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A FURTHER GENERALIZATION

OF MIDPOINT CONVEXITY OF MULTIMAPS

TOWARDS COMMON FIXED POINT THEOREMS

AND APPLICATIONS

Irene Benedetti — Anna Martellotti

Abstract. We furtherly generalize midpoint convexity for multivalued
maps and derive Fixed Point Theorems and Common Fixed Point The-

orems without requiring strong compactness. As an application we obtain

some Best Approximation results, and minimax and variational inequali-
ties.

1. Introduction and preliminaries

Fixed point Theorems for multimaps without compactness have always been

object of mathematical investigation.

In particular in the literature one finds Fixed Point Theorems for maps,

multimaps and for families of multimaps in Banach spaces replacing norm com-

pactness with weak compactness (see, e.g. [3], [6], [10], [18]).

In the present paper we shall develop the investigation, started in [8], relative

to fixed points for multimaps defined on a weakly compact subset K of a Banach

space X, but with regularity assumptions only relative to the strong topology.

In this setting self multimaps may fail to have a fixed point, unless some further

conditions are assumed.
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In [17] Nikodem proposed a definition of convexity for multimaps. A multimap

F : K ( X is said to be convex if for any x, y ∈ K

(1.1) λF (x) + (1− λ)F (y) ⊆ F (λx+ (1− λ) y) .

Next in [8] the concept has been generalized in the case of single valued functions,

and then in [5] furtherly extended to the case of multimaps, introducing the

concept of strong and weak midpoint linearity. A multimap F : K ( X is said

to be strongly midpoint linear if for any r > 0 the set

Fr = {x ∈ K : x ∈ F (x) + rX1}

is convex, weakly midpoint linear if for any weak neighborhood of 0, V ∈ B the

set

FV = {x ∈ K : x ∈ F (x) + V }
is convex.

Again in [5] we proposed a weaker form of midpoint linearity, labelled as

piecewise midpoint linearity as follows: F is said to be piecewise strongly midpoint

linear if for any r > 0 there exists s(r) ∈]0, r] and a finite decomposition of

K, say Ds = {D1, . . . , Dn}, such that the sets Fs(r) ∩ Di are convex for any

i = 1, . . . , n, piecewise weakly midpoint linear provided for any U ∈ B there

exists V ∈ B, V ⊆ U and a finite decomposition of K, say DV = {D1, . . . , Dn},
such that the sets FV (U) ∩Di are convex for any i = 1, . . . , n.

Indeed, piecewise midpoint linearity in both senses ensures that the sets Fr
respectively FV are weakly closed, thus allowing the use of the Finite Intersection

Property (F.I.P.) in the weakly compact domain K, in order to achieve Fixed

Point Theorems.

In this paper we furtherly generalize the piecewise midpoint linearities pro-

posed in [5], by assuming a property that we named nicety; this assumption is

strictly more general than the weak upper semicontinuity, but it proves to be

sufficient to obtain the weak closure of the set of fixed points P (F ). Hence we

can prove a Fixed Point Theorem for a nice self multimap which is upper semi-

continuous when K is equipped with the strong topology (see Theorems 2.7 and

2.8 below).

The weak closure of the set P (F ) in a weakly compact domain immediately

suggested the investigation of common fixed points. We faced the problem in

two frameworks: common fixed points for a pair of multimaps and for a larger

family of multimaps. This is the object of Section 2. In particular we prove

the suitable versions of some Common Fixed Point Theorems appearing in the

literature. The result in [16] suggested a Common Fixed Point Theorem based

upon commuting families of multimaps, and its several generalizations, as for

instance in [7], [1], while two results without commutativity are inspired by

analogous settings in Balaj [3] and in Hu–Papageorgiou [13].
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The final part of the paper is devoted to applications: in Section 3.1 Com-

mon Fixed Point Theorems for a pair of multimaps are applied to the theory of

Best Approximations as found in the literature (compare to, e.g. [7], [21], [15]).

Finally Common Fixed Point Theorems for families of multimaps find their ap-

plications to minimax and variational inequalities of Park’s [19], [20] type in

Section 3.2.

In the whole paper (X, ‖·‖) is a Banach space, X∗ its dual space. Xw denotes

the space X endowed with the weak topology; X1 and X∗1 denote the closed unit

ball of X and of X∗ respectively, K ⊆ X denotes a convex subset of X and

F : K ( K will be a proper multimap with convex values. Finally we denote

with B a foundamental system of neighborhoods of the null element 0 in X with

respect to the weak topology of X, defined by V = V (x∗1, . . . , x
∗
n, ε) = {x ∈ X :

|x∗i (x)| < ε, i = 1, . . . , n} and V = {x ∈ X : |x∗i (x)| ≤ ε, i = 1, . . . , n}.

2. Properties of fixed point sets

We begin with a generalization of the piecewise midpoint linearity.

Definition 2.1. Let K ⊆ X and let F : K ( X be a multimap with

nonempty values. F is said to be strongly nice if there exists α ≥ 1 such that for

every r > 0 there exists s(r) ∈ ]0, r] such that

Fs(r)
w ⊂ Fαs(r),

where for a set A, A
w

denotes the closure with respect to the weak topology of

the space. Analogously we shall say that F is weakly nice provided there exists

α ≥ 1 such that for any U ∈ B there exists V ∈ B, V ⊆ U such that

FV
w ⊂ FαV .

