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SUBNORMALITY, ANALYTICITY
AND PERTURBATIONS

DARIUSZ CICHON AND JAN STOCHEL

ABSTRACT. The question of joint subnormality of analytic
operator-valued functions on open subsets of normed spaces is
studied with special emphasis laid on the role played by sets
of uniqueness in recovering the joint subnormality. Minimal
normal extensions of such functions are characterized via co-
efficients of their Taylor series expansions. Investigating per-
turbations of unitary operators and subnormal partial isome-
tries gives rise to numerous illustrative examples. An explicit
matrix construction of normal extensions of specific perturba-
tions of subnormal partial isometries is supplied.

1. Introduction. Given a class of bounded Hilbert space operators
it is tempting to know when linear combinations of its members remain
within this class. If the class of subnormal or hyponormal operators
is taken into consideration, then the above question has an intimate
connection with commutativity, cf. [7, 11]. Surprisingly, in the case
of subnormal operators even the commutativity of two operators does
not ensure their sum to be hyponormal [1, 24], see also [25, Problem].
On the other hand, there exists a pair of noncommuting subnormal
operators whose all linear combinations are subnormal, cf. [7, Example
3.2] and its reformulated version in Example 31. This, however,
is impossible for normal operators, even if linear combinations are
replaced by (ranges of) analytic operator-valued functions, cf. [16,
Theorem] and its generalization formulated in Theorem 9. Roughly
speaking, normality and analyticity implies joint normality (this is not
the case if “analyticity” is replaced by “real-analyticity,” cf. Example
21). In this paper, inter alia, we try to figure out to what extent
this remains true for subnormal operators. As shown in [7, Example
3.2] analyticity of subnormal-operator-valued functions does not help
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us establish their joint subnormality. In fact, unless Question 3 posed
in Section 8 is answered in the affirmative, one cannot expect that
the general criterion for joint subnormality stated in Theorem 4 may
find substantially simpler shape in the case of analytic operator-valued
functions. It turns out that “joint subnormality” is a proper substitute
for “normality” as long as analogues of [16, Theorem]| are concerned.
It is shown in Proposition 11 that an analytic operator-valued function
(defined on a region) whose restriction to a set of uniqueness is jointly
subnormal must necessarily be jointly subnormal. This phenomenon
does not occur if the set of uniqueness has empty interior and “joint
subnormality” is replaced by “normality,” cf. Example 22.

When exploring the topic of joint subnormality of an analytic
operator-valued function it is natural to investigate some basic ques-
tions like analyticity of minimal normal extensions, cf. Proposition 11,
and the relationship between the function and its Taylor coefficients
subject to both joint subnormality and minimality of normal exten-
sions, cf. Theorem 12. Sections 6 and 7 are devoted to a study of specific
perturbations of unitary operators and subnormal partial isometries,
respectively. This is accompanied with the detailed discussion which
has important consequences for families of normal or subnormal opera-
tors. Section 7 also contains an explicit matrix construction of normal
extensions of perturbations being considered. Furthermore, some open
questions are raised in Section 8. Regarding analytic operator-valued
functions defined on open subsets of normed spaces we follow the termi-
nology of the monograph [8], see also [20] for an alternative approach.

2. Prerequisites. Denote by N the additive semi-group of all
nonnegative integers. As usual R and C stand for the fields of real
and complex numbers, respectively. We adhere to the convention that
all linear spaces considered in this article are complex unless otherwise
stated. In what follows, H and K represent complex Hilbert spaces.
We always use (-, —) for denoting inner product. We write B(#) for
the C*-algebra of all bounded linear operators on H and I = Iy for
the identity operator on H. Unless otherwise stated, convergence of
sequences and series with entries in B(H) as well as continuity and
differentiability of functions taking values in B(# ) refers to the operator
norm topology. Let § be a subset of B(#). Denote by § the closure
of § with respect to the operator norm topology. We shall abbreviate
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the strong, respectively weak, operator topology to SOT, respectively

WOT, and write §SOT for the SOT-closure of §. We denote by alg T,
respectively C*(F), W*(F) the algebra, respectively C*-algebra, W*-
algebra, generated by the set § U {I}. In view of Fuglede’s theorem,
cf. [14], W*(F) is a commutative set of normal operators whenever §
is so. This fact will be of tacit and frequent use. Given a subset &
of H, we denote by §E the set UpczT'(€). For A € B(H), we write
A>0 in case (Ah,h) >0 for all h € H. Given A,B € B(H), we set
[A,B] = AB — BA; [A, B] is called the commutator of operators A and
B. If A: H — K is a bounded linear operator, then |A| stands for the
square root vV A*A of A*A. As usual, “lin” is an abbreviation for “linear
span.” Given a normed space X and real r > 0, we denote by By (r)
the open ball {z € X:||z|| < r}; by convention, we set By (c0) = X.

The proof of the following fact is left to the reader.

Lemma 1. If p:2 — B(H) is an analytic function defined on a
nonempty open subset of C, then o™ (2) C linp(R2) for all integers
n >0, where o\ stands for the derivative (with respect to operator
norm topology) of order n of .

A nonempty subset E of a normed space X is said to be a set of
uniqueness (in X) if for every connected open set 2 C X containing
E, each analytic function f:{2 — C vanishing on F is equal to 0 on
2. It is well known that every nonempty open subset of X is a set
of uniqueness, cf. [8, Theorem 12.9]. In the single-variable case each
infinite compact subset of C is a set of uniqueness. The proof of the
following fact is based on an idea from [16].

