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FLAT FACES IN PUNCTURED TORUS GROUPS

HEATH PROSKIN

1. Introduction. One of the intriguing constructions which arises
from the use of the Minkowski space model for hyperbolic space is that
of the canonical triangulation of a one cusped manifold. We briefly
recall its definition in the dimensions relevant to this paper, namely,
n = 2,3 (a somewhat more complete description is included below). It
follows from results of Epstein and Penner [1] that Jorgensen’s lemma
implies that the action of a finite covolume group on a lightlike vector
corresponding to the cusp forms a discrete subset of the light cone. One
can take the convex hull in Minkowski space of this set and project
into hyperbolic space to obtain an equivariant cellulation (generically
a triangulation) which descends to the manifold. In the case that the
hyperbolic manifold in question only has one cusp, the only ambiguity
is a possibly scaling in the initial choice of lightlike vector representing
this cusp. Two scaled convex hulls project to the same triangulation.

Despite the elegant nature of this construction, it is not very well
understood, and several authors have attempted to identify this tri-
angulation in special cases, see Weeks [11], Sakuma [7], Lackenby [2].
This paper attempts to understand the convex hull in a somewhat sim-
pler setting, namely in the case of punctured torus groups acting on
H?2. Even here the answers turn out to be rather subtle. We begin by
proving a condition (originally sketched by Thurston) which guarantees
that once we have taken the hull of enough points, this will indeed form
part of the canonical convex hull. As an initial step, we show:

Theorem 3.1.2. Local boundary convexity of a polyhedron implies
boundary convexity.

With this theorem in hand, we can begin to analyze the convex hulls
of punctured torus groups. Here we use a description first introduced
in [3] of punctured torus groups as A(u?,27); this is explained in
subsection 3.1. While not a parametrization (different values may give

Received by the editors on June 13, 2005.
Copyright ©2007 Rocky Mountain Mathematics Consortium

2025



2026 HEATH PROSKIN

rise to conjugate groups), this description is conveniently geometric
for our purposes. Somewhat surprisingly, we find that there is one
real parameter family of nonconjugate punctured torus groups A (u?, 4)
which have the property that their convex hulls are tiled, not by
triangulations, but are actually cellulations by ideal rectangles; that
is to say, the canonical construction gives rise to a canonical ideal
rectangle which is therefore a canonical fundamental domain for the
punctured torus. We call these flat face groups.

In general, determining the commensurability of groups is a challeng-
ing endeavor. Flat face groups demonstrate properties which ease this
task considerably. With the aid of a theorem of Margulis, we first show
that the minimal element in the commensurability class of the nonar-
ithmetic A(u?,4) groups is the quotient of H? by the group formed
by adjoining the hyper-elliptic involution to the flat face group. By
appealing to the cross-ratio, we then prove

Theorem 4.1.5. Let 0 < u? < 1/2. No two nonarithmetic groups
in A(u?,4) are commensurable.

The remainder of the paper is devoted to examining various properties
of flat face groups, in particular the A(u?,4) groups. The results of this
section focus on the geometric properties of the convex hulls of flat face
groups, the main result being

Theorem 3.3.7. Let C' be the convex hull of a punctured torus group
in Minkowski space. If OC is composed of rectangles, then the azes of
the geodesics which identify opposite sides of these rectangles meet at
right angles.

2. Preliminaries.

2.1 The Minkowski hyperboloid model. We recall some basic
material about the Minkowski hyperboloid model. Let v,w € R"*1,
v=11,T1,%2,...Tpn, W =to,Y1,Y2,--. ,Yn. 1f we equip Euclidean n+ 1-
space with the nondegenerate quadratic form of signature (n,1)

(v,w) = —tity + T1y1 + T2y2 + - - + TuYn,
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the resulting vector space equipped with the corresponding (path)
metric
ds® = —dt} + dx? + dxi + -+ da?

is Minkowski n-space, M™, also called Lorentzian n-space.

This metric gives rise to three types of vectorsin M™. If v € M™, then
||v]|> = (v,v) is either positive, negative or zero. If ||v||? is negative,
we say v is time-like. If ||v]|? is positive, we say v is space-like. Finally,
if ||v]|? is zero, we say v is light-like.

Definition. The set of all light-like vectors
{ve M™{v,v) =0} ={veE M"| —t] + ] +x9+ -+ 22 =0}

is called the light-cone and denoted L. We will be interested in the
component of L\ {0} in which ¢; > 0.

Every ray from the origin in the light-cone corresponds to a point in
the sphere at infinity of the Poincaré model. If we think of a ray in the
light-cone as encoding the center of a family of horospheres, the heights
along the ray encode the sizes of the horospheres centered on that ray.

The horoball corresponding to vy € L™ is
{w e H" | (w,v9) = —1}.
Further, the horoball corresponding to the horosphere vg is given by

{we H" | (w,vo) > —1}.

Points of LT closer to the origin correspond to larger horospheres, and
conversely, as we choose points in LT whose ¢ coordinate approaches
infinity, the corresponding horosphere shrinks to a point.

