as k →∞, which contradicts (4.1).

Next, we verify that condition (2.7) in Theorem 2.6 holds. By (I1), for all

u ∈ X,

(4.2)

∫ u(xi)

0

Ii(s) ds ≤ 0, i = 1, . . . , l,
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which together with (F5), (I1), and Lemma 3.2 implies

N (u)− λF(u)

≥
‖u‖pX
p
− λ

∫ b

a

η(1 + |u(x)|l) dx+
ρ(b)σp−1

pγp−1
|u(b)|p +

ρ(a)βp−1

pαp−1
|u(a)|p

≥
‖u‖pX
p
− λc3(1 + ‖u‖lX)

for some c3 > 0. Since 1 < l < p, lim
‖u‖X→+∞

N (u)− λF(u) = +∞.

We shall show that condition (2.8) in Theorem 2.6 holds by using Lemma 2.7.

Set ǔ(x) = 0 and û(x) = k > 0. Clearly, ǔ, û ∈ X and (2.9) in Lemma 2.7 holds.

Now

N (û) =
k

p

∫ b

a

s(x) dx−
l∑
i=1

∫ k

0

Ii(s) ds+
ρ(b)σp−1

pγp−1
kp +

ρ(a)βp−1

pαp−1
kp(4.3)

>
k

p

∫ b

a

s(x) dx+
ρ(b)σp−1

pγp−1
kp +

ρ(a)βp−1

pαp−1
kp.

From (F4), (2.10) in Lemma 2.7 holds.

For all u ∈ X with N (u) < τ , we have

1

p
‖u‖pX −

l∑
i=1

∫ u(xi)

0

Ii(s) ds+
ρ(b)σp−1

pγp−1
|u(b)|p +

ρ(a)βp−1

pαp−1
|u(a)|p < τ,

which together with (I1), gives ‖u‖X < (τp)1/p. So

{u ∈ X : N (u) < τ} ⊂ {u ∈ X : ‖u‖C0 < γ(τp)1/p}.

Thus,

sup
N (u)<τ

F(u) = sup
N (u)<τ

∫ b

a

min

∫ u(x)

0

F (s) ds dx(4.4)

≤ sup
|u|<γ(τp)1/p

∫ b

a

min

∫ u(x)

0

F (s) ds dx

≤ sup
|u|<γ(τp)1/p

(b− a) min

∫ u

0

F (s) ds.

Therefore,

τF(û)

N (û)
=

τ

∫ b

a

min

∫ k

0

F (s) ds dx

k

p

∫ b

a

s(x) dx−
l∑
i=1

∫ k

0

Ii(s) ds+
ρ(b)σp−1

pγp−1
kp +

ρ(a)βp−1

pαp−1
kp

(4.5)
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=

τ(b− a) min

∫ k

0

F (s) ds

k

p

∫ b

a

s(x) dx−
l∑
i=1

∫ k

0

Ii(s) ds+
ρ(b)σp−1

pγp−1
kp +

ρ(a)βp−1

pαp−1
kp

.

From (F4), we have

(4.6)

τ(b− a) min

∫ k

0

F (s) ds

k

p

∫ b

a

s(x) dx−
l∑
i=1

∫ k

0

Ii(s) ds+
ρ(b)σp−1

pγp−1
kp +

ρ(a)βp−1

pαp−1
kp

> sup
|u|<γ(τp)1/p

(b− a) min

∫ u

0

F (s) ds,

so by (4.4)–(4.6), we see that (2.11) holds. Then, we have that (2.8) holds for

some ρ ∈ R.

Let [α, β], 0 < α < β, and r > 0 be as in Theorem 2.6. Choose λ ∈ [α, β]

and a multifunction G satisfying (G1)–(G2). Set

G =

∫ b

a

min

∫ u

0

G(s) ds

for all u ∈ X. By Lemma 3.8 and an argument analogous to that used for F ,

it follows that the functional G : X → R is l.L. and its gradient ∂G is compact.

Then, there is δ > 0 such that, for all µ ∈ [0, δ] the functional

ϕλ,µ = N − λF − µG

admits at least three critical points u0, u1, u2 ∈ X with ‖ui‖X < r, i = 0, 1, 2.

For all λ > 0 and µ ≥ 0, the multifunction H defined by setting H(x, s) =

λF (s) + µG(x, s) for all (x, s) ∈ [a, b]×R satisfies (H1) and (H2). Therefore, by

Lemmas 3.5 and 3.9, u0, u1, u2 are three solutions of problem (1.1). �

We conclude this paper with an example.

Example 4.1. For all s ∈ R, set I1(s) = −s and

F (s) =


{0} if |s| < 22/3,

[0, 1] if |s| = 22/3,

{(s− 22/3 + 1)1.5} if s > 22/3,

{|s+ 22/3 + 1|1.5} if s < −22/3.

Consider the impulsive differential inclusion

(4.7)


−(Φ3(u′(x)))′ + Φ3(u(x)) ∈ λF (u(x)) + µG(x, u(x)), x ∈ [0, 1],

−∆Φ3(u′(x1)) = I1(u(x1)), x1 = 1/2,

u′(0)− u(0) = 0, u′(1) + u(1) = 0.
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For any multifunction G satisfying (G1)–(G3), any function I1 satisfying (I1),

(4.7) admits at least three solutions (uniformly bounded) for λ and µ lying in

appropriate intervals.

In (1.1), we have p = 3, ρ(x) = 1, s(x) = 1, a = 0, b = 1, and α = β = γ =

σ = 1. Clearly, assumptions (F1)–(F3), (F5), and (I1) hold. To show (F4) holds,

let k = 2 and τ = 1/3; then

k

p

∫ b

a

s(x) dx+
ρ(b)σp−1

pγp−1
kp +

ρ(a)βp−1

pαp−1
kp =

4

3
> τ =

1

3
.

Also,

τ min

∫ k

0

F (s) ds

k

p

∫ b

a

s(x) dx−
l∑
i=1

∫ k

0

I1(s) ds+
ρ(b)σp−1

pγp−1
kp +

ρ(a)βp−1

pαp−1
kp

=
1

10
min

∫ 1

0

F (s) ds > 0

and

sup
|u|<γ(τp)1/p

min

∫ u

0

F (s) ds = sup
|u|<22/3

min

∫ u

0

F (s) ds = 0,

so (F4) is satisfied. By Theorem 2.8, (4.7) has at least three solutions.
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