Lemma 2. Let {2 be a nonempty connected open subset of a normed
space X and p: 2 — B(H) an analytic function. Then

(1) linp(2) = linp(E), C*(p(2)) = C*(p(E))

and

W (p(2)) = W (p(E))

for every set of uniqueness E C (2.



1834 D. CICHON AND J. STOCHEL

Proof. Take a continuous linear functional £ on B(#) which vanishes
on lin p(E). Since € o ¢ is an analytic function vanishing on a set of
uniqueness F, the function £ o ¢ must vanish on {2, or equivalently
€ =0 on lin p(£2). As each closed linear subspace of a normed space is
determined by the family of all continuous linear functionals vanishing
on this subspace, cf. [9, Theorem III1.6.13], we get lin ¢(£2) = lin p(E).
This implies (1). O

An operator S € B(#) is said to be subnormal if there exists a Hilbert
space IC D H (isometric embedding) and a normal operator N € B(K)
such that Sh = Nh for all h € H; N is called a normal extension of S.
A normal extension N € B(K) of S is said to be minimal if K is the
only closed linear subspace of K containing H and reducing N. This
in turn is equivalent to K = V{N*"H:m >0} (for this and other facts
concerning subnormal operators we refer the reader to [10, 19]). If
S € B(H) is a subnormal operator, then there exists a unique Borel

semi-spectral measure F' on the closed interval [0, c0) taking values in
B(#) such that!

2) S SN = / t"dF(t), n>0.
0

The uniqueness of F' is guaranteed by the fact that the growth of the
sequence {||S*S™||}52, is of polynomial type (see [33, Theorem 2] or
the survey article [15]). To justify the existence of such an F, take
a minimal normal extension N € B(K) of S. Let E be the spectral
measure of N. Define the spectral measure E, on [0, c0) by

(3) E,(0) = E(0'(0)), o-Borel subset of [0, c0),

where ¢ : C — [0,00) is given by o(z) = |2|? for z € C. Applying the
measure transport theorem, cf. [18, Theorem C, page 163], we obtain

(§*S™h, by = |[N" |2 = /C o(=)" (E(dz)h, h)
:/oot"<Eg(dt)h,h>, heH,

for every n > 0. Hence, the semi-spectral measure

(4) F()E PE,()lu
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satisfies (2); here P is the orthogonal projection of K onto H. On the
other hand, if an operator S € B(#) fulfills (2) with some Borel semi-
spectral measure on [0, c0), then S is subnormal (cf. [12, 22]; see also
[4, 5, 13] for related characterizations of subnormality based on the
truncated complex moment problem).

Below “supp F” and “Sp (A)” abbreviate the closed support of a semi-
spectral measure? F and the spectrum of an operator A, respectively.
On account of Theorem 5 of [33], supp F C [0, ||S||?] whenever S and
F satisfy (2).

Lemma 3. Let S € B(H) be a subnormal operator, N € B(K) a
minimal normal extension of S and F a (unique) Borel semi-spectral
measure on [0,00) satisfying (2). Then

(5) supp F = Sp (N*N) = {|z|*: 2 € Sp (N)},
(6) Sp(N) C {z € C:|z|> € supp F}.

Proof. Let E be the spectral measure of N, and let E, be as in (3).
Since by the measure transport theorem

N*N = /C o(2)E(dz) = /0 LB, (ab),

we see that F, is the spectral measure of N*N. It follows from
[27, (5.4.14), (5.4.18)] that o(Sp(NN)) = Sp(N*N). We show that
supp F' = Sp (N*N). It suffices to prove that supp F' = supp E,. Let ¢
be a Borel subset of [0, 00) such that F'(o) = 0. Then by (4) we have

|Eo(a)h||? = (Ey(a)h, h) = (F(0)h,h) =0, heEH.
Hence E,(0)|% = 0. Since N* commutes with E, we get
E,(0)(N*™h) = N""Ey(0c)h =0, heH, m=0.
By the minimality of N, we must have E,(c) = 0. That E,(c) =0
implies F(o) = 0 is evident due to (4). This justifies the equality

supp F' = supp E, and consequently completes the proof of (5). The
inclusion (6) is a direct consequence of (5). o
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An operator T € B(H) is called hyponormal if [T*,T]>0. Every
subnormal operator is hyponormal but not conversely, cf. [10, 19].
An operator T € B(H) is said to be cosubnormal, respectively cohy-
ponormal, if T* is subnormal, respectively hyponormal. An operator
T € B(H) is called quasinormal if T commutes with |T'| or equivalently
T commutes with |T|2. Every quasinormal operator is subnormal but
not conversely, cf. [6], [19, Problem 154]. Finally, an operator which is
hyponormal or cohyponormal is called semi-normal.

Following [21], we say that an operator-valued function ¢: 2 — B(H)
defined on a set (2 is jointly subnormal if there exists a Hilbert space
K O H (isometric embedding) and a function @: 2 — B(K) such that
P (w), w € 2, are commuting normal operators and ¢(w) = &(w)|y for
all w € £2; such a @ is called a normal extension of ¢. If, moreover,
K is a unique closed linear subspace of K containing H and reducing
each operator #(w), w € 2, then we say that & is a minimal normal
extension of ¢. Given a normal extension @: {2 — B(K) of ¢, we set

M(S,H) = \/ {B(w1)™™ ... (wn) " Hiwy, ... ,w, € L,
n=1
qyy.n. ,0p € N}

One can check that

(7) M(®, H) = lin C*(B(2))H = lin W (B(2))H.