Examples of strongly (resp. weakly)- nice maps are provided by piecewise

strongly (resp. weakly) midpoint linear multimaps which are upper semicontin-

uous from X to Xw. In fact, as shown in the proof of Theorem 4.3 of [5], for any

upper semicontinuous multimap from X to Xw, the sets FV and Fr are closed

for any V ∈ B and any r > 0, respectively. Thus if one assumes for instance

that F is piecewise weakly midpoint linear, taking any U ∈ B and determining

the corresponding V , DV one finds for each Di

FV ∩Di = co(FV ∩Di) ⊂ FV

whence

FV ∩Di
w

= FV ∩Di ⊂ FV = FV

and

FV
w

=

n⋃
i=1

(FV ∩Di)

w

⊂
n⋃
i=1

FV ∩Di
w
.
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The concept of weakly nice multimap is in some sense a generalization of the

natural assumption of weak upper semicontinuity. In fact we have the following

result

Proposition 2.2. Let K be a convex weakly compact subset of X, F : K (

X a weakly upper semicontinuous multimap with nonempty, convex values and

suppose F (K) bounded. Then for any ε > 0 and, for any V = V (x∗1, . . . , x
∗
n, α) ∈

B, it holds

FV
w ⊂ F(1+ε+ρ/α)V .

where ρ = sup{diamF (x), x ∈ K}.

Proof. Fix ε > 0 and V ∈ B, by the upper semicontinuity of F , for any

x ∈ K there exists a neighbourhood, say U(x) ∈ B, such that

F (z) ⊂ F (x) +
ε

2
V, for any z ∈ x+ U(x).

Consider {x1, x2, . . .} such that K ⊂
n⋃
i=1

[xi+U(xi)] and let Di = [xi+U(xi)]∩K,

i = 1, . . . , n. Observe that

FV
w

=

n⋃
i=1

[FV
w ∩Di] ⊂

n⋃
i=1

co[FV ∩Di].

Fix i ∈ {1, 2, . . .} and x′, x′′ ∈ Di ∩ FV , then there exists t′ ∈ F (x′) and t′′ ∈
F (x′′) such that x′ − t′ ∈ V and x′′ − t′′ ∈ V . By the convexity of Di for any

λ ∈ ]0, 1[, xλ = λx′ + (1− λ)x′′ ∈ Di and hence, by the upper semicontinuity of

F we have,

F (xλ) ⊂ F (xi) +
ε

2
V.

Let t ∈ F (xλ), hence there exists τ ∈ F (xi) and u ∈ V , such that t = τ + εu/2.

Hence

xλ − t = λx′ + (1− λ)x′′ − t = λ(x′ − t′) + (1− λ)(x′′ − t′′)

+ λ(t′ − τ ′) + (1− λ)(t′′ − τ ′′) + [λτ ′ + (1− λ)τ ′′ − τ ] + (τ − t),

where τ ′, τ ′′ ∈ F (xi), are such that t′ = τ ′ + εu′/2, t′′ = τ ′′ + εu′′/2, indeed

t′ ∈ F (x′) ⊂ F (xi) + εV/2 and t′′ ∈ F (x′′) ⊂ F (xi) + εV/2. By the convexity of

F (xi), λτ
′ + (1− λ)τ ′′ ∈ F (xi), hence

xλ − t ∈ λV + (1− λ)V + λ
ε

2
V + (1− λ)

ε

2
V + ρX1 +

ε

2
V = (1 + ε)V + ρX1.

Since αX1 ⊂ V and ρX1 = (ρ/α)αX1 we obtain that

n⋃
i=1

co[FV ∩Di] ⊂ F(1+ε+ρ/α)V

and hence the claimed result. �
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Remark 2.3. Since, for a weakly continuous single valued map f : K 7→ X,

with K ⊂ X convex and weakly compact, ρ = 0, we have, for any ε > 0, that f

is (1 + ε)-weakly nice.

Remark 2.4. If the multimap F in Proposition 2.2 has weakly compact

values then F (K) is weakly compact, hence, in particular, it is bounded.

On the other side the Example 4.1 of [5] provides an example of a weakly nice

multimap which is not weakly upper semicontinuous. The next result justifies

the definition of nice multimaps, it provides a structure result for the set of fixed

points of a nice multimap.

Given K ⊆ X and a multimap F : K ( X, with K ⊂ X, we denote with

P (F ) the set of its fixed points, i.e. P (F ) = {x ∈ K : x ∈ F (x)}.

Proposition 2.5. Let K be a subset of X, F : K ( X a multimap with

nonempty values, which is weakly or strongly nice. Then P (F ) is weakly closed.

Proof. Assume F to be weakly nice. It is clear that P (F ) =
⋂
V ∈B

FV .

Now B = {αU, U ∈ B}, then P (F ) =
⋂
U∈B

FαU as well. Since, for V (U) ⊂ U ,

αV (U) ⊂ αU then
⋂
U∈B

FαV (U) ⊂ P (F ). Hence⋂
U∈B

FV (U)
w ⊂

⋂
U∈B

FαV (U) ⊂ P (F ).

On the other side, as P (F ) ⊂ FV (U) ⊂ FV (U)
w

, the converse inclusion also holds,

and this concludes the proof. �

An analogous proof holds if F is assumed to be strongly nice.

Remark 2.6. Note that nor the weak compactness of K neither the upper

semicontinuity of the multimap F : K ( X are needed to prove Proposition 2.5.

