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A PREDATOR-PREY MODEL OF HOLLING-TYPE II

WITH STATE DEPENDENT IMPULSIVE EFFECTS

Changming Ding — Zhongxin Zhang

Abstract. We investigate a predator-prey model with state dependent

impulsive effects, which is based on a modified version of the Leslie-Gower
scheme and on the Holling-type II scheme. Using topological methods, we

present some sufficient conditions to guarantee the existence and asymp-

totical stability of semi-trivial periodic solutions and positive periodic so-
lutions, respectively.

1. Introduction

The theory of population dynamic has become an important area of investi-

gation, see [14], [13], for instance. Recently, the systems with state dependent

impulsive effects are studied extensively. For example, the existence and asymp-

totical stability of solutions are established in [7], [11].

In [2], the authors introduce a predator-prey system with two-species food

chain, that model describes a prey population which serves as food for a predator.

It is written as the following two-dimensional system of differential equations:

(1.1)


dx(t)

dt
= x(t)

[
r1 − b1x(t)− a1y(t)

x(t) + k1

]
,

dy(t)

dt
= y(t)

[
r2 −

a2y(t)

x(t) + k2

]
,
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where x(t) and y(t) represent the population densities at time t; b1, ri, ai and ki
(i = 1, 2) are model parameters assuming only positive values. It is known that

system (1.1) has an unstable node (0, 0), two saddle points (r1/b1, 0), (0, r2k2/a2)

and a locally stable focus (x∗, y∗) under the following hypothesis:

(H) r1 ≤ r2, k1 ≥ k2 and r2k2/a2 < r1k1/a1, where

x∗ =
1

2a2b1
{−(a1r2 − a2r1 + a2b1k1)

+ [(a1r2 − a2r1 + a2b1k1)2 − 4a2b1(a1r2k2 − a2r1k1)]1/2},

y∗ =
r2(x∗ + k2)

a2
.

Later, in [11] Nie et al. considered the dynamical behavior of system (1.1) with

state dependent impulsive effects, which is modeled by the following equations:

(1.2)



dx(t)

dt
= x(t)

[
r1 − b1x(t)− a1y(t)

x(t) + k1

]
dy(t)

dt
= y(t)

[
r2 −

a2y(t)

x(t) + k2

]
 x 6= h,

4x(t) = x(t+)− x(t) = −px(t)

4y(t) = y(t+)− y(t) = qy(t) + α

}
x = h,

where h ∈ (0,∞), α ∈ [0,∞), p ∈ (0, 1) and q ∈ (−1,∞). When the amount

x(t) of prey reaches the threshold h at time th, a control measure works, then

the amounts of prey x(t) and predator y(t) abruptly turn to (1 − p)x(th) and

(1 + q)y(th) + α, respectively. In [11], the authors present several sufficient

conditions for the existence and stability of a semi-trivial periodic solution and

a positive periodic solution. However, we think that their main results and

mathematical proofs are not correct. For example, Theorem 3.4 of [11] states

that if h > x∗, then there are α > 0 and q > −1 such that system (1.2) has an

orbitally asymptotically stable positive order-1 or order-2 periodic solution. But,

if we let h > r1/b1 > x∗, then system (1.2) has no impulsive positive periodic

solutions, in fact, by the phase portrait of system (1.1) in the first quadrant (see

Figure 1), each positive trajectory with initial condition ((1 − p)h, y0) (y0 ≥ 0)

does not meet the impulsive set Σh = {(x, y) | x = h > r1/b1 and y ≥ 0}, or

see Theorem 4 of [2]. Thus, system (1.2) has no impulsive periodic solutions.