Notice that & is a minimal normal extension of ¢ if and only if
IM(P,H) = K. By [21, Theorem 2] any two minimal normal extensions
$1: 2 — B(Ky) and @o: 2 — B(K3) of ¢ are H-unitarily equivalent,
which means that there exists a (unique) unitary isomorphism U: 1 —
Ko such that Uly = Iy and UPi(w) = Po(w)U for all w € f2.
It is plain that if ¢:2 — B(#H) is jointly subnormal, then ¢(£2) is
commutative. To make the terminology complete, we say that a set
F C B(H) is jointly subnormal if the identity embedding § — B(H)
is jointly subnormal; by convention, a (minimal) normal extension of
T is understood as a (minimal) normal extension of § < B(#). It is
easily seen that a function ¢: 2 — B(H) is jointly subnormal if and
only if the set ¢(2) is jointly subnormal. Moreover, if @: 2 — B(K) is
a minimal normal extension of ¢, then there exists a unique function
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U:9(£2) — B(K) such that ¥ o ¢ = &; such ¥ is automatically a
minimal normal extension of the embedding ¢(2) — B(H).

A simple example of a jointly subnormal analytic operator-valued
function is given by the formula 2 > z — (2l — S)~! € B(#H), where
S € B(H) is a subnormal operator and {2 is the resolvent set of S.
If N € B(K) is a minimal normal extension of .S, then the function
23 2+ (2Ix — N)"! € B(K) is a minimal normal extension of
23z (2l —S)7t € B(H).

3. Joint subnormality revised. The following theorem provides
basic tools for further investigations. It generalizes and subsumes some
of I1t6’s results, cf. [21]. The condition (B) of Theorem 4 may be viewed
as a noncommutative Halmos-Bram-Ité condition, cf. [5, 17, 21].

Theorem 4. Let ¢: 2 — B(H) be a function defined on a nonempty
set £2. Then the following conditions are equivalent:

(A) ¢ is jointly subnormal,
(B) for every integer n > 1, for all n-sequences {hytaenn C H with

finite number of nonzero entries and for all n-tuples (wy, ... ,w,) € 2"

> (p(w1) - p(wn) " hg, p(w1)Pt - - p(wn) " ha) >0,
a=(ay,... ,an)EN"
B=(B1,--- ,Bn)EN™

(C) the algebra MSOT is jointly subnormal.
IfA= MSOT is jointly subnormal and ©: A — B(K) is a minimal
normal extension of AU, then
(a) = O o ¢ is a minimal normal extension of ¢,
(b) O is an isometric algebra homomorphism such that ©(I3) = Ix,
(c) ©71(A) = Aly for all A € OX),

(d) Olz:F — O(F) is an SOT-homeomorphism and a WOT-homeo-
morphism for all bounded subsets § of 2,

(e) O() is an SOT-closed subalgebra of B(K),
(f) @ 1:0(A) — A is SOT-continuous and WOT-continuous,

(8) W*(2(2)) = W*(O(R)).



1838 D. CICHON AND J. STOCHEL

Proof. Implication (A) =(B) is well known.

(B) = (C). By Theorem 3.2 of [31], ¢(£2) is commutative. The
collection I of all functions 7: 2 — N for which the set {w € 2: v(w) #
0} is finite becomes a commutative semigroup with pointwise defined
addition as a semi-group operation and the zero function as a neutral
element. Set A, = [[, o o(w)'@ for v € I'. Tt is clear that
{A,:~ € I'} is an operator representation of I', and (B) is equivalent to
the positive definiteness of {A,:y € I'} in the sense of Definition 1 of
[21]. Applying Theorems 1 and 7 of [21], we get the joint subnormality
of 2.

Implication (C) = (A) is evident.

Suppose now that 2 is jointly subnormal and ©:2 — B(K) is a
minimal normal extension of 2. Applying Lemma 3 a) of [21] to
the operator representation 2 — B(H) of 2 we see that © is an
algebra homomorphism such that ©(Il3) = Ix. In turn, by Theorem 2
of [21], © is an isometry. This gives us (b) and (c). Since A =
alg{A,YTF}SOT, we infer from Theorem 7 of [21] that W*(O(2)) =
W*({©(A,):y € I'}) and the function I' 5 v — O(A,) € B(K) is a
minimal normal extension of {A,:vy € I'}. Employing the fact that ©
preserves multiplication, we get both (a) and (g).

(d) and (f). Take a net {T,:0 € X'} C § which is SOT-convergent to
T € §. It follows from the commutativity of W*(©(2)) that O(T)f =
lim, O(T,)f for every vector f in L= 1lin{O(A)*h:h € H, A € A}.
Since by (b), sup,ex [|@(1,)|| = supy,es ||T-]] < oo, and by the
minimality of ©, £ = K, we conclude that O(T)f = lim, O(T,)f for
every f € K, which means that the mapping O|z: § — O(F) is SOT-
continuous. A similar argument yields the WOT-continuity of O|z. As
(f) is a consequence of (c), (d) follows immediately.

(e) Take a net {I,:0 € X} C A such that {O(1,):0 € X} is SOT-

convergent to an operator N € ©(2() . It follows from (c) that

(8) (Tof,9) =(O(T5)f,9) — (Nf,g), fEH, geK.