With the definition of nice multimaps we can generalize the fixed point The-

orems 4.2 and 4.3 of [5].

Theorem 2.7. Let K ⊂ X be convex and weakly compact, and let F : K ( K

be a weakly nice, upper semicontinuous from X to Xw multimap, with nonempty,

convex and closed values. Then P (F ) is nonempty (and weakly closed).

Proof. Following the same proof as in Theorem 4.3 of [5] one shows that

FV is nonempty, without making use of the assumption of midpoint linearity.

Now the family {FV , V ∈ B} has the finite intersection property, since when

one fixes finitely many weak neighbourhoods V1, . . . , Vn, choosingW =
n⋂
i=1

Vi ∈ B

one finds FW ⊂ FVi , i = 1, . . . , n, Thus

∅ 6= FW ⊂
n⋂
i=1

FVi .
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Consequently, the family {FV
w
, V ∈ B} has the finite intersecton property, and

from the weak compactness of K, there follows
⋂
V ∈B

FV
w 6= ∅, which in turn

implies that
⋂
U∈B

FαU 6= ∅ and this naturally implies that
⋂
U∈B

FU 6= ∅. �

Analogously it is possible to prove the corresponding fixed point theorem for

strongly nice multimaps.

Theorem 2.8. Let K ⊂ X be a convex weakly compact set and F : K ( X be

a strongly nice, upper semicontinuous and γ-nonexpansive multimap with closed

convex values. Then P (F ) is nonempty (and weakly closed).

2.1. Fixed points for a pair of multimaps. We have the following initial

result for a pair of multimaps.

Definition 2.9. Two multimaps F,G : K ⊆ X ( X commute if F (G(x)) =

G(F (x)) for any x ∈ K.

Theorem 2.10. Let K be a convex and weakly compact subset of X, F : K (

K and G : K ( K be two multimaps with convex closed values, satisfying one

of the following set of conditions:

(a) F is either u.s.c., γ-nonexpansive and strongly midpoint linear, or u.s.c.

from X to Xw and weakly midpoint linear;

(b) G is either u.s.c., γ-nonexpansive and strongly nice, or u.s.c. from X to

Xw and weakly nice.

Moreover, we suppose that F and G commute and for any x ∈ P (F ) that F is

constant on G(x). Then there exists a common fixed point x0 ∈ P (F ) ∩ P (G).

Proof. By Theorem 2.8 or 2.7 and by Proposition 2.5 P (F ) is nonempty

and weakly closed, hence weakly compact, as subset of a weakly compact set.

Moreover, it holds G(P (F )) ⊂ P (F ). Indeed, for any x ∈ P (F ) and y ∈ G(x),

y ∈ G(x) ⊆ G(F (x)) = F (G(x)) = F (y).

The last equality is due to the fact that F is constant on G(P (F )). Furthermore,

by the midpoint linearity of F , P (F ) is convex. Therefore if we consider the

restriction of the multimap G to the set P (F ) we have G : P (F )( P (F ) and G

satisfies the set of assumptions (b), then applying Theorem 2.8 or 2.7 we obtain

the existence of x0 ∈ G(x0), i.e. x0 ∈ P (F ) ∩ P (G). �

We observe that the requirement F is constant on G(x) for any x ∈ P (F ) is

automatically verified if F is a single valued map.

We shall weaken the statement of Theorem 2.10 in two directions: the com-

mutativity assumption and the convexity of the domain K.

Using the concept of Banach operator pair introduced by Chen and Li in [7] for
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single valued maps, it is possible to avoid the requirement F is constant on G(x)

for any x ∈ P (F ) and to weaken the commutativity assumption.

Definition 2.11. A pair (G,F ) of multimaps, F,G : X ( X, is a Banach

operator pair (BOP) if G(P (F )) ⊆ P (F ).

Theorem 2.12. Let K be a convex and weakly compact subset of X, F : K (

K and G : K ( K be two multimaps with convex closed values, satisfying one

of the following set of conditions:

(a) F is either u.s.c., γ-nonexpansive and strongly midpoint linear, or u.s.c.

from X to Xw and weakly midpoint linear;

(b) G is either u.s.c., γ-nonexpansive and strongly nice, or u.s.c. from X to

Xw and weakly nice.

Moreover, we suppose that the pair (G,F ) is a BOP. Then there exists a common

fixed point x0 ∈ P (F ) ∩ P (G).

Another generalization of the commutativity is the sub-compatibility given by

the following definition, which generalizes the so called weak-compatibility intro-

duced by Abbas and Khan in [1] for a pair of a single valued and a multivalued

map.

Definition 2.13. A pair (G,F ) of two multimpas F,G : X ( X is said to

be sub-compatible if

G(C(G;F )) ⊆ C(G,F )

where C(G,F ) is the so called coincidence set, i.e.

(2.1) C(G,F ) = {x ∈ X : G(x) ∩ F (x) 6= ∅}.

We give another fixed point theorem for a pair of sub-compatible multimaps

F,G : X ( X.

Theorem 2.14. Let K be a weakly compact subset of X, F,G : K ( X be

two multimaps with convex closed values, satisfying one of the following set of

conditions;

(a) F , G are u.s.c., and G is γ-nonexpansive and strongly nice;

or

(b) F , G are u.s.c. from X to Xw, and G is weakly nice.

Moreover we suppose that the set C(G,F ) is nonempty and convex and that

the pair (G,F ) is sub-compatible. Then there exists a common fixed point x0 ∈
P (F ) ∩ P (G).