Indeed, even if h ∈ (x∗, r1/b1), Theorem 3.4 of [11] still may not be true, see

Section 4. A similar problem occurs in Theorem 3.1 of [11], where the authors

assert that if α = 0 and

(1.3) −1 < q <

[
r1 − (1− p)b1h

(1− p)(r1 − b1h)

]−r2/r1
− 1

hold, then system (1.2) has a stable semi-trivial periodic solution. Also, if we let

h > r1/b1 and choose a positive real number p close to 0 such that r1−(1−p)b1h <
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0 holds, then there exists a q such that (1.3) is true. In this case, system (1.2) with

α = 0 has no semi-trivial periodic trajectories. In fact, since each trajectory of

system (1.1) in the positive x-axis tends to the saddle point (r1/b1, 0), the positive

trajectory starting from the point ((1− p)h, 0) does not reach the impulsive set

Σh, so the system has no semi-trivial periodic solutions. Hence, Theorem 3.1

of [11] is also not true. Next, in Theorem 3.3 of [11], the uniqueness of a positive

periodic solution can not be obtained from its conditions. Finally, in the Section 4

of [11], the authors present examples for the application of their theorems. In

those examples, r1 > r2 holds, it is contradictory to their assumption (H), so

their conclusions are unbelievable.

Our goal in this paper is to present suitable conditions to guarantee the

existence and asymptotical stability of semi-trivial periodic solutions and positive

periodic solutions, respectively. An order is introduced on an arc in the phase

space, which is convenient in the study of a Poincaré map associated with our

system. Thus, the existence and stability of fixed points of the Poincaré map lead

to our results for the periodic solutions of system (1.2). The paper is organized

as follows. In the next section, we present some basic definitions and notations.

In Section 3, we state and prove new criteria for the existence and asymptotical

stability of a semi-trivial periodic solution of system (1.2). The main results

of this paper are contained in Section 4, several sufficient conditions for the

existence and asymptotical stability of positive periodic solutions of system (1.2)

are established. Our conditions are dependent on the model parameters and easy

to test. Comparatively, in Theorem 3.3 of [11] is assumed a condition related to

the unknown periodic trajectory to get its asymptotical stability. Since one can

not locate the site of an unknown periodic trajectory and also does not know its

explicit expression, the conclusion of Theorem 3.3 in [11, (3.7)] is hard to use in

the applications for concrete models.

2. Preliminaries

Clearly, the first quadrant Ω = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0} is an invariant

region of system (1.1). Hence, for ecological practice, our discussion is limited in

the region Ω. Throughout this paper, we assume that the hypothesis (H) holds.

Let `1 be the vertical isocline y = (r1− b1x)(x+ k1)/a1 and `2 be the horizontal

isoline y = r2(x + k2)/a2, respectively. Thus, we obtain the phase portrait of

system (1.1) in Figure 1.

It is easy to see that solutions of system (1.1) define a dynamical system

π in Ω, i.e. a continuous map π of Ω × R onto Ω satisfying π(P, 0) = P and

π(π(P, t), s) = π(P, t + s) for each P ∈ Ω, t, s ∈ R. For brevity, we write

P · t = π(P, t), and also let S · J = {P · t | P ∈ S, t ∈ J} for S ⊂ Ω and J ⊂ R.

If either S or J is a singleton, i.e. S = {P} or J = {t}, then we simply write
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Figure 1. The phase portrait of system (1.1).

P · J and S · t for {P} · J and S · {t}, respectively. For each P ∈ Ω, the map

πP : R→ Ω defined by πP (t) = π(P, t) is clearly continuous, and we call πP the

motion through P . The set P · R is said to be the trajectory of P , and P · R+

(P ·R−) is said to be the positive (negative) trajectory of P . Replacing R by R+

in the definition of a dynamical system, we get the definition of a semi-dynamical

system. For the elementary properties of dynamical systems and semi-dynamical

systems, we refer to [4], [3].