Thus Nf € Ko (Ko H) = H for every f € H, which means that

N(H) C H. Applying again (8), we deduce that the net {T,:0 € X}
is SOT-convergent to Ny € 2. Since N,O(Nly) € @(QI)SOT, Ny =
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O(N|3)| and @(QL)SOT is commutative, we infer from [21, Lemma 3
a)] that N = O(Nly) € O(2). o

In view of Theorem 4 a set § C B(H) is jointly subnormal if and
only if each of its finite subsets is jointly subnormal. Put § = {T €
B(H): TA = AT for all A € F}.

Corollary 5. Let ¢: 2 — B(H) be a jointly subnormal function
defined on a nonempty set {2, and let $:2 — B(K) be a minimal

normal extension of ¢. Set A = alg @(Q)SOT and B = alg p(£2). Then

1° there exists a unique mapping ©:2A — P(£2)" such that O(A)|y = A
forall A e,

2° there exists a unique continuous® algebra homomorphism ¥:B —
B(K) such that ¥(I3) = Ix and ¥(p(w)) = P(w) for all w € 2.

Moreover, W(A) = O(A) for all A € B, ¥ is a minimal normal
extension of B and consequently @ is a minimal normal extension of

A.

Proof. 1°. The uniqueness of O is a direct consequence of [21, Lemma
3 a)]. Since W*(@(£2)) C &(£2)', we infer from Theorem 4 and H-
unitary equivalence of minimal normal extensions that there exists a
minimal normal extension ©: 2 — @(§2) of 2 which necessarily satisfies
O(A)|y = Aforall A e

2°. The uniqueness of ¥ is straightforward. By Theorem 4 and H-
unitary equivalence of minimal normal extensions, we see that ¥ < O|gp
is a minimal normal extension of B which has all the desired properties.
]

Corollary 6. Let p: 2 — B(H) be a function defined on a nonempty
set 2. Suppose that 2y is a nonempty subset of 2 such that ¢|n,
————S0T
is jointly subnormal and ¢(£2) C algp(2y) . Then ¢ is jointly
subnormal. Moreover, if &: 2 — B(K) is a minimal normal extension
of v, then P|gq, is a minimal normal extension of ¢|g, -
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Proof. Set Ay = alg np(QO)SOT and observe that 2y = alg @(Q)SOT
The joint subnormality of ¢ is a consequence of part (C) of Theorem 4.
Let ©9:2p — B(K) be a minimal normal extension of 2;. By
Theorem 4, @) o |, is a minimal normal extension of ¢|p,. As
a consequence, @ o ¢ is a minimal normal extension of . Since
minimality determines normal extensions uniquely up to the H-unitary

equivalence, the proof is complete. a

Remark 7. Regarding Theorem 4, consider a jointly subnormal
operator-valued function ¢: 2 — B(#H). Let © and @ be as in The-
orem 4. Since @ is an isometric algebra homomorphism, the map-
ping @ enjoys many properties of ¢ such as continuity, differentiabil-
ity or summability, i.e., the series Y.~ c,p(w,) and Y oo ¢, P(wy,)
are simultaneously convergent and the norms of their sums are equal,
{en}2y C C, {wn}22y C 2. The same goes for algebraic properties of
p, i.e., if p is a representation of a semi-group, respectively a group, a
vector space, an algebra, then so is &.

According to the Bishop theorem, cf. [4], the set of all subnormal
operators on H is equal to the SOT-closure of the set of all normal
operators on H. Our next goal is to adapt this to the context of jointly
subnormal functions.

A jointly subnormal function ¢: 2 — B(H) is said to be flat if
dimH = dimK for every (equivalently, for at least one*) minimal
normal extension @: 2 — B(K) of ¢ (“dim” is an abbreviation for
orthogonal dimension).

Theorem 8. Let ¢: 2 — B(H) be a function on a nonempty set (2.

(i) If the function ¢ is jointly subnormal and flat, then there exists
a net {gs: 2 — B(H) | o € X} such that

(i) (a) ¢ (£2) consists of commuting normal operators for every
celX,

(i) (b) p(w) =SOT —limyex @o(w) for every w € 2.

(i) If a net {@,: 2 — B(H) | o0 € X} satisfies (i) (a) and (i) (b),
then ¢ is jointly subnormal.
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Proof. (i) Denote by X the set of all finite dimensional linear
subspaces of H partially ordered by inclusion. Let @: 2 — B(K) be a
minimal normal extension of . Since dim H = dim K, for every o € ¥
there exists a unitary isomorphism U,:H — K such that U,(f) = f
for all f € 0. For each o € X' we define the function ¢,: 2 — B(H) by

(9) 0o (W) =UsP(w)U,, w € 2.

Since UZ(f) = f for all f € ¢ and ¢ € X, we conclude that (i) (a) and
(i) (b) are valid.

(ii) Take wy,... ,w, € 2, and set T; = p(w;) and T} , = @ (w;) for
j=1,...,nand o € Y. Denote by E;, the spectral measure of 1} ,.
It follows from (i) (a) that

(10) the spectral measures E; o, ... , E, , commute for every o € X.