Proof. The set C(G,F ) is closed with respect to the norm topology under

assumption (b). Indeed, let (xn) ∈ C(G,F ), xn → xo and suppose by contra-

diction that F (xo) ∩ G(xo) = ∅. Then there exists x∗ ∈ X∗1 , ε > 0 such that
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[F (xo)+V ]∩[G(xo)+V ] = ∅ with V = V (x∗, ε). By the upper semicontinuity, for

n suitably large, we have that F (xn) ⊂ F (xo)+V,G(xn) ⊂ G(xo)+V and there-

fore F (xn) ∩ G(xn) = ∅ thus contradicting the assumption that xn ∈ C(G,F ).

Moreover, the set C(G,F ) is convex by hypothesis and so it is weakly closed.

Since upper semicontinuity implies upper semicontinuity from X to Xw, the

set C(G,F ) is closed also under the set of ussumptions (1).

By the definition of sub-compatibility C(G,F ) is G-invariant. Therefore we can

apply Theorem 2.8 or 2.7 to the restriction of the multimap G to the set C(G,F ),

obtaining the existence of x0 ∈ G(x0) ∩ F (x0). �

The following result is a trivial sufficient condition to obtain the convexity

of C(G,F ).

Corollary 2.15. If G : X 7→ X and F : X ( X are convex multimaps,

then C(G,F ) is convex.

Moreover, in the case of convex multimaps, the condition that C(F,G) is

nonempty can be derived by a condition presented by Ky Fan ([12]).

Proposition 2.16. Let K be weakly compact, and let F,G : K ( X be

convex X −Xw upper semicontinuous multimaps with closed and convex values,

satisfying the following assumption:

• for each x ∈ K and each x∗ ∈ X∗ such that x∗(x) = min
z∈K

x∗(z) there

exist u ∈ F (x),

Then C(F,G) 6= ∅.

Proof. Similarly to the proof of Theorem 3 in [12], consider, for each x∗ ∈
X∗ the sets

P (x∗) =
{
x ∈ K : max

u∈F (x)
x∗(u) ≤ min

v∈G(x)
x∗(v)

}
,

Q(x∗) =
{
x ∈ K : max

u∈F (x)
x∗(u) < min

v∈G(x)
x∗(v)

}
.

Assume, by contradiction, that the assertion is false, namely that F (x)∩G(x) = ∅
for each x ∈ K. Then corresponding to each x ∈ K there exist x∗x ∈ X∗, αx ∈ R
such that F (x) ⊂ {z ∈ X | x∗x(z) < αx}, G(x) ⊂ {z ∈ X | x∗x(z) > αx}. Hence

x ∈ Q(x∗x). Since both maps are X − Xw upper semicontinuous, the above

inclusions keep holding for z ∈ x+ rX1 for suitable r > 0. Hence Q(x∗x) is norm

open. Then, for each x∗, there follows Q(x∗x) ⊂ [P (x∗x)]o (where o denotes the

norm interior of the set).

Let x∗ be fixed; we shall prove that [P (x∗)]c is convex. To this aim let

x1, x2 ∈ [P (x∗)]c, i.e. min
v∈G(xi)

x∗(v) < max
u∈F (xi)

x∗(u). Choose vi ∈ G(xi) such that
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x∗(vi) = min
v∈G(xi)

x∗(v). Since G is convex, λv1 + (1− λ)v2 ∈ G(λx1 + (1− λ)x2)

whence

min
v∈G(xλ)

x∗(v) ≤ λx∗(v1) + (1−λ)x∗(v2) < λ max
u∈F (x1)

x∗(u) + (1−λ) max
u∈F (x2)

x∗(u).

Again we can choose ui ∈ F (xi) that realize the maxima; therefore we have

min
v∈G(xλ)

x∗(v) < x∗(λu1 + (1− λ)u2).

As ui ∈ F (xi) and F is convex, λu1 + (1− λ)u2 ∈ F (xλ) and thus

min
v∈G(xλ)

x∗(v) < max
u∈F (xλ)

x∗(u).

Hence xλ ∈ [P (x∗)]c. Thus the norm closure [P (x∗)]c is convex too, and therefore

it is weakly closed. Now

[P (x∗)]c = [P (x∗)]c ∪ ∂P (x∗)

=
{
x ∈ X

∣∣∣ min
v∈G(x)

x∗(v) < max
u∈F (x)

x∗(u)
}

∪
{
x ∈ X

∣∣∣ min
v∈G(x)

x∗(v) = max
u∈F (x)

x∗(u)
}

= [Q(x∗)]c

which proves that Q(x∗) is weakly open. Then, clearly {Q(x∗x), x ∈ K} is

a weakly open covering of K. Then precisely the same proof as the already

mentioned Theorem 3 of Ky Fan ([12]) applies, since K is assumed to be weakly

compact. �

If the coincidence point set coincides with K we can avoid any hypothesis of

commutativity or compatibility.

Theorem 2.17. Let K be a convex and weakly compact subset of X, F,G :

K ( K be two multimaps with convex closed values, satisfying one of the fol-

lowing set of conditions:

(a) F , G are u.s.c., strongly nice and G is γ-nonexpansive;

or

(b) F , G are u.s.c. from X to Xw and weakly nice.

Moreover, we suppose that

(c) F (x) ∩G(x) 6= ∅ for any x ∈ K.

Then there exists a common fixed point x0 ∈ P (F ) ∩ P (G).