Let Σh = {(x, y) ∈ R2 | x = h, y ≥ 0} and Σp = {(x, y) ∈ R2 | x =

(1 − p)h, y ≥ 0}, where Σh is the impulsive set of system (1.2). According to

(1.2), we define the impulsive map I : Σh → Σp by I(h, y) = ((1−p)h, (1+q)y+α)

for each (h, y) ∈ Σh. Sometimes, for P = (h, y) ∈ Σh, we denote I(P ) by P+

and say that P jumps to P+ ∈ Σp. For each P ∈ Ω, by Σh(P ) we mean the set

(P · R+ ∩ Σh) \ {P}. Obviously, we can define a map φ : Ω→ R+ ∪ {+∞} (the

space of extended nonnegative reals) by

φ(P ) =

s if P · s ∈ Σh and P · t 6∈ Σh for t ∈ (0, s),

+∞ if Σh(P ) = ∅.

For the continuity of φ, we refer to an important paper of Ciesielski [5]. Let

P ∈ Ω, the motion of system (1.2) through P is an Ω-valued function π̃P defined

on R+. From the initial point P ∈ Ω, the trajectory goes ahead under the role of

system (1.1), and when it reaches the impulsive set Σh at a point P1 = P ·φ(P ),

it jumps to P+
1 . Then, it goes again under the role of system (1.1), and also if it

meets Σh at a point P2 = P+
1 · φ(P+

1 ), it jumps to P+
2 . This process continues

inductively, and π̃P is well defined on R+. Note that we define π̃P (φ(P )) = P+
1 ,

π̃P (φ(P ) + φ(P+
1 )) = P+

2 , and so on (see [9], [6]). Thus, π̃P is right continuous.
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Obviously, this gives rise to either a finite or infinite number of jumps at points

{Pn} for the motion π̃P . Having each motion π̃P for every point P in Ω, we let

π̃(P, t) = π̃P (t) for P ∈ Ω and t ∈ R+, and then we get a discontinuous system

defined by the solutions of system (1.2) with the following properties:

(i) π̃(P, 0) = P for P ∈ Ω,

(ii) π̃(π̃(P, t), s) = π̃(P, t+ s) for P ∈ Ω and t, s ∈ R+.

We call π̃(P, t), with π̃ as defined above, an impulsive semi-dynamical system

associated with system (1.2). Also, we denote P ∗ t = π̃(P, t) for brevity. Then,

(ii) reads (P ∗ t) ∗ s = P ∗ (t + s). The set P ∗ R+ is said to be the trajectory

of P . Note that for a P ∈ Ω, P ·φ(P ) = P1 lies in Σh, but P ∗φ(P ) = P+
1 lies in

Σp. So, our system π̃ is right continuous for each P ∈ Ω, but not left continuous.

For the theory of impulsive semi-dynamical systems, we refer to [9], [10], [1], [8].

Throughout the paper, for a point P in Ω, let B(P, δ) = {Q ∈ Ω | d(P,Q) <

δ} be the open disk in Ω with center P and radius δ > 0, where d is the ordinary

metric on R2. In addition, for S ⊂ Ω, the r-neighborhood of S in Ω is denoted

by N(S, r) = {P ∈ Ω | d(P, S) < r} for r > 0, where d(P, S) = inf{d(P,Q) | Q ∈
S}. Here, with no confusion, we also use d for the distance between a point and

a set. Now, we recall several definitions that will be used in the sequel.

Definition 2.1 ([12]). Let P0 ∈ Ω \ Σh. The trajectory P0 ∗ R+ of system

(1.2) is said to be orbitally stable if, given an ε > 0, there exists a δ = δ(ε) > 0

such that for any P ∈ B(P0, δ), then we have P ∗ R+ ⊂ N(P0 ∗ R+, ε).

Definition 2.2 ([12]). Let P0 ∈ Ω \ Σh. The trajectory P0 ∗ R+ of system

(1.2) is said to be asymptotically orbitally stable if it is orbitally stable and there

exists an η > 0 such that if P ∈ B(P0, η), then limt→+∞ d(P ∗ t, P0 ∗ R+) = 0.