Put G = Bg(r) with = max; ¢ j <, ||Tj|| + 1. Since the spectrum of
each operator T is contained in G, we infer from [10, Lemma II.1.18]
that

(11) SOT- III%E]YU(G) == I’Ha j == 1, .-, N,

oc
Set Tj,a =F;,(G)T}, for j=1,...,n and 0 € X. Notice that
(12) Tjﬂ = / zE;,(dz), j=1,...,n,0€X.

G

By (11), (i) (b) and (12) we have SOT-lim,exTj, = 7T, and
sup,ex [|Tjo|| <7 forall j =1,...,n. This leads to

(13) SOT- 111%Tf“;---f,?g =T .. T, o,...,a, €N.
o.e b b

It follows from (10) and (12) that ﬁ’a, e ,ﬁw are commuting normal
operators for every o € X. This combined with (13) enables us to show
that the condition (B) of Theorem 4 is satisfied. This completes the
proof. ]

4. Analytic normal-operator-valued functions. The theorem
of [16] can be generalized to the case of analytic functions defined on
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open subsets of normed spaces as follows, see also [3, Lemma 2] for
Qccl

Theorem 9. Let {2 be a nonempty connected open subset of a normed
space X and ¢: 2 — B(H) an analytic function. Suppose (2 is a
nonempty open subset of 2 and ¢(§29) consists of normal operators.
Then W*((£2)) consists of commuting normal operators.

Proof. We can assume, by diminishing (2 if necessary, that (2 is
convex. Take two points a,b € (29 and define the analytic mapping
Yap: C — X by

Yap(2) =a+2(0b—a), ze€C.

Then medéfzb;;(ﬂo) is an open and convex neighborhood of the

closed interval [0, 1]. Hence the function ¢, = povYapla,, is analytic
and the set ¢q5(f2,) being a subset of ¢(f2y) consists of normal
operators. Since {2, is connected, we infer from [16, Theorem| that
the set ¢q5(2,5) is commutative. This means that the operators
w(a) = @ap(0) and @(b) = pup(1) commute. Summarizing, we have
proved that the set ¢(f29) consists of commuting normal operators.
Applying Lemma 2 to E = {2y completes the proof. mi

Our next goal is to formulate an infinite-dimensional version of [16,
Lemma].

Proposition 10. Let 2 be a nonempty connected open subset of a
normed space X and ¢: 2 — B(H) an analytic function. Suppose that
>ore o Pu(x — o) is a Taylor series expansion of ¢ at a point xy € £2.
Then the following conditions are equivalent:

(i) the set p(£2) consists of normal operators,

(ii) the family {P,(x):x € X, n € N} consists of commuting normal
operators.

Proof. (i) = (ii). By Theorem 9, lin ¢({2) consists of commuting nor-
mal operators. Since P, (z) = (1/n!)(d"/dz")p(zo+ 22)|,—0, Lemma 1
implies that P, (z) € linp(£2) for all z € X and n € N.
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(ii) = (i). Set P = {P,(z):z € X, n € N}. By (ii) and Fuglede’s
theorem, lin? consists of commuting normal operators. Let r > 0
be such that 20 = zo + Bx (r) C 2 and the series Y00, P, (z — o)
converges to ¢(x) for every z € 2. Hence ¢(£2) C linP, which,
together with Lemma 2, shows that the set ¢({2) consists of commuting

normal operators. o

5. Jointly subnormal analytic functions. The following propo-
sition shows that joint subnormality of an analytic function can be
retrieved from that of its restriction to a set of uniqueness.

Proposition 11. Let ¢: 2 — B(H) be an analytic function defined
on a nonempty open subset {2 of a normed space X.

(i) If ¢ is jointly subnormal, then any minimal normal extension
$: 2 — B(K) of ¢ is analytic; moreover, there exists a net {¢,: 2 —
B(#H) | 0 € X} of analytic functions satisfying the conditions (i) (a)
and (i) (b) of Theorem 8.

(ii) If 2 is connected and E C (2 is a set of uniqueness, then ¢|g
is jointly subnormal if and only if ¢ is jointly subnormal; moreover,
if :2 — B(K) is a minimal normal extension of ¢, then @|g is a
minimal normal extension of ¢|g.

Proof. (i) Due to Theorem 4, there exists an isometric linear isomor-
phism O:lin(2) — linP(2) such that & = O o p. It is now clear
that @ is an analytic function, see [8, Exercise 12D]. This guarantees
that the formula (9) defines a net of analytic functions with the desired
properties.

(ii) Since by Lemma 2 lin ¢(£2) = lin ¢(F), the conclusion is a direct
consequence of Corollary 6. o

Given a normed space &', an integer n»>1 and an n-homogeneous
polynomial P: X — B(#), we denote by P the unique symmetric n-
linear map P: X™ — B(#) such that P(z) = P(z,... ,z) forall z € X.
If P is a polynomial of degree 0, then we put P = P. We now relate
joint subnormality of an analytic function ¢ to that of coeflicients of
Taylor series expansion of ¢ at a given point. Our approach deals with
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a more general situation where functions under consideration are not
necessarily analytic sums of power series.