Proof. Define the multimap H : K ( K as H(x) = F (x) ∩ G(x). We

assume the set of conditions (b).

H is upper semicontinuous from X to Xw (see [13, p. 52]). Moreover,

similarly to the proof of Theorem 4.3 in [5], one shows that HV 6= ∅ for any
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V ∈ B (since the midpoint linearity is of no use for this step). Therefore, since

HV ⊆ FV ∩GV , we obtain FV ∩GV 6= ∅ for any V ∈ B.

Let now α ≥ 1 be such that FV
w ⊂ FαV and GV

w ⊂ GαV . Note that

FV ∩GV ⊂ FV
w ∩GV

w ⊂ FV
w ⊂ FαV ,

analogously FV ∩ GV ⊂ GαV . Hence {FV
w ∩ GV

w
, V ∈ B} has the finite

intersection property, since the family {FV ∩GV , V ∈ B} satisfies it. Thus, from

the weak compactness of K we have⋂
V ∈B

(FV
w ∩GV

w
) 6= ∅,

yielding in turn that ⋂
V ∈B

(FαV ∩GαV ) 6= ∅.

and thus ⋂
U∈B

(FU ∩GU ) 6= ∅,

hence obtaining the existence of a common fixed point in the case of the set of

hypotheses (b).

In the case of the set of hypotheses (a), it is easy to prove that the multimap

H is γ-nonexpansive. Hence, following the proof of Theorem 4.2 in [5], it is

possible to prove that Hr 6= ∅ for any r > 0. Then, with the same argument of

the proof above, one reaches
⋂
r>0

(Fr ∩Gr) 6= ∅. �

Note that Theorems 2.10 and 2.12 differ from Theorems 2.14 and 2.17 in the

topological indipendence of the assumptions: more precisely, in Theorems 2.10

and 2.12 the topologies (strong or weak) with respect to which the assumptions

on F and G are formulated may be different, while in Theorems 2.14 and 2.17

the semicontinuity should be for both with respect to the same topology.

If in Theorem 2.12 we assume that F and G are nonexpansive, then we can

replace the assumption of convexity of K with its starshapedness: furthermore,

if F is contractive then we just need that K is weakly compact.

First of all we show a fixed point theorem for a multivalued map with a star-

shaped domain.

Theorem 2.18. Let K be a starshaped weakly compact subset of X and let

F : K ( K be a nonexpansive strongly nice multimap with closed values, then

there exists a fixed point x0 ∈ F (x0).

Proof. Let p ∈ X be the center of starshapedness of K. For any λ ∈]0, 1[

consider the following multimap

F(λ)(x) = λF (x) + (1− λ)p.
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SinceK is starshaped, F(λ) mapsK into itself. Moreover since F is nonexpansive,

for any x, y ∈ K, we have

dH(F(λ)(x), F(λ)(y)) = dH(λF (x), λF (y)) = λdH(F (x), F (y)) ≤ λ‖x− y‖,

i.e. F(λ) is contractive. Now we can apply Theorem 11.1 in [9] obtaining that

P (F(λ)) 6= ∅. Following the proof of Theorem 4.2 of [5] it is possible to show that

Fr 6= ∅ for any r > 0; then by Theorem 2.8 the assertion follows. �

Now we prove an analogous theorem for a pair of multimaps.

Theorem 2.19. Let K be a starshaped weakly compact subset of X and let

F : K ( K and G : K ( K be two nonexpansive strongly nice multimaps with

closed values. Moreover, we suppose that P (F ) is starshaped and that the pair

(G,F ) is a BOP. Then there exists a common fixed point x0 ∈ P (F ) ∩ P (G).

Proof. By Theorem 2.18 we have that P (F ) 6= ∅ and by Proposition 2.5

we obtain that the set P (F ) is weakly closed, hence weakly compact as a subset

of K. Moreover, by the BOP definition, P (F ) is invariant under G. Therefore,

applying again Theorem 2.18 to the restriction of the multimap G to the set

P (F ), we obtain the existence of x0 ∈ G(x0), i.e. x0 ∈ P (F ) ∩ P (G). �

Remark 2.20. If in Theorem 2.19 we assume that G is contractive, no as-

sumption on P (F ) is needed.

Remark 2.21. In complete analogy, one can replace the assumption of con-

vexity of C(G,F ) in Theorem 2.14 with the assumption that C(G,F ) is star-

shaped and G is nonexpansive. Furthermore, again when G is contractive no

assumption on C(G,F ) is needed besides C(G,F ) 6= ∅.

2.2. Fixed points for families of multimaps. Throughout this section

I will denote a nonempty set of indexes and Fη a multimap Fη : K ( K.

The following corollary is an immediate consequence of Proposition 2.5.

Corollary 2.22. Let K ⊂ X be a weakly compact set and F = {Fη, η ∈ I}
be a family of multimaps, each with nonempty values and such that each Fη is

either strongly or weakly nice. If F satisfies the condition:

(a) {P (F ), F ∈ F} has the finite intersection property,

then F has a common fixed point.

We shall now show some conditions that imply condition (a) of Corollary 2.22.

The first one is inspired by [16].

Definition 2.23. A family of multimaps F from K to X is said to be

commutative if for any F,G ∈ F it holds F (G(x)) = G(F (x)) for any x ∈ K.
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Theorem 2.24. Let K ⊂ X be a convex weakly compact set and F = {Fη, η ∈
I} be a commutative family of multimaps, each with convex closed values and

such that each Fη is either

(a) u.s.c., γ-nonexpansive and strongly midpoint linear,

or

(b) u.s.c. from X to Xw and weakly midpoint linear.