Definition 2.3 ([9]). A trajectory P0 ∗ R+ for P0 ∈ Ω is periodic if there

exists a t > 0 such that P0 = P0 ∗ t, and π̃P0 is called a periodic motion with

period t. In particular, if a periodic trajectory P0 ∗ R+ lies in the boundary ∂Ω

of Ω, i.e. P0 ∗R+ lies in the positive x-axis or y-axis, then we call it a semi-trivial

periodic trajectory.

For a periodic trajectory, the concept of order has been defined in [9]. How-

ever, in this paper we do not deal with the order of periodic trajectories in detail,

so we just call it a periodic trajectory with period t. Generally, an impulsive pe-

riodic trajectory is of order n if it has n discontinuous points. Here, we recall the

notion of order given in [11], which is a special case of the corresponding defini-

tion in [9]. Let P0 = ((1−p)h, y0) ∈ Σp. Its trajectory P0∗R+ first reaches Σh at

a point Q0, next jumps to P1 = Q+
0 = ((1− p)h, y1) ∈ Σp. Again, the trajectory

goes ahead and meets Σh at Q1, then jumps to P2 = Q+
1 = ((1− p)h, y2) ∈ Σp.

This process continues inductively, and we obtain a sequence {((1 − p)h, yn) |
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n = 0, 1, . . .}. If there exists a positive integer k such that k is the smallest

integer for y0 = yk, then the trajectory P0 ∗ R+ is said to be order-k periodic.

3. Semi-trivial periodic trajectories

In this section, we consider the existence and asymptotical stability of semi-

trivial periodic trajectories. By definition, the existence of a semi-trivial periodic

trajectory for system (1.2) implies α = 0, otherwise, at the point (h, 0) the

trajectory jumps to a point in the interior of Ω. Thus, in this section we always

assume α = 0.

Clearly, in the positive x-axis, we have the sub-system

(3.1)


dx(t)

dt
= x(t)[r1 − b1x(t)], x 6= h,

4x = x(t+)− x(t) = −px(t), x = h.

Observe that there exists an equilibrium in the positive x-axis. Without the

impulsive effect, each trajectory in the positive x-axis tends to the equilibrium

(r1/b1, 0). Thus, if h ≥ r1/b1, the trajectory starting from ((1 − p)h, 0) does

not reach the point (h, 0), and it follows that there exist no semi-trivial periodic

trajectories.

Theorem 3.1. If α = 0, 0 < h < r1
b1

and

(3.2) −1 < q <

[
r1 − (1− p)b1h

(1− p)(r1 − b1h)

]−r2/r1
− 1 , λ− 1,

then system (1.2) has an asymptotically orbitally stable semi-trivial periodic tra-

jectory.

Proof. Let A = ((1− p)h, 0). Obviously, π̃A(R+) = A ∗ R+ = [(1− p)h, h)

is a semi-trivial periodic trajectory. Choose a point Q = ((1 − p)h, n0) ∈ Σp

close to A, where n0 > 0 is sufficiently small. Assume that πQ intersects Σh at

Q1 = Q ·φ(Q) = (h, n). By the continuous dependence on the initial conditions,

n = n(n0) is also small. Thus, by a simple estimate of the integral

(3.3)

∫ h

(1−p)h

r2 − a2y/(x+ k2)

x(r1 − b1x− a1y/(x+ k1))
dx,

where y = y(x, n0) is small and {(x, y(x)) | (1 − p)h ≤ x ≤ h} is the trajectory

segment of system (1.1) through Q, we have

(3.4) n = n0

[
r1 − (1− p)b1h

(1− p)(r1 − b1h)

]r2/r1
+ o(n0) = λ−1n0 + o(n0).

This result also can be obtained immediately by formula (2.13) in [15, p. 29].

Now, let Q+
1 = ((1 − p)h, n1), where n1 = (1 + q)n. Hence, if 1 + q < λ,

it follows that n1 < n0 holds for any small n0, i.e. Q+
1 lies below Q in Σp.