2.2 The action of PSL(2,R) and its discrete subgroups on
points in the light cone. The group of isomorphisms preserving the
quadratic form described above is O(n, 1), called the Lorentz group of
(n+ 1) X (n+ 1) matrices. This group has various components. We
are interested in those elements with determinant one which preserve
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FIGURE 1. The light-cone Lt and a vector vp € L1 with its corresponding
horosphere.

the upper sheet of the hyperboloid, that is, SO(n,1)N O (n,1). This
group is isomorphic to the group of isometries of H™. The isomorphism
SO(2,1) — PSL(2,R) is achieved by

v=(t,z,y) [t+w Y } =

Y t—zx

Note that det (X) = 1 implies that t* — 22 — y> = 1, which is precisely
the condition that v € H2.

A matrix A € SL(2,R) acts on ¥ via similarity, that is
Y ATYA

and factors through PSL (2, R). Since all elements of PSL (2, R) have
determinant one, this action preserves the quadratic form.
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The dynamics of an action of a discrete subgroup of isometries of H?
on the circle at infinity are quite complicated. However, if we consider
the analogue of the circle at infinity in the hyperboloid model, namely
the light-cone, it turns out that the action of certain parabolic elements
is relatively well-behaved.

Epstein and Penner [1] proved several results about the consequences
of these actions on the light-cone. The following result is particularly
relevant.

Theorem 2.2.1. Let I' be a discrete finite co-volume subgroup of
O*(n,1). Then v € LT is a parabolic fized point if and only if, for
every k > 0, the number of points in the orbit of v with height (¢
coordinate) less than k is finite.

2.3 The convex hull construction. If we are given a discrete finite
co-volume subgroup of O (n, 1) with at least one parabolic fixed point
in the light-cone, that is, H" /T has at least one cusp, we can form a
convex hull in Minkowski space in the following way. We choose one
orbit of parabolic fixed points in LT corresponding to each cusp. Since
Theorem 2.2.1 ensures us that these orbits are discrete, we can then
form the closed convex hull of these points.

The resulting convex hull is an n + 1-dimensional object.

We will be particularly interested in the boundary of the convex hull.
The following lemma of Epstein and Penner [1] helps to elucidate its
nature.

Lemma 2.3.1. Let C be the convexr hull described above. The
boundary of C is the union of C N L1 along with a countable collection
of codimension 1 faces, where each face is the convex hull of a finite
number of points in the orbit of a parabolic fixed point.

We know that C contains all rays of LT originating at each point in
the orbit of parabolic fixed points.

For each cusp, we choose a height on the ray in the light-cone
corresponding to the cusp. Thus, if p equals the number of cusps of
H"/T, we see a (p — 1) parameter family of tesselations, where each
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cell has a totally geodesic face. In particular, if H"/I" has 1 cusp, there
exists a canonical tesselation. Jeff Weeks used this approach in several
papers, see [7, 11], for example.

Since I is torsion-free, the interior of any face injects into H" /T,
that is, the tesselation of H™ descends to a natural (p — 1) parameter
family of decompositions of H" /T". We are mainly concerned with once-
punctured tori; thus, this construction gives a completely canonical
decomposition.

3. Applications of the convex hull construction. We begin
this section fleshing out proofs of two propositions which were sketched
by Thurston in his notes [10]. These propositions deal with various
local and global convexity properties of polyhedra. We then go on to
discuss a family of once-punctured torus groups whose convex hulls
have several surprising and interesting properties.

3.1 Determining convex hulls. We proceed by stating some
relevant definitions regarding convexity of polyhedra. We will assume
that all polyhedra are connected.

Definition. A polyhedron P is (globally) convez if every path in P
is homotopic (rel endpoints) to a geodesic lying in P.

P is locally conver if each point € P has a neighborhood isometric
to a convex subset of R®. If € 0P, then z will be on the boundary
of this set.

P is boundary conver if for any two points lying in 0P, the geodesic
connecting them lies entirely in P.

P is locally boundary convez if for each point p in the boundary of P,
there exists a convex neighborhood of p such that for any two points
x and y in this neighborhood and on the boundary of P, the geodesic
connecting them also lives in P.

Proposition 3.1.1. Boundary convexity of a polyhedron implies
global convexity.
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Proof. Suppose not, and let P be a boundary convex polyhedron,
z,y € P, and let v be a path connecting  and y lying in P. There
exists a geodesic v* € R? connecting z and y. Homotope v to y* rel
endpoints. If v* does not lie entirely within P, it must cross through
the boundary of P (possibly in several places). Choose two points on
the boundary of P through which * crosses, g and yy. The boundary
convexity of P guarantees that the geodesic connecting zo and yo lies
entirely in P. However, geodesics in R? are straight lines, thus the
geodesic connecting xp and gy is a segment of v*, implying that v*
never left P. Thus, P is convex. i

Theorem 3.1.2. Local boundary convexity of a polyhedron implies
boundary convexity.