If for any Fη, Fϑ ∈ F and for any x ∈ P (Fη), Fη is constant on Fϑ(x), then F
satisfies condition (β), and therefore it has a common fixed point.

Proof. The set {P (Fη), η ∈ I} has the finite intersection property. Indeed,

let Fη, Fϑ ∈ F , with the same argument as in Theorem 2.10 it is possible to

obtain the existence of x0 ∈ P (Fη) ∩ P (Fϑ).

We can repeat this reasoning for any finite set {Fη1 , . . . , Fηn} ⊂ F . Hence

the set {P (Fη), η ∈ I} has the finite intersection property. In conclusion by

Corollary 2.22 we obtain the claimed result. �

Observe that for this result we have to assume the (global) midpoint lin-

earity instead of the weaker assumption of strong or weak nicety, since this last

requirement does not ensure the convexity of each P (Fη) where we want to apply

a Fixed Point Theorem.

A corollary of Theorem 2.24 is the following.

Corollary 2.25. Let K ⊂ X be a convex weakly compact set and F =

{Fη, η ∈ I} be a commutative family of convex, X −Xw upper semicontinuous

multimaps such that Fη(x) ⊂ K is a closed set for any x ∈ K and every Fη ∈ F .

We assume for each pair Fη, Fϑ ∈ F and each fixed point x ∈ P (Fη), Fη is

constant on Fϑ(x). Then F has a common fixed point.

The previous corollary is a generalization of Theorem 1 of [16], where a com-

mon fixed point is proved for a family of weakly continuous multimaps.

In analogy with Theorem 2.24, it is possible to extend Theorem 2.17 to

a family of multimaps, proving that {P (Fη), η ∈ I} is a family of weakly closed

sets with the finite intersection property.

Theorem 2.26. Let K ⊂ X be a weakly compact set and F = {Fη, η ∈ I} be

a family of multimaps, each with convex closed values and satisfying one of the

following set of conditions:

(a) Fη is u.s.c. and strongly nice, with at least one Fη ∈ F γ-nonexpansive;

or

(b) Fη is u.s.c. from X to Xw and weakly nice.

Moreover, we suppose that
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(c) for any J = {η1, . . . , ηn} ⊆ I there holds
n⋂
i=1

Fηi(x) 6= ∅ for any x ∈ K.

Then there exists a common fixed point for F .

In [3] the following common fixed point theorem is proven.

Theorem 2.27 ([3, Theorem 1]). Let K be a nonempty convex subset of

a topological vector space, F = {Fη, η ∈ I}, be a family of multimaps satisfying

the following conditions:

(a) for each η ∈ I, the set P (Fη) is closed;

(b)
⋃
η∈I

Fη is a compact multimap;

(c) for each finite set {η1, . . . , ηk} ⊂ I there exists {z1, . . . , zk} ⊂ K such

that

co{zi, i ∈ J} ⊂
⋃
i∈J

Fηi(x),

for each x ∈ K, and for each subset J ⊂ {1, . . . , n}.
Then there exists x0 ∈

⋂
η∈I

P (Fη).

Here we state the following similar result without the assumption of com-

pactness of the family of multimaps.

Theorem 2.28. Let K be a nonempty convex subset of a topological vec-

tor space, F = {Fη, η ∈ I} be a family of multimaps satisfying the following

conditions:

(a) for each η ∈ I, the set P (Fη) is closed;

(b) there exists ηo such that P (Fηo) is compact;

(c) for each finite set {η1, . . . , ηk} ⊂ I there exists {z1, . . . , zk} ⊂ K such

that

co{zi, i ∈ J} ⊂
⋃
i∈J

Fηi(x),

for each x ∈ K, and for each subset J ⊂ {1, . . . , n}.
Then the family of multimaps has a common fixed point.

Proof. First note that for each η ∈ I the set P (Fη) is nonempty; in fact,

fix η ∈ I and apply (3); then there exists z ∈ K such that {z} ⊂ Fη(x) for every

x ∈ K. In particular z ∈ Fη(z) and hence z ∈ P (Fη).

We prove that {P (Fη), η ∈ I} has nonempty intersection. Suppose con-

versely that
⋂
η∈I

P (Fη) = ∅, hence
⋂

η∈I, η 6=ηo
P (Fη) ∩ P (Fηo) = ∅ Then by assump-

tion (a) and the compactness of P (Fηo) there should exist η1, . . . , ηk ∈ I such

that
k⋂
i=1

P (Fηi) = ∅ and thus K =
k⋃
i=1

P (Fηi)
c. The remaining of the proof is the

same as in the mentioned Balaj’s result. �
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The weakly nice condition gives a sufficient condition for the closure of the

fixed point set. More precisely we have the following corollary.

Corollary 2.29. Let K be a nonempty convex weakly compact subset of X,

F = {Fη, η ∈ I} be a family of multimaps satisfying the following conditions:

(a) for each η ∈ I, the multimap Fη is weakly nice;

(b) there exists ηo such that P (Fηo) is weakly compact;

(c) for each finite set {η1, . . . , ηk} ⊂ I there exists {z1, . . . , zk} ⊂ K such

that

co{zi, i ∈ J} ⊂
⋃
i∈J

Fηi(x),

for each x ∈ K, and for each subset J ⊂ {1, . . . , n}.
Then the family of multimaps has a common fixed point.