Then, the trajectory π̃Q goes ahead and meets Σh at a point Q2 below Q1.
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Again, Q2 jumps to a point Q+
2 in Σp, where Q+

2 lies below Q+
1 . By induction,

the sequence {Q+
k } goes down in Σp monotonously as k → +∞. If Q+

k tends

to A as k → +∞, by the continuous dependence on the initial conditions and

Definition 2.2, it is easy to see that A∗R+ is asymptotically orbitally stable, and

the proof is finished. Otherwise, if Q+
k → P ∈ Σp, it follows from [9, Theorem 2]

that π̃P is a periodic trajectory. However, by the argument above, we conclude

that P ∗φ(P ) lies below P in Σp, which means that π̃P is not a periodic trajectory.

This is a contradiction, and thus we complete the proof. �

4. Positive periodic trajectories

In this section, we consider the existence and asymptotical stability of pos-

itive impulsive periodic trajectories of system (1.2). Let Wu(0, r2k2/a2) be the

unstable manifold of the saddle point (0, r2k2/a2) in Ω. Note thatWu(0, r2k2/a2)

plays an important role in the qualitative analysis of system (1.1). Let E′ = (x, y)

be the first point of intersection of Wu(0, r2k2/a2) and `1, see Figure 1. Recall

that if h ≥ r1/b1, then system (1.2) has no impulsive periodic trajectories. So, in

the following, we deal with the cases 0 < h ≤ x∗, x∗ < h < x and x ≤ h < r1/b1,

respectively.

4.1. The case 0 < h ≤ x∗. Let A = ((1− p)h, 0). Let B = ((1− p)h, yb) be

the point of intersection of Σp and `1, where yb = [r1−(1−p)b1h][(1−p)h+k1]/a1.

The first point of intersection of the unstable manifold Wu(0, r2k2/a2) and Σp

is denoted by U = ((1 − p)h, yu), see Figure 2. Clearly, we have yb > yu > 0.

Let J be the segment AB = {((1 − p)h, y) ∈ Σp | 0 ≤ y ≤ yb}. It is easy to
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Figure 2. The case 0 < h ≤ x∗.

see that each trajectory of a point in J meets Σh. Let B1 = B · φ(B) = (h, yh)
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and H = (h, 0). Now, we define a Poincaré map F : J → J as follows. For each

P ∈ J , let the trajectory P ·R+ intersect Σh at the point P1 = P ·φ(P ) = (h, y1).

Then, if P+
1 = I(P1) ∈ J , we put F (P ) = P+

1 ; If P+
1 ∈ Σp \ J , by the phase

portrait of system (1.1), P+
1 ·R+ first intersects J at a point P ′1, i.e. P ′1 = P+

1 · t
for a t > 0 and P+

1 · (0, t)∩Σp = ∅, thus we define F (P ) = P ′1. By the continuity

of impulsive map I and the continuous dependence on the initial conditions, it

is easy to verify that F is a continuous map. Since J is homeomorphic to the

interval [0, 1] that has the fixed point property, it follows that there exists a fixed

point P0 ∈ J of F . Clearly, P0 ∗ R+ is an impulsive periodic trajectory. Hence,

we have the following result.

Theorem 4.1. If h ≤ x∗, then for any q > −1 and α > 0 system (1.2) has

a positive periodic trajectory.

In the following, we present sufficient conditions for an asymptotically stable

positive periodic trajectory. Let V = U ·φ(U) = (h, yv), then yh > yv > 0 holds.

Theorem 4.2. Let h ≤ x∗. If (1 + q)yv + α ≥ yb holds, then system (1.2)

has an orbitally stable periodic trajectory.

Proof. Observe that I(V ) (∈ ΣP ) lies above B, since (1 + q)yv + α ≥ yb.

Let J0 = UB be a sub-segment in J and F0 = F |J0 be the restriction of F

in J0. We define an order ’≺’ on J0 as follows. Let P = ((1 − p)h, y1) and

Q = ((1 − p)h, y2) be two different points in J0, then we define P ≺ Q if and

only if y1 < y2. Clearly, for any P and Q in J0, it follows from the phase portrait

of system (1.1) that if Q ≺ P , then F0(P ) ≺ F0(Q) holds, i.e. F0 is a reversal

map. Thus, it implies that there exists a unique fixed point P0 of F0 in J0.