Proof. The proof is by path straightening. Choose two points a and b
on the boundary of the polyhedron P and a path 7 lying in the interior
of P connecting them. Such a 7 exists due to the connectedness of P.
Choose € > 0 small enough so that for each point p in the boundary of
the polyhedron, there is an € neighborhood of p such that for all points
x,y in this neighborhood lying on the boundary of the polyhedron,
the geodesic connecting z and y lies within the polyhedron. Divide
our path 7 into subintervals of length at most €/2, and straighten
each subinterval via homotopy to a geodesic. Since the interior of a
polyhedron is locally convex, our only worry arises if a neighborhood
containing one of the subintervals of 7 also contains a segment of the
boundary of the polyhedron. If this is the case, then the local boundary
convexity condition insures us that the homotopy must not leave the
polyhedron. If it did leave, the geodesic connecting the point at which
the homotopy exits the polyhedron to the point at which it reenters
actually lies in the polyhedron. That is, we can remove the piece of the
homotopy lying outside of the polyhedron.

The result of this homotopy process is a piecewise linear path. Re-
subdivide this new path into /2 subintervals and repeat the straight-
ening process described above. Any time there are angles involved
which are not close to 7, this process significantly shortens our path.
The sequence of resulting path lengths is monotonically decreasing and
positive, thus converges to a limit. If the path corresponding to this
limit were not a geodesic, then it would contain at least one nonlinear



2032 HEATH PROSKIN

section. To show this cannot happen, take an /2 neighborhood of the
nonlinear section and perform the straightening operation, decreasing
the total path length. Thus, our original two points in the boundary
of the polyhedron are indeed connected by a geodesic lying entirely in
the polyhedron. O

In studying commensurability of finite co-volume subgroups of PSL (2,
R) and pseudomodular surfaces [4], Long and Reid introduced a con-
venient normalization for once-punctured torus groups, A(u?,27). The
parameters involved correspond to placement of the cusp (u?) and
translation length (in the upper-half space model) of the parabolic el-
ement stabilizing infinity (27). Convenient generators for these groups
are given [4] by

_ ((—1+T>/¢m u2/\/m>
O G VIV e R VAV

and
uv—-1+7—-u2 (7—u?)/(uv/—=1+7—1u?)

To further investigate the properties of these groups, we applied
the convex hull construction and inspected the decompositions of the
punctured tori which resulted.

WZ(wJﬁI7?ﬁ uVTEr =& )

To determine the actual convex hulls of these groups, we wrote
Mathematica code which generates a list of potential faces of the
hull. Using the following facts, we can then show that the computer
generated result is indeed the correct triangulation of the domain.

Since any two adjacent faces in the boundary of the convex hull form a
fundamental domain for the given punctured torus, cf. subsection 3.3,
we choose two well-placed faces to use for the local convexity check.
Generally, lower vertices tend to make the calculations easier. To check
local convexity of the entire hull, we need only to check the convexity
across three edges, the edge between the two faces and the two other
edges of either one of the triangular faces, as all other edges are the
image of one of these three edges under a covering transformation.

Example. A(1,6) = ker{PSL(2,Z) — Zg}. The hull generated by
A(1,6) is particularly nice due to its symmetry. After selecting vy
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FIGURE 2. The canonical triangulation for the A(1,6) group in the Poincaré model
and the faces formed on the boundary of the convex hull.

to be (1,—1,0), one sees that a canonical domain contains the face
joining the vertices v, (1,1,0), and (2,0, —2) with the face joining the
vertices v, (1,1,0) and (2,0,2). This is illustrated in Figure 2. One
notes also that the images of the two ideal triangles (in the Poincaré
model) making up the fundamental domain for the A(1, 6) group form
the Farey tesselation of the hyperbolic plane. See, for example, [8] for
more details of the Farey tesselation.

3.2 A family of once-punctured tori tiled by rectangles.
The generic decomposition associated to a convex hull of a punctured
torus described in subsection 2.3 is composed of two triangles. In
this case, these triangles have a dihedral angle less than m between
them, tesselating the boundary of the convex hull by triangles. If we
consider A(u?,27) groups where 27 = 4, that is, whose commutator is
translation by four in the upper-half plane model, we see a surprising
result.

Theorem 3.2.1. The canonical “triangulation” of the once punc-
tured torus corresponding to the group A(u?,4) for 0 < u® < 1/2 aris-
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FIGURE 3. A(u2,4) domain.

ing from the convex hull in Minkowski space is the rectangle shown in
Figure 3.

Proof. Given a fundamental domain, it is sufficient to check the
convexity across either of the triangles composing this domain, as men-
tioned above. Further, since the domain in question is flat, we need only
check the convexity across two adjacent edges of the domain. These
are shown as dashed lines in Figure 4. Appealing to Proposition 3.1.1
and Theorem 3.1.2 above, we see that this local convexity implies the
convexity of the entire hull.