3. Applications

3.1. Best approximations. Let C be a subset of a Banach space X. For

x0 ∈ X, we denote by PC(x0) the set of best C-approximants to x0, i.e.

PC(x0) =
{
y ∈ C : ‖y − x0‖ = inf

z∈C
‖z − x0‖

}
.

We recall that if PC(x) 6= ∅ for any x ∈ X the set C is called proximinal. An

easy example of a proximinal set is a closed convex subset of a Hilbert space. It

is well known that PC(x0) is bounded and is closed and convex if C is closed and

convex, for all these results see [22, (p. 73–76)]. Moreover, the following results

are straightforward.

Remark 3.1. If C is weakly compact then PC(x0) is weakly compact. If X

is a reflexive Banach space then PC(x0) is weakly compact.

The following result is an immediate consequence of the common fixed point

theorems proved in the previous section.

Proposition 3.2. Let C be a nonempty subset of K, where K is a convex

weakly compact subset of X. Let K be a convex and weakly compact subset of

X, F : K ( K and G : K ( K be two multimaps with convex closed values,

satisfying one of the following set of conditions.

(a) F is either u.s.c., γ-nonexpansive and strongly midpoint linear, or u.s.c.

from X to Xw and weakly midpoint linear;

(b) G is either u.s.c., γ-nonexpansive and strongly nice, or u.s.c. from X to

Xw and weakly nice.

Moreover, we suppose that the pair (G,F ) is a BOP. Let x0 ∈ P (F ) ∩ P (G),

the set PC(x0) be nonempty weakly compact and convex and PC(x0) be invariant

under F and G. Then PC(x0) ∩ P (F ) ∩ P (G) 6= ∅.
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If in Theorem 3.2 we assume that F and G are nonexpansive, then PC(x0)

is invariant under F and G and we can replace the assumption of convexity of

PC(x0), with its starshapedness: furthermore if F and G are contractive, then

we just need PC(x0) to be nonempty and weakly compact.

Proposition 3.3. Let C be a nonempty subset of K, where K is a weakly

compact starshaped subset of X. Let F : K ( K and G : K ( K be non-

expansive with closed values such that F is strongly midpoint linear and G

is strongly nice. Moreover we suppose that the pair (G,F ) is a BOP. Let

x0 ∈ P (F ) ∩ P (G) and the set PC(x0) be nonempty, weakly compact and star-

shaped. Then PC(x0) ∩ P (F ) ∩ P (G) 6= ∅.

Proof. We have that PC(x0) is invariant under F and G. Indeed by hy-

pothesis there exists a constant k ∈ ]0, 1[ such that, for any x ∈ PC(x0) and

y ∈ F (x),

‖y − x0‖ ≤ dH(F (x), F (x0)) ≤ k‖x− x0‖ < ‖x− x0‖,

thus y ∈ PC(x0). The same is true for G.

Now, recalling that if G is nonexpansive, then it is γ-nonexpansive, with

respect to a measure of noncompactness γ, we can apply Theorem 2.19 to the

restriction of F and G to PC(x0) obtaining a common fixed point in PC(x0). �

We show now a condition that imply the starshapeness of PC(x0).

Proposition 3.4. Let C ⊂ X be starshaped and, denoting with

S(C) = {y ∈ C : C is starshaped with respect to y},

assume S(C)∩PC(x0) 6= ∅ then PC(x0) is starshaped with respect to p ∈ S(C)∩
PC(x0).

3.2. Minimax and variational inequalities. From Theorem 2.28 we de-

duce a minimax inequality without compactness.

Proposition 3.5. Let K be a nonempty convex subset of a topological vec-

tor space X. Let f, g : K × K → R, be two functions satisfying the following

conditions:

(a) for any x ∈ K there exists z ∈ K such that f(x, y) ≤ g(z, y) for any

y ∈ Y ;

(b) f is lower semicontinuous in the second variable and g is upper semi-

continuous on ∆x;

(c) g is quasi concave in the first variable;

(d) there exists x ∈ K such that the set {y ∈ Y : f(x, y) − g(y, y) ≤ 0} is

compact.

Then there exists yo ∈ Y such that f(x, yo) ≤ g(yo, yo) for any x ∈ K.
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Proof. Let x ∈ K, and denote with Fx : K ( K the multimap defined as

Fx(y) = {z ∈ K : f(x, y) ≤ g(z, y)}.

Following the proof of Theorem 4 of [3] it is possible to prove that the family

of multimaps {Fx, x ∈ K} satisfies conditions (a) and (c) of Theorem 2.28

while condition (d) is equivalent to assuming P (Fx) compact. Hence all the

hypotheses of Theorem 2.28 are satisfied and so we obtain a common fixed point

for the family {Fx, x ∈ K}, i.e. the claimed result. �

For the particular case of X being a reflexive Banach space we have the

following result.

Proposition 3.6. Let K be a nonempty convex subset of a reflexive Ba-

nach space X. Let f, g : K ×K → R, be two functions satisfying the following

conditions:

(a) for any x ∈ K there exists z ∈ K such that f(x, y) ≤ g(z, y) for any

y ∈ Y ;

(b) f is weakly lower semicontinuous in the second variable and g is weakly

upper semicontinuous on ∆x;

(c) g is quasi concave in the first variable;

(d) there exists x ∈ K such that lim inf
‖y‖→∞

(f(x, y)− g(y, y)) > 0.