Otherwise, if F0 has two different fixed points P1 and P2 in J0 with P1 ≺ P2,

then we have P2 = F0(P2) ≺ F0(P1) = P1, which is a contradiction. Note that

for any P ≺ Q in J0, F 2
0 (P ) ≺ F 2

0 (Q) holds, i.e. F 2
0 is strictly monotonous on

J0. Clearly, we have U ≺ F 2
0 (U), which also implies F 2

0 (U) ≺ F 4
0 (U). It follows

that U ≺ F 2
0 (U) ≺ F 4

0 (U) ≺ . . . ≺ B. Thus, there exists a Q0 ∈ J0 such that

F 2n
0 (U) → Q0 as n → +∞. It is easy to see that F 2

0 (Q0) = Q0, which means

that Q0 ∗R+ is an impulsive periodic trajectory. If Q0 6= P0, then Q0 ∗R+ is of

order 2. Now, if for any Q ∈ J0 with Q0 ≺ Q there exists a Q′ in the interval

(Q0, Q) , {P ∈ J0 | Q0 ≺ P ≺ Q} such that F 2
0 (Q′) ≺ Q′ or F 2

0 (Q′) = Q′ holds,

then we assert that Q0 ∗ R+ is orbitally stable. Actually, it means that Q0 is a

stable fixed point of F 2
0 , i.e. there is an arbitrary small interval J ′ = (Q′′, Q′)

containing Q0 such that F 2
0 (J ′) ⊂ J ′. Hence, by the continuous dependence on

the initial conditions and Definition 2.1, it is easy to conclude that Q0 ∗ R+ is

orbitally stable, which is the desired conclusion. Next, if Q′ ≺ F 2
0 (Q′) holds

for a Q′ in an interval (Q0, Q) ⊂ J0, then we fix such a point U1 with Q0 ≺
U1 ≺ F 2

0 (U1). Similarly, we obtain that U1 ≺ F 2
0 (U1) ≺ F 4

0 (U1) ≺ . . . ≺ B and
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F 2n
0 (U1)→ Q1 as n→ +∞. Thus, by a similar argument as above, either Q1∗R+

is orbitally stable or there exists a U2 satisfying Q1 ≺ U2 ≺ F 2
0 (U2). The process

continues inductively, we conclude that either there exists an orbitally stable

periodic trajectory or there exists a sequence {Ui} such that U1 ≺ U2 ≺ . . . ≺ B,

Ui ≺ F 2
0 (Ui) for each i ≥ 1 and Ui → B as i → +∞. For the latter case, since

Ui ≺ F 2
0 (Ui) ≺ B for each i ≥ 1, it leads to F 2

0 (B) = B, but it is impossible.

In fact, by the phase portrait of system (1.1), we have U ≺ F0(B) ≺ B, and it

implies F0(B) ≺ F 2
0 (B) ≺ B. So, it is a contradiction. The proof is complete.�

Theorem 4.3. Let h ≤ x∗. If (1 + q)yh + α ≤ yb, r1 + r2 ≤ 2b1(1− p)h and

(4.1)
(1 + q)(1− p)[r1 − b1(1− p)h]

(r1 − b1h− a1yh/(h+ k1))
< 1

hold, then system (1.2) has an asymptotically orbitally stable periodic trajectory,

which is a unique impulsive periodic trajectory.