The calculation to check convexity is elementary. We first choose a
consistent ordering for the domains and calculate the Euclidean normal
to the plane containing the domain in Minkowski space. If we choose
a clockwise ordering, the resultant normals point outward from the
convex hull.
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FIGURE 4. Checking for local convexity across adjacent domains.

We now take the Euclidean dot product of this normal with a vector

in an adjacent domain.
Continuing in this fashion with all of the domains, we see that the

dot products all have the same sign. We can thus conclude that we
have determined the convex hull and that these domains are flat. a

It is easy to show [4] that the group A(u?,4) is equivalent to the group
A(1 —u?,4) after remarking and conjugacy, even though the canonical
tesselations derived from the convex hulls of these groups appear to
differ. This fact will be used in proving Theorem 4.1.5.

3.3 Properties of flat face groups. In this section, we examine
various properties of groups whose convex hulls are tiled by rectangles,
in particular the A(u?,4) groups. We begin with several definitions as
well as a series of lemmata which allow us to prove a theorem describing
the nature of the rectangles which comprise the boundary of the hull.
We will let T' denote a flat face group and C' its convex hull.
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Remark. Any two adjacent triangles in the boundary of C' form a
fundamental domain for 7T'.

The following lemma determines when the nongeneric case of tiling
by squares arises.

Lemma 3.3.1. The convex hull of a A(u?,4) group is tesselated by
squares only when u? = 1/2.

Proof. If we choose vy, = {1,—1,0}, then one calculates that

2 2
V1 =01 Vo = 1—’(1/2,0, w21

_ 1 1
U0=(911'92)'Uoo={§, 0}

9
U2

Using the Minkowski metric, one calculates that the Minkowski
length of the side connecting v, and wvp is 24/1/u?, and that the side
connecting vo, and vy is 24/1/1 — u?. However, these lengths are not
well-defined, as they depend on the initial choice of v.,. Therefore, we
must consider the ratio of these side lengths. This ratio is unaffected
by the scaling of the horoball, i.e., the height we choose for v,, on
the light-like ray representing infinity. Thus, the rectangle is a square
exactly when the ratio \/u?/(1 — u?) = 1. This occurs precisely when
u? = 1/2, proving the lemma. O

Definition. We say that two triangles in the boundary of the convex
hull are coplanar in the boundary of the convex hull if they live in the
affine hull of three points in the boundary of the convex hull. Likewise
we say that three vertices in the boundary of the convex hull (these
are necessarily light-like vectors) are coplanar in the boundary of the
convez hull if they live in the affine hull of three points in the boundary
of the convex hull. A triangle in a coplanar chain of triangles is called
an endmost triangle if exactly one of the dihedral angles it forms with
the two adjacent triangles in the hull is 7 radians. Finally, an edge in
the hull is called a flat edge if the dihedral angle between the faces on
either side of the edge is 7 radians.
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Lemma 3.3.2. Any two coplanar triangles in the boundary of the
convez hull are connected by a chain of coplanar triangles, all of which
lie in the boundary of C.

Proof. Let A and B be two coplanar triangles in the boundary of the
convex hull. If A and B have an edge in common, then there is nothing
to show, so we may assume that they do not. Since C' is convex, we
know that all of the hull lies to one side of the plane containing A and
B. Further, any line connecting these two triangles must also lie in the
hull, again due to the convexity of C. The fact that C' all lies on one
side of this plane implies that the line we drew connecting the triangles
must never leave the boundary of C, for if the line left the boundary
but stayed in the hull, convexity would force the hull to cross through
this plane. Thus, if we take the collection of triangles in the boundary
of the hull which meet this line, we have our coplanar chain of triangles.
O

Lemma 3.3.3. The number of coplanar vertices in the boundary of
the convex hull is finite.

Proof. First note that any plane intersecting a cone traces out either
an ellipse (nongenerically a circle) if the intersection is compact, or an
arc (either a parabola or a hyperbola) if the intersection is noncompact.
If we assume by way of contradiction that there existed an infinite
number of coplanar vertices in the light-cone, all of which lie on the
hull, then the intersection of the plane containing these points with
the light-cone would have to be an arc, as depicted in Figure 5, as a
compact intersection would give rise to an accumulation point in the
light-cone, contradicting Theorem 2.2.1. Further, these points cannot
all lie on a single ray as each ray in the light-cone contains at most one
point in the orbit of infinity.

But this implies that there is a neighborhood of a ray in the light-cone
which never crosses this plane. Since the hull is convex, all vertices must
lie to one side of this plane formed by the coplanar vertices. Because
light-like rays are dense in the boundary of the hull and a neighborhood
of the original ray contains no points in the orbit of infinity, we have a
contradiction. O
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FIGURE 5. Plane intersecting light-cone in an arc.

An immediate consequence of Lemma 3.3.3 is that the chain of
coplanar triangles in C' discussed in Lemma 3.3.2 must be finite.

Lemma 3.3.4. There is at least one endmost triangle in any
coplanar chain in the boundary of C.