Then there exists yo ∈ Y such that f(x, yo) ≤ g(yo, yo) for any x ∈ K.

Proof. Condition (d) implies the boundedness of the set {y ∈ K : f(x, y)−
g(y, y) ≤ 0}. By conditions (b) it is possible to prove that it is weakly closed

and by the reflexivity of the space X we obtain that it is weakly compact, the

rest of the proof is analogous to the one of Proposition 3.5. �

We can also apply Theorem 2.26 to deduce a variational inequality similar

to those appearing in [19] Theorem XV and in [20] Theorem XV.

Proposition 3.7. Let K ⊂ X be weakly compact and convex and let p : K×
K → R, h : K → R be two functions satisfying:

(a) for any (x, y) ∈ K×K there exists z ∈ K such that p(x, y) ≤ h(x)−h(z);

(b) h is lower semicontinuous and quasi-convex;

(c) y 7→ p(x, y) is weakly lower semicontinuous.

Then there exists yo ∈ K such that

p(x, yo) + h(yo) ≤ h(x) for any x ∈ K.

Proof. For any x ∈ K let Fx : K ( K the multimap defined as

Fx(y) = {z ∈ K : p(x, y) ≤ h(x)− h(z)}.



Generalization of Midpoint Convexity of Multimaps 109

By conditions (a) and (b), Fx(y) is a nonempty closed and convex set for any

(x, y) ∈ K ×K. Next we show that the multimap Fx is weakly upper semicon-

tinuous.

Let yn ⇀ yo and zn ∈ Fx(yn) for any n ∈ N such that zn ⇀ zo. Then, since

h and p(x, · ) are weakly lower semicontinuous we have

(3.1) h(zo) + p(x, yo) ≤ lim inf
n→∞

h(zn) + p(x, yn) ≤ h(x) for any x ∈ K.

Hence zo ∈ Fx(yo), obtaining that for any x ∈ K, Fx is a weakly closed multimap.

Then by the weak compactness of K, Fx is weakly upper semicontinuous. By

Proposition 2.2, then each Fx, x ∈ K is weakly nice.

Finally, fix {x1, . . . , xn} ⊂ K, y ∈ K. Let i(y) ∈ {1, . . . , n} be such that

h(xi(y))− p(xi(y), y) = min
1≤i≤n

[h(xi)− p(xi, y)].

Then Fxi(y)(y) ⊂ Fxi(y), i = 1, . . . , n and hence
n⋂
i=1

Fxi(y) 6= ∅. In conclusion we

can apply Theorem 2.26 obtaining a common fixed point for the family {Fx}x∈K ,

i.e. the claimed result. �

Note that, the above result cannot be deduced from Theorem XV of [19] (for

the case of q = 0, K convex and weakly compact in a Banach space). In fact

although conditions (b) and (c) do imply assumptions (15.2) and (15.3) there, our

first condition is weaker then (15.1), namely p(x, y) ≤ 0 for any (x, y) ∈ K ×K,

as the following example shows.

Example 3.8. Let K be a weakly compact convex subset of X+, the cone

of a Banach lattice X, with 0 ∈ K, and let x∗ ∈ (X∗1 )+ be fixed. Define

p(x, y) = min{x∗(x), x∗(y)}, h(x) = ‖x‖.

Then

(a) for any (x, y) ∈ K×K, we have that p(x, y) ≤ x∗(x) ≤ ‖x‖, i.e. condition

(a) of Theorem 3.7 holds with z = 0;

(b) h is continuous and convex;

(c) y 7→ p(x, y) is weakly lower semicontinuous.

Hence there exists yo ∈ K such that p(x, yo) + ‖yo‖ ≤ ‖x‖ for any x ∈ K.

However, since p(x, y) ≥ 0 for any (x, y) ∈ K × K, this result cannot be

deduced from Theorem XV of [19].

In the same framework, we can deduce further variational inequalities of

Park’s type without compactness from Proposition 3.5. More precisely we have

the following statement.

Proposition 3.9. Let K be a convex set of a topological vector space X and

u, v : K ×K → R such that
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(a) for any x ∈ K there exists z ∈ K such that u(y, y)− u(x, y) ≤ v(y, y)−
v(z, y);

(b) the map y 7→ u(y, y)− u(x, y) is lower semicontinuous;

(c) v is quasi convex in the first variable;

(d) there exists x such that the set {y ∈ K : u(y, y)−u(x, y) ≤ 0} is compact.

Then there exists yo ∈ K such that u(x, yo) ≥ u(yo, yo) for any x ∈ K.

Proof. We apply Proposition 3.5 to the functions f, g : K × K → R de-

fined as

f(x, y) = u(y, y)− u(x, y), g(x, y) = v(y, y)− v(x, y). �

Remark 3.10. Condition (a) of Proposition 3.9 can be obtained if u ≤ v

on ∆ and for any x ∈ K, there exists z ∈ K such that u(x, y) ≥ v(z, y), for all

y ∈ K. Park [19], [20] requires that u ≤ v on ∆ and v ≤ u on K ×K \∆, which

therefore implies condition (a) above.

Remark 3.11. If X is a reflexive Banach space condition (d) in Proposi-

tion 3.9 is fulfilled if there exists x ∈ K such that

lim
‖y‖→∞

[u(y, y)− u(x, y)] > 0.
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