Theorem 12. Let X be a normed space and P,: X — B(H) a
continuous n-homogeneous polynomial for everyn € N. Fizr € (0, 00].
(I) If the function N x X 5 (n,z) — P,(x) € B(H) is jointly
subnormal and the function N x X 3 (n,z) — Qn(z) € B(K) is its
minimal normal extension, then

(I) (i) Qu: X — B(K) is a continuous n-homogeneous polynomial
forallm € N,

(I) (ii) the series > oo o AnPr(z) and 3.7 A\Qn(z) are simultane-
ously convergent and the norms of their sums are equal for all x € X
and {\,}52, C C,

(I) (iil) the radii of uniform convergence of > - o Pn and Y " Qn
are equal,

(@) (iv) if ¢:Bx(r) — B(H) is of the form® o(z) = Y oo, Pu(®),
x € Bx (r), then ¢ is jointly subnormal and the function @:Bx(r) —
B(K) defined by d(z) = > 07 Qn(z), z € Bx(r), is a minimal normal
eztenston of .

(II) If ¢:Bx(r) — B(H) is gwen by ¢(z) = > .° Pu(z), = €
Bx (1), and ¢ is jointly subnormal, then any minimal normal extension
@:Bx (r) = B(K) of ¢ is of the form &(z) =Y " Qn(z), x € Bx (1),
where Qn: X — B(K) are continuous m-homogeneous polynomials;
moreover, the function N x X > (n,z) — P,(x) € B(H) is jointly
subnormal and the function N x X 3 (n,z) — Qn(z) € B(K) is its
mainimal normal extension.

Proof. (I) Suppose that N x X 5 (n,z) — Qn(z) € B(K) is a
minimal normal extension of N x X 3 (n,z) — P,(z) € B(H). Due to
Theorem 4, there exists an isometric linear isomorphism

O:lin{P,(z):z € X, n € N} — lin{Q,(z):z € X, n € N}

such that ©1(T) = T'| for every T € lin{Q,,(z):x € X, n € N}, and

(14) O(P,(z)) =Qn(z), z€X, neN.
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(I) (i) Fix n> 1. By the polarization formula, cf. [8, Theorem 4.6],

P,(X") Clin{P,(z):x € X, n € N}.

Hence the map Q, = @ o B,: X" — B(K) is well-defined, continuous,
symmetric and n-linear. Since by (14)

Qun(z,...,z)=OP,(z,... ,z) = OP,(z) = Qu(z), =€ X,

we conclude that @, is a continuous n-homogeneous polynomial. The
case n = 0 is obvious due to (14).

Since O is a linear isometry, (14) and the Cauchy-Hadamard formula
for the radius of uniform convergence, cf. [8, Theorem 11.5], imply (I)
(ii) and (I) ().

(I) (iv) Notice first that in view of (I) (ii) the power series > -~/ Qn(z)
converges for all z € By (r), which legitimizes the definition of @(x) as
well as the inclusion “C” in the following equality

(15) lin@(Bxy(r)) =1lin{Q,(z):z € X, n € N}.
The opposite inclusion can be deduced from Lemma, 1 and the equality®

1 4"

Qn(z) = nl @Q(zxﬂz:o,

which is valid for all z € X and n € N. By (15) and Fuglede’s theorem,
P(Bx (r)) consists of commuting normal operators, and

B(a)l =07 B(@) = 3 67'Qu(z) ¥ Y Pu(@) = ¢(a), z € Bx (r).

This means that ¢ is jointly subnormal and @ is its normal extension.
By (7) and (15), @ is minimal.

(II) Following the argument used in the proof of (15) we get

ling(By(r)) =lin{P,(x):z € X, n € N}.

By part (C) of Theorem 4, the function N x X 3 (n,z) — P,(z) €
B(H) is jointly subnormal. Let N x X 3 (n,z) — Qn(z) € B(K) be
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its minimal normal extension. Applying (I) we conclude that @, are
continuous n-homogeneous polynomials and the function @:By (r) —
B(K) defined by &(z) = > .-, Qn(z), € Bx(r), is a minimal normal
extension of ¢. Any other minimal normal extension of ¢ being H-
unitarily equivalent to @ is of the same form. Since N X X 5 (n,z) —
Qn(z) € B(K) is a minimal normal extension of N x X 3 (n,z) —
P, (z) € B(#) and the H-unitary equivalence preserves minimal normal
extensions the proof is complete. ]

Specifying Theorem 12 for polynomials we get

Corollary 13. Let X be a normed space and k € N. Assume
that p: X — B(H) is a continuous polynomial of degree k which is
jointly subnormal and &: X — B(K) is its minimal normal extension.
Then @ is a continuous polynomial of degree k. Moreover, if ¢ is k-
homogeneous, then so is .

The reader may formulate other variants of Theorem 12 and Corol-
lary 13, e.g., not assuming polynomials in question to be continuous.

Corollary 14. Let {A,}3, be a sequence in B(H) and ¢: Bc(r) —
B(H) a function of the form p(z) = 3.7 2" Ay, z € Bc(r), where 7
is a positive real number. If the function N > n — ¢(z,) € B(H)
is jointly subnormal for some sequence {z,}22, C Bgc(r) with an
accumulation point in Bg(r), then the functions ¢:Bgo(r) — B(H)
and N 3 n— A, € B(H) are jointly subnormal.