Proof. Let us assume that we have a coplanar chain in the boundary
of C' with no endmost triangles, and choose any triangle in the chain.
Draw a simple curve which starts in this triangle and exits through a
flat edge. Continue passing the curve through triangles in the chain
making sure to enter or exit triangles only through flat edges, crossing
each edge no more than once. Since there are only a finite number of
triangles, and by assumption each triangle has at least two flat edges,
the curve must reenter a triangle, forming a closed loop.
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One notes, however, that there can be no closed circuits of triangles
around a vertex, because each vertex in the light-cone has an infinite
number of triangles incident upon it.

This contradiction proves Lemma 3.3.4. u]

We are now prepared to prove Theorem 3.3.5.

Theorem 3.3.5. The affine hull of any three points lying in the
boundary of the convex hull contains at most four vertices in the light-
cone.

Proof. To prove the theorem, assume that there are at least five
coplanar vertices in the light-cone on the convex hull. Since three
vertices form a face in the hull, and any two faces are connected by
a coplanar chain, we have at least three coplanar triangles on the
boundary of C', any two of which form a fundamental domain.

Of these three triangles in the coplanar chain, the one triangle
adjacent to the endmost triangle in the chain must have at least two
flat edges. Call the endmost triangle A and its adjacent flat triangle
B. Taken together, triangles A and B form a fundamental domain for
the punctured torus, as depicted in Figure 6. At least one of triangle
B’s outer edges is flat. Since one of the outer edges of triangle A is
identified with this edge, and neither of these outer edges is flat, we
have a contradiction. Thus, there are at most two adjacent coplanar
triangles in the boundary of the hull, proving Theorem 3.3.5. O

We can further show that if we have a convex hull whose boundary is
tiled by rectangles, then the relevant geodesics which identify opposite
edges of the rectangles which form the punctured tori meet at right
angles. We first need a theorem from Ratcliffe, see [6, page 71], and a
definition.

Theorem 3.3.6. Let vy, vy be linearly independent space-like vectors
in Minkowski space. Then the vectors vi and vo satisfy
[(v1, v2)] < lva]] [Joz]|

if and only if all nonzero vectors in the subspace spanned by vy and v
are space-like.
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FIGURE 6. Adjacent coplanar triangles— Note dashed lines indicate flat edges.

Definition. We say four coplanar points vy, vs, vs, v4 in Minkowski
space form a parallelogram if

(va —w1) + (v3 —v1) = vg — v1.

We say two vectors in Minkowski space meet at a right angle if their
Minkowski inner product is zero.

Remark. Let vy,... ,v4 form a Minkowski parallelogram with vertices
in the light-cone. Then vy,...,vs form a Minkowski rectangle if any
one of the angles of the parallelogram is right. One notes that if any
one angle is right, the other three are as well.

Theorem 3.3.7. Let C' be the convex hull of a punctured torus group
in Minkowski space. If OC is composed of rectangles, then the azes of
the geodesics which identify opposite sides of these rectangles meet at
right angles.
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FIGURE 7. Rectangle in the boundary of the hull depicted two ways.

Proof. Choose a rectangle in the boundary of the hull, and label its
vertices counterclockwise v; through vy, noting that these vertices lie
in the light-cone. In addition, label as g1 the geodesic which maps the
geodesic running from vs to v4 to the one running from v; to vy. This is
pictured in the Poincaré model in the lefthand image of Figure 7. The
plane spanned by the light-like rays fixed by g2 is a time-like subspace
intersecting the given rectangle in a (Euclidean) straight line, which
we label A,. Note also that the intersection of this plane with the
hyperboloid is the axis of gi2. We similarly define g4 and Ag. Finally,
label as p the point where A\, and A cross. The image on the righthand
side of Figure 7 shows this rectangle in Minkowski space.

Claim 3.3.8. The Minkowski inner product of two light-like vectors
18 negative.

Let v; and vy be independent light-like vectors. Clearly v; + vo is
time-like, so 0 > [|vy + v2||?.

Now, observe

0> ||’U1 + ’l)2||2 = <’l)1 + U2, VU1 + ’1)2>
= (v1, v1) + (v, v2) + 2(v1, v2) = 2(vy, Va),

proving Claim 3.3.8. o
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Claim 3.3.9. If v; and vy are independent light-like vectors, vy — vy
1s space-like.

We need to show that ||v; — va]|? > 0. We do this as follows:
[or — w2 = (v1 — vz, v1 — v2)
= (v1, v1) + (v2, v2) — 2(v1, v2)
= —2<’U1, ’U2> > 0.