Proof. Since (1 + q)yh + α ≤ yb holds, the segment HB1 is mapped into J

by I, i.e. I(HB1) ⊂ J . Hence, for P ∈ J , we have F (P ) = I(P ·φ(P )). It follows

that the polygon S = ABB1H is positively invariant under π̃, i.e. S ∗ t ⊂ S for

t ≥ 0. By Theorem 4.1, system (1.2) has an impulsive periodic trajectory P0∗R+

lying in S, where P0 ∈ J . Now, for any P1 = ((1− p)h, y1), P2 = ((1− p)h, y2) ∈
J , it is easy to see that trajectory segments P1 · [0, φ(P1)], P2 · [0, φ(P2)], and

Σp, Σh surround a region <, which lies in S. Let P ′1 = P1 · φ(P1) = (h, y′1) and

P ′2 = P2 · φ(P2) = (h, y′2), respectively. Without loss of generality, we suppose

y1 > y2, and it also implies y′1 > y′2. We apply Green’s Formula to <, and then

we have ∮
∂<
f1 dy − f2dx =

∫∫
<

(
∂f1
∂x

+
∂f2
∂y

)
dx dy,

where ∂< is the boundary of <, f1(x, y) = x[r1 − b1x − a1y/(x+ k1)] and

f2(x, y) = y[r2 − a2y/(x+ k2)]. Since r1 + r2 ≤ 2b1(1 − p)h holds, it is easy

to verify that

∂f1
∂x

+
∂f2
∂y
≤ 0 for any (x, y) ∈ <.

It follows that ∮
∂<
f1 dy − f2 dx ≤ 0.

Clearly, on each trajectory segment we have f1 dy − f2 dx = 0, thus it follows(∫
P1P2

+

∫
P ′

2P
′
1

)
f1 dy − f2 dx ≤ 0 or

∫ y2

y1

f1 dy ≤
∫ y′

2

y′
1

f1 dy.
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By a simple computation, we obtain

(4.2) (1− p)(y1 − y2)

[
r1 − b1(1− p)h− a1(y1 + y2)

2[(1− p)h+ k1]

]
≥ (y′1 − y′2)

[
r1 − b1h−

a1(y′1 + y′2)

2(h+ k1)

]
.

Since y′2 < y′1 ≤ yh, by (4.2) we have

(4.3) (1− p)(y1 − y2)[r1 − b1(1− p)h] ≥ (y′1 − y′2)

[
r1 − b1h−

a1yh
h+ k1

]
.

Thus, it follows from (4.1) that (1+q)(y′1−y′2) < y1−y2, i.e. d(F (P1), F (P2)) <

d(P1, P2). Hence, F is a contraction on J , and by the Banach Fixed Point

Theorem it has a unique fixed point P0, which is also asymptotically stable for F .

So, by the continuous dependence on the initial conditions and Definition 2.2, it

is easy to see that P0∗R+ is asymptotically orbitally stable for π̃. This completes

the proof. �

Remark 4.4. Note that yb is determined by model parameters, but yv and

yh are not. Fortunately, they can be determined by the unstable manifold of

saddle point (0, r2k2/a2) and the trajectory B ∗ R+, respectively. For concrete

systems, we may estimate them even by computers.

4.2. The case x∗ < h < x. Now, we consider two cases B ·R+∩Σh = ∅ and

B ·R+∩Σh 6= ∅, respectively. First, for the case B ·R+∩Σh 6= ∅, it is easy to see

that Theorems 4.2 and 4.3 work well. So, we omit to restating those two theorems

for this case. In the sequel, we focus on the case B ·R+∩Σh = ∅. Let W = (h, yw)

be the intersection point of Σh and `1, where yw = (r1−b1h)(h+k1)/a1. Then, by

the phase portrait of system (1.1), the negative trajectory W ·R− first intersects

Σp at a point Wp between U and B, next it meets Σp at a point Z above B, see

Figure 3.

Let Wp = ((1 − p)h, yp) and Z = ((1 − p)h, yz), where yz > yb > yp > yu.

First, assume (1 + q)yv + α > yz, then the restriction F1 = F |UWp
of F on the

segment UWp is a reversal map. Thus, after the similar reasoning as in the proof

of Theorem 4.2, we obtain the following result.

Theorem 4.5. Assume that x∗ < h < x and B ·R+∩Σh = ∅. If (1+q)yv +α

> yz holds, then system (1.2) has an orbitally stable periodic trajectory.