Proof. Combine part (ii) of Proposition 11 with Theorem 12. u]

We conclude this section with a characterization of joint subnormality
of analytic functions in several complex variables. We leave it to the
reader to check that the technique of the proof of Theorem 12 works
equally well in the present case (Proposition 11 may be helpful as well).
Below we use the standard multi-index notation.
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Proposition 15. Let ¢: 2 — B(H) be an analytic function defined
on a nonempty connected open subset 2 of C4, d>1, and let p(z) =
Y aend(z—w)* Ay be the power series expansion of ¢ at a point w € 2.
Then the function ¢ is jointly subnormal if and only if the function
N? > a — A, € B(H) is jointly subnormal. Moreover, if &: 2 — B(K)
is a minimal normal extension” of ¢ and $(2) = Y., cna(2 — w)*Bq
is the power series expansion of & at w, then N¢ > a — B, €
B(K) is a minimal normal extension of N 3 a — A, € B(H).
Conversely, if N 5 a — B, € B(K) is a minimal normal extension of
N> a— A, € B(H), then there exists a minimal normal extension
9: 2 — B(K) of ¢ such that ®(z) = ) cna(2z — w)* B, is the power
series expansion of @ at w.

6. Perturbing unitary operators. In this section we investigate
the question under what circumstances semi-normality is preserved
when a unitary operator U is perturbed by an operator 7' which is
algebraically tied up with U. This algebraic relationship is elucidated
below in Lemma 16 which provides a background for discussing the
analytic polynomial S, = U + zT in one complex variable z.

Lemma 16. Let U € B(H) be a unitary operator and T € B(H) (H
is a real or complex Hilbert space). Then the following conditions are
equivalent

(i) T*U = T*T,
(i) TU* = TT*,
(iii) T = UP, where P € B(H) is an orthogonal projection,
(iv) T* = U*Q, where @Q € B(H) is an orthogonal projection.
If any of the above conditions holds, then

(a) T is a partial isometry with the initial space T*(H) = P(H) and
the final space T(H) = Q(H),

(b) [T,U] =0 if and only if T*(H) = T(H),

(¢) [(U+2T)*,U +2T) = (|1 + 2> = 1)(P — Q) for all scalars z,
(d) U + 2T is unitary for all scalars z such that |1 +z| =1,

(e) if [1+2z| # 1, then U+ 2T is normal if and only if T*(H) = T(H);



1848 D. CICHON AND J. STOCHEL

if this is so, then M= T(H) reduces U and U + 2T = ((1+ 2)U|m) @
Ulpge -

Remark 17. Any pair (U,T) satisfying condition (i) of Lemma 16,
where U is a unitary operator, can be constructed as follows. Take
two closed liner subspaces K and £ of ‘H such that dim K = dim £ and
dim Kt = dim £+, and consider any unitary operator U € B(#) such
that U(K) = £ and U(K+) = £1. Put T = UP, where P € B(H) is
the orthogonal projection of H onto . Then the pair (U,T') satisfies
condition (i) of Lemma 16, 7*(#) = K and T'(#) = L. Notice that the
case in which K ¢ £ and £ ¢ K is not excluded.

Proof of Lemma 16. (i) = (iii). It follows from T*U = T*T that
T = UT*T, hence T* = T*TU*, and finally T*T = (T*T)?, which

def

means that P =T"*T is an orthogonal projection such that T'= UP.
The implication (iii) = (i) is clear.
Applying (i) < (iii) to (T,U™*) in place of (T,U) we obtain (i) <
(iv).
(iii) = (iv). Setting @ = UPU* and taking adjoints in T' = UP, we
obtain
T =PU*=U*(UPU*)=U*Q.
Applying (iii) = (iv) to (T, U*) in place of (T,U), we get (iv) = (iii).
The rest of the proof is straightforward. i

Denote by l% the Hilbert space of all square summable two-sided
vector sequences {fn}ncz C H (Z is the set of all integers). For
bounded {\,}necz C C, the operator W defined on /%, by

W({hn}nEZ) = {)‘nhnfl}nEZ7 {hn}nez S l'?{v

is called a bilateral weighted shift on 13, with weights {\, }n.cz.

Lemma 18. Let U € B(H) be a unitary operator and T € B(H)
be such that T*U = T*T. Fiz z € C such that |1 + z| # 1 and set
S, =U+2zT. Assume that T(H) G T*(H), respectively T*(H) & T(H),

and set A = T*(H)©T(H), respectively A = T(H)©T*(H). Then the
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closed linear space R = @nEZ "(A), respectively R % @nez Ur(A),
reduces S, to an operator which is unitarily equivalent to the bilateral
weighted shift on 1%, respectively lzg, with weights

)\n(z):{l forn<0 (resp.xn(z):{1+z forn<0>’

1+z forn>1 1 forn>1

and S, |r 1, respectively S,| 18 a normal operator.

RL?

Proof. Consider first the case T(H) & T*(#). By Lemma 16 the
space M= T*(H) is invariant for U and A = M © U(M) # {0}.
Applying the von Neumann-Wold decomposition to the isometry U|aq,

cf. [27, Theorem 4.7.1], we see that the space My = NS, U™(M)
reduces U and M = My & @, , U"(A). Hence, Mo, reduces T and
consequently S,. Since the space Mo, @R reduces U and contains M,
we deduce that it reduces S,. Thus R reduces S, and

Silre = (14 2)Ulme) @ Ulmoor)s

which means that S,|z. is a normal operator. Define the unitary
isomorphism A:1% — R by

M{hotnez) = S U, {hobucs € 4.

neZ

Then A71(S,|r)A is the bilateral weighted shift on I% with weights
{)‘n (Z)}nEZ-

Consider now the case T*(H#) & T(H). By Lemma 16 the space
N = T(H) is invariant for U* and A = N © U*(N) # {0}. Applying
the previous paragraph to (U*,T*, z) in place of (U, T, z) and noticing
that W = V~1W;V, where W is the bilateral weighted shift on 12Z
with weights {\,(z)}nez, Wo is the bilateral weighted shift on l2Z with
weights {\,(Z)}nez and V € B(EQZ) is the unitary operator defined by

V({hntnez) = {h-n}nez, {hnlnez € 125,

we conclude that .S, |’E is unitarily equivalent to W and S, |7€ . isnormal.
O
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As in the scalar case we show that a bilateral weighted shift W on I3,
with weights {\, }nez is hyponormal if and only if |\, | < |A\,41] for all
n € Z. Moreover, if W is hyponormal, then so is W™ for every n > 0.