So, v1 — vo is space-like. A similar calculation shows that v; — vy is
also space-like. u]

The hyper-elliptic involution 7 of the once-punctured torus admits
three fixed points. One can choose a lift of 7 in which one of the three
fixed points in the torus lifts to a point on the edge of the domain
connecting v; and vy which remains fixed in H? under 7. This gives
rise to a fixed time-like vector. This fixed time-like vector intersects
edge T1v3 of our rectangle at p;2. The action of 7 is rotation by =
through p12, which interchanges vy and vy, maps g12 to —gi2, and thus
maps A, to —A,. In short, 7 preserves A, up to orientation. Further,
7 is an isometry mapping the portion of vyvz between p;2 and vy to the
portion between pi2 and vo. Thus, A\, crosses 107 at its midpoint, p;o,
which exists due to the fact that vo — vy is space-like. By choosing the
lift of 7 which fixes a point on the edge U174, one sees that Ag crosses the
edge v1U4 at its midpoint, p14. Finally, since v7v3 is isometric to v3vg
via a covering translation, we know that A, connects the midpoints of
v1v3 and v3v4. Likewise Ag connects the midpoints of vyv; and vavs.
Label the point where A\, crosses A\g point p.

We now show that A, and Ag cross at right angles in the plane
containing the given rectangle.

Since v; — vy and vy — vy are linearly independent, ||[vi — wval|
and ||u; — v4]| are positive (these vectors are space-like) and since
v1, V9, V3, 4 form a rectangle, (v; — va, v; — v4) is equal to 0. Thus,
[{(v1 — v2, v1 — va)| < ||v1 — V2| ||[v1 — va]|. By Theorem 3.3.6 above, the
subspace spanned by these vectors is space-like. Thus, the Minkowski
inner product restricted to this plane is positive definite.

For convenience, translate this subspace so that p lies at the origin,
and relabel the vertices of the rectangle u; through w4, as shown in
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Figure 8. Note that these vertices are no longer vectors in the light-
cone. In fact, these vectors are all space-like and thus have positive
length. Also, —u; = u3, and —ug = ug4.

By assumption,

0= (u1 —ug,uz —u1) = (uy +uz,ug —uy) = *HUIW + HU2||2

Thus, ||u1|| = ||ug||, implying that the vector u; + us bisects us — uy,
and that us + usz = ug — uy bisects us + u;. Assembling this yields

1 1
—u + §(u1 +ug) = §(u2 —u1) = pa3

and
1 1
uy + 5(“2 —up) = §(u1 + ug) = pra.
So,
1 1 1
(P12, p23) = <§(U2 —uy), 5(“1 + U2)> = Z((m +ug), (u2 —uy)) = 0.

Thus, A\, and A\g meet at right angles in this plane. It remains to be
shown that the axes of the geodesics meet at a right angle in hyperbolic
space to conclude the proof of Theorem 3.3.7.

When we form the convex hull, we are free to choose the height
along the ray representing infinity at which we fix the cusp. Since
there is a highest vertex of the rectangle (the vertex with the largest
t coordinate), we can choose the cusp to be at a height low enough so
that the rectangle does not intersect the hyperboloid.

By continuously varying the height of the cusp, there will be a point at
which p intersects the hyperboloid. If this intersection is transverse, the
resulting intersection between the plane containing the rectangle and
the hyperboloid yields an ellipse. This ellipse must be invariant under
the hyper-elliptic involution 7. If we now apply the lift of 7 which fixes
p (we know this exists, as 7 must preserve the axes of both g, and gg,
and p is their intersection), we have an ellipse which is invariant under
rotation by m through a point which is not its center (p is a point of
intersection between the plane and the hyperboloid, so is a point on the
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U3 D23 U9
p P12
(I Uy

FIGURE 8. Rectangle with p at origin and vertices relabeled.

ellipse), a contradiction. In other words the point at which p intersects
this hyperboloid cannot yield a transverse intersection between the
plane and the hyperboloid. Thus, when the hull is at a height where p
intersects the hyperboloid, the plane containing the rectangle is tangent
to the hyperboloid.

The point of tangency for the plane containing the rectangle with the
hyperboloid is the point at which the axes of the geodesics meet. We
showed above that these axes meet at right angles in this plane. Since
this model is conformal, the axes meet at right angles in hyperbolic
space. i

4. Further results. In this section we examine some interesting
algebraic results which can be derived using the fact that certain
punctured-torus groups have convex hulls tiled by rectangles.

4.1 Commensurability results. We follow [5] for the definitions
of commensurability.

Definition. Fuchsian or Kleinian groups I'; and 'y are commen-
surable if Ty has a subgroup of finite index which is conjugate to a
subgroup of finite index in I';. Commensurability can also be defined
for hyperbolic manifolds and orbifolds. In this case, we say that two
hyperbolic manifolds or orbifolds M7 and Ms are commensurable if they
have a common finite cover.
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Many of the results in this section rely on an important theorem of
Margulis, details of which can be found in [5, Chapter 10.3].

Theorem 4.1.1. (Margulis). There is a unique minimal element in
the commensurability class of a nonarithmetic, finite co-volume group.

As Long and Reid discuss in [4, Theorem 2.2], it follows from [2, 9]
that a noncocompact Fuchsian group I' of finite co-area is arithmetic if
the traces of y2 are rational integers for a generating set v € I’ with
not of order two. In the case of A(u?,27) groups, one need only check
tr(g1-g1), tr (g2 - g2) and tr (g1 - g2 - g1 - g2), since they are free groups
of rank two.