Secondly, if (1+q)yw +α ≤ yp, we consider the restriction F |AWp
of F on the

segment AWp. Also, using the similar reasoning as in the proof of Theorem 4.3,

we obtain the following conclusion.
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Figure 3. The case x∗ < h < x.

Theorem 4.6. Assume that x∗ < h < x and B ·R+ ∩Σh = ∅. If (1 + q)yw +

α ≤ yp, r1 + r2 ≤ 2b1(1− p)h and

(4.4)
(1 + q)(1− p)[r1 − b1(1− p)h]

(r1 − b1h− a1yw/(h+ k1))
< 1

hold, then system (1.2) has an asymptotically orbitally stable periodic trajectory,

which is a unique impulsive periodic trajectory.

4.3. The case x ≤ h < r1/b1. Let W = (h, yw) be the intersection point

of Σh and `1, where yw = [r1 − b1h](h + k1)/a1. Then, the negative trajectory

W · R− intersects Σp at a point Wp = ((1 − p)h, yp), see Figure 4. Clearly, if

α ≥ yp, then there exist no impulsive periodic trajectories. Indeed, we have

a stronger result as follows.

Theorem 4.7. Let x ≤ h < r1/b1. If q ≥ 0, system (1.2) has no impulsive

periodic trajectories. If q ∈ (−1, 0) and α > −qyp, system (1.2) has no impulsive

periodic trajectories.

Proof. Let A = ((1 − p)h, 0) and H = (h, 0). Denote µ = 1 + q > 0. We

consider the trajectory A ∗ R+. First, let A1 = I(H) = H+ = ((1 − p)h, y1),

then y1 = α. If A1 is below Wp in Σp, then let A′1 = A1 · φ(A1) = (h, y′1) ∈ Σh.

By the phase portrait of system (1.1), we have y′1 > y1. Next, let A2 = I(A′1) =

((1 − p)h, y2), then y2 = µy′1 + α > (µ + 1)α. Again, if A2 is below Wp in Σp,

then let A′2 = A2 · φ(A2) = (h, y′2) ∈ Σh. Similarly, we have y′2 > y2. Thus,

let A3 = I(A′2) = ((1 − p)h, y3), and then y3 > (µ2 + µ + 1)α. Inductively, we

obtain that either an An0
lies above Wp in Σp for some positive integer n0 or

there exists a sequence {An} lying below Wp in Σp, where An = ((1 − p)h, yn)

and yn > (µn + µn−1 + . . . + 1)α. For the latter case, if q ≥ 0, then (µn +
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Figure 4. The case x ≤ h < r1/b1.

µn−1 + . . .+ 1)α→ +∞ as n→ +∞, it implies that some An lies above Wp in

Σp; If q ∈ (−1, 0) and α > −qyp hold, then (µn + µn−1 + . . . + 1)α → −α/q as

n→ +∞ and it means yn > yp for some n, i.e. some An lies above Wp. Anyway,

we conclude that the trajectory A ∗R+ has at most a finite number of impulsive

points and A ∗ [t0,+∞) ∩ Σh = ∅ for some t0 > 0. Clearly, each trajectory with

an initial point in the segment AWp has a similar dynamical behavior, i.e. it

has at most finite number of impulsive points and finally does not meet with Σh.

This completes the proof. �

Finally, we assume that (1 + q)yw + α ≤ yp. Consider the restriction F |AWp

of F on the segment AWp. After the similar reasoning as in the proof of Theo-

rem 4.3 we obtain the following result.

Theorem 4.8. Assume that x ≤ h < r1/b1 and (1 + q)yw + α ≤ yp. If

r1 + r2 ≤ 2b1(1− p)h and

(4.5)
(1 + q)(1− p)[r1 − b1(1− p)h]

(r1 − b1h− a1yw/(h+ k1))
< 1

hold, then system (1.2) has an asymptotically orbitally stable periodic trajectory,

which is a unique impulsive periodic trajectory.
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