The minimal element of the commensurability class corresponds to
a group containing all elements of the commensurability class up to
conjugacy. If we think in terms of quotient groups and we call M the
minimal element in the commensurability class of two groups G; and
G2, then H?/M is covered by both H?/G; and H?/Ga.

We will now prove the following theorem describing the minimal
element of the commensurability class of a nonarithmetic A(u?,4)
punctured-torus. Recall that a cusp may be defined as a ray stabilized
by a parabolic.

Theorem 4.1.2. Let I' = A(u?,4) be nonarithmetic. The minimal
element in the commensurability class of ' is H?/(T', 7), where T is the
hyper-elliptic involution of H?/T.

Let Q be the minimal element of I'. To prove Theorem 4.1.2, we
proceed with several lemmata describing the convex hull of 2 as well as
a discussion of the hyper-elliptic involution of a once-punctured torus.
We will also need Margulis’s theorem 4.1.1 discussed earlier.

Lemma 4.1.3. Let I be a finite co-volume group such that H?/T
has one cusp, and let I' < w be a finite extension. After a choice of
height, @w and ' have the same convex hull.
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Proof. We will begin by showing that I' and w have the same set of
lifts of cusps. First observe that w is discrete, as a finite extension of a
discrete group is discrete. Now note that since H?/I" has one cusp and
covers H?/w, it follows that H?/w also has one cusp. Any light-like
ray stabilized by a parabolic element of I' is obviously stabilized by
a parabolic element of w, namely the same parabolic. Conversely, if
w € Q stabilizes a light-like ray, all powers of w must also stabilize the
same ray. Further, since I is of finite index in w, w™ must lie in I" for
some n. Since there is only one cusp, there is only one orbit in the light
cone for both groups. That is, both groups have the same set of (lifts
of) cusps.

To complete the proof of the lemma, it remains to be shown that
the heights on the rays of the orbit of the cusp are the same for both
groups, that is, the volumes of the horoballs are the same for both
groups. Assume that the lifts of the cusps occur at different heights.
Now fix a point v, on a light-like ray, and let v € T and w € w be
such that y(ve) # w(vs), that is, ¥(vs) and w(ve) lie on the same
light-like ray, but at different heights. Now consider 7 !(w(vo)). It
lies on the same ray as v, but at a different height. This contradicts
the fact that the stabilizer of v., is parabolic, as parabolic elements
stabilize light-like rays pointwise, proving the lemma. ]

Since the minimal element 2 is a finite extension of I'; we know from
Lemma 4.13 that I' and Q have the same hull. Call this common hull
P, and note that we also know that the hull corresponding to Q has
boundary tesselated by rectangles.

We showed in Lemma 3.3.1 that the only instance in which a A(u?,4)
group has a convex hull tiled by squares, as opposed to nonsquare
rectangles, occurs precisely when u? = 1/2. Since we assumed I' was
nonarithmetic and A(1/2,4) is an arithmetic group, we know that P is
tesselated by nonsquare rectangles. We now continue with an analysis
of the hyper-elliptic involution of a once-punctured torus.

Fix I' = A(u?,4). After forming the convex hull of ', we arrive at
a canonical decomposition of H? into rectangles which descends into a
canonical geodesic rectangular domain for H?/T. First note that the
hyper-elliptic involution preserves the convex hull. This follows directly
from Lemma 4.1.3, as I' is a subgroup of (I', 7) of finite index. The
hyper-elliptic involution acts on the once-punctured torus with three
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FIGURE 9. Illustration of three lifts of 7.

fixed points. The quotient orbifold is a 2-sphere with three cone points
of order two. We will ascertain where on the rectangular domain these
points can lie.

First, only one of the points can lie in the interior of the rectangle,
as the hyper-elliptic involution rotates the rectangle by 7 radians.
Note also that this interior fixed point must lie in the barycenter of
the domain. The other two fixed points must necessarily lie on the
geodesic boundary of the ideal rectangle. The rotation through 7 in a
neighborhood of either of the noninterior fixed points of the rectangle
lifts to a rotation about the center of one of the edges of the ideal
rectangle in the universal cover. Thus, we can lift the hyper-elliptic
involution in one of three ways, each corresponding to one of the three
categories of fixed points described above. Two of the lifts correspond
to rotation of m about an edge of the ideal rectangle, and the third lift
corresponds to a rotation of m about the center of a face. These are
illustrated in Figure 9.

We know that 2 preserves the convex hull. We now analyze what
elliptic elements could preserve P, and prove the following proposition.
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Proposition 4.1.4. With ', 7 and P as above, the only object H? /T
can cover is H?/(T, 7).

Proof. Let H? /w be covered by H?/I'. Since w is a finite extension
of I', Lemma 4.1.3 ensures us that I' and w generate the same convex
hull. Any orientation preserving element of finite order must stabilize
a cone point, and any lift of an elliptic element fixes a time-like vector
which meets P in exactly one point. The following three cases exhaust
the possible choices for hull-preserving elliptics in w. Note that o can’t
be torsion-free due to Euler characteristic considerations.

Case 1. The time-like vector meets P at a vertex. This, however,
is impossible as the vertices of P lie in the light-cone, and thus their
stabilizers are parabolic.

Case II. The time-like vector meets P in an edge. This implies the
elliptic is an order two rotation through = about a point which fixes an
edge setwise.

Case I11. The time-like vector meets P in a face. As remarked earlier,
we know the faces of the hull are non-square rectangles, as square
rectangles only occur in an arithmetic group. This implies we must
have an order two rotation about a point in the center of a face.

Thus, if w € w is an element which fixes the relevant point, then its
action on P agrees with the hyper-elliptic involution in a neighborhood
of each of the fixed points. Since we have two linear maps which
coincide on an open set, they are the same map, i.e., w = (T, 7).

We have shown that, in the nonarithmetic case, the only object the
H? /T punctured torus can cover is H?/(T', 7), proving the proposition.
O

We now appeal to Theorem 4.1.1 for the existence of the unique
minimal element in the commensurability class of a nonarithmetic
group and complete the proof of Theorem 4.1.2, The minimal element
in the commensurability class of T' is H?/(T, T), where T is the hyper-
elliptic involution of H?/T.

The orbifold H?/(T, 7) must cover the unique minimal element guar-
anteed by Theorem 4.1.1. Further, by Proposition 4.1.4 above, it can’t
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axis of T

H?/(I, )

FIGURE 10. Punctured torus covering the orbifold obtained from the quotient of
the hyper-elliptic involution.

cover anything else, thus H?/(I',7) is the minimal element of I', and
Theorem 4.1.2 is proved. u]

In addition to having information about the minimal element of
the commensurability class of the flat-face groups, we also can show
that there are infinitely many commensurability classes in the A(u?,4)
groups. To prove this we appeal to the cross-ratio, defined as follows:

Definition. If z > y > z are distinct ordered points of OH?
(represented by the unit circle) the cross ratio of co,z,y,z is one of

{z—z/y—2zz2—a/z—y}
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Theorem 4.1.5. Let 0 < u? < 1/2. No two nonarithmetic groups
in A(u?,4) are commensurable.

Proof. Let G; and G2 be commensurable groups in A(u?,4). Fix
a vector for infinity in the Minkowski model of H? and form the
convex hulls for G; and G2. By Lemma 3.2.1 above, this gives rise to
two canonical ideal hyperbolic rectangles representing the fundamental
domains of H?/G;, i = 1,2.

Now consider the group formed via taking the quotient by the hyper-
elliptic involution. If 7; is the relevant hyper-elliptic involution, this
new group is €; = ([';, ;) & Zy x Zy * Zy, and H?/Q; is a two-sphere
with three cone points of order 2. Since I'; is commensurable with I,
Theorem 4.1.2 implies that Q; and €23 are in fact conjugate.

Claim 4.1.6. The punctured torus groups I'y and I's are conjugate.

Let v € PSL(2,R) be an element that conjugates ©; to Q2. There
are seven double covers of 0y (and thus of Q3). Of these seven, only
one is torsion free. Since I'; is a torsion free index two subgroup of €,
v must conjugate it to a torsion free index two subgroup of (23, and
since there is only one such subgroup, namely I's, we know that I'; and
I’y are conjugate, proving the claim.

Claim 4.1.7. Let P, and Py be the convex hulls corresponding to I'y
and I's respectively. If v conjugates I'y to I's as described above, then
v conjugates Py to Ps, that is, v- P = P5.

First note that y[';y~! = 'y and that T'y- P, = P». Now, ['z-(y-P;) =
AT1y~ 1 (v P1) = - P1. So 7+ P remains invariant under I's. Thus,
~ - Py = Py, proving the claim.

To complete the proof of Theorem 4.1.5, we use the fact that con-
jugate hulls imply conjugate faces. Because we know that the hulls in
question have rectangular faces, we can examine the rectangles in the
Poincaré disk model and appeal to the cross ratio.

Since v conjugates P; to P», we know that ~y carries faces of P; to faces
of P,. In the Poincaré disk model of H?, v maps the rectangular domain
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which descends from P; to that of P,. Rectangles in H? are conjugate
if and only if they have the same cross ratio. We may assume that the
domain for I'; is the canonical domain, R;, described in Lemma 3.2.1,
namely, the ideal rectangle with vertices oo, 1,u? and 0, i.e., A(u?,4).
This rectangle has cross ratio in the set {1/u?,1/1 —u?}. If Ry is the
domain given to us from the convex hull for I';, it must also have cross-
ratio in this set. However, this implies that R, is the ideal rectangle
composed of vertices 00,1,1 — u? and 0, i.e. A(1 —u?,4). As noted in
subsection 3.2, this implies that I'; and 'y are equivalent groups after
renaming, proving that G; and G, are commensurable. O
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