Proposition 19. Let U € B(H) be a unitary operator, and let
T € B(#H) be such that T*U = T*T. Fiz z € C such that |1 + z| # 1
and set S, =U + zT.

(i) S, is hyponormal if and only if either |1 + z| > 1 and T(H) C
T*(H) or |14+ 2| <1 and T*(H) C T(H).

(ii) If S, is hyponormal, then for every n>1, ST is hyponormal.

(iil) S_1 s subnormal if and only if T*(H) C T(H); if T*(H) G T'(H),
then S_1 = N @V, where N is a normal operator and V is an

operator which is unitarily equivalent to a unilateral shift of multiplicity
dimT(H) o T*(H).

(iv) If z # —1, then S, is subnormal if and only if T*(H) = T'(H).

Remark 20. Proposition 19 can be supplemented with the following
three conditions (still assuming |1 4+ z| # 1). The proof remains
essentially the same.

(a) S, is cohyponormal if and only if either |1+ z| < 1 and T(H) C
T*(H) or |1+ 2| > 1 and T*(H) C T(H); if this is so, then S} is
cohyponormal for all n>1.

(b) S_; is cosubnormal if and only if T(H) C T*(H); if T(H) &
T*(H), then S 1 = N@®V*, where N is a normal operator and V is an

operator which is unitarily equivalent to a unilateral shift of multiplicity
dimT*(H) o T(H).

(c) If z # —1, then S, is cosubnormal if and only if T*(H) = T(#H).

Proof of Proposition 19. Part (i) is a direct consequence of Lemma 16.

Part (ii) follows from (i), Lemma 18 and Lemma 16 (e).

(iii) If S_; is subnormal, then it is hyponormal and consequently, by
(i), T*(H) CT(H). E T*(H) = T(H), then by Lemma 16 the operator
S_1 is normal. If T*(H) G T(H), then by Lemma 18 the space R
reduces S_1, S_1 ‘75 . isnormal and S| % is unitarily equivalent to the
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bilateral weighted shift W on 12Z with weights {A,(—1)}nez. Moreover,
the space ICdZEf{{hn}nez € l%: hi = 0 for all k< — 1} reduces W,
Wlicr = 0 and W is a unilateral shift of multiplicity dim A.

(iv) According to Lemma 16 (e), it suffices to show that if z # —1
and S, is subnormal, then T*(#) = T(#). Suppose that, contrary
to our claim, T*(#H) # T(#H). By (i) only two possibilities can occur:
either T(H) G T*(H) or T*(H) & T(H). In the first case, we take a
unit vector f € U*2(A). In view of the proof of Lemma 18 we have
S.(f) =Uf and S*(f) = (1 + 2)*"2U* f for all k >2. Thus

(16) (ag,a1,ag,...) = (1, 1,1, 142> |1 + 2%, |1 + 2[%,...),

where a, = ||S?(f)||> for n>0. Since S, is subnormal, there exists
a probability Borel measure p on the half line [0, 00) such that a, =
fooo t"du(t) for all n >0, cf. [22]. By the Schwarz inequality, we have

1=a?= ( A t°td~<t>)2 < [ P [ e = aoan ~1.

0

which implies that the monomials t° and ¢ are linearly dependent
in L?(u). Thus, suppp = {0}, where § € [0,00), and consequently
an = 0" for all n >0. This and (16) yields |1 + z| = 1, a contradiction.

If T*(H) G T(H), then taking a unit vector f € U*2(A) leads to
(17) (aoaalaGZa"') = (1,‘1+Z|2,|1+Z|4,|1+Z|4,|1+Z‘4,...),

where a, = ||S?(f)||* for n>0. Since a? = apaz, the reasoning
contained in the previous paragraph yields a,, = 6™ for all n > 0, where
6 € [0,00). This, z # —1 and (17) gives |1 + z| = 1, a contradiction.
[}

Example 21. We show that Theorem 9 is no longer true for real-
analytic functions. For this, consider a real Hilbert space #,, a unitary
operator U € B(H,) and an operator T € B(H,) which satisfy the
following condition

(18) T*U =T*T and TU # UT.
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Notice that this can be done even in a two-dimensional Hilbert space
H., cf. Lemma 16 and Remark 17. Set Hsz) = H, ® H,. Then the
function 9: R? — B( §2)) defined by

| U+ (z-1)T —yT
Yl y) = yT U+t@-nr) “YeR
is real-analytic. By (18) and Lemma 16 the operator ¢ (z,y) is unitary
for all (z,y) € R? such that 22 +y* = 1. As a consequence, the unitary-
operator-valued function ¢: R — B( 52)) given by ¢(t) = 9(cost,sint)
is real-analytic and its range is not commutative because the operators
©(0) and ¢(7/2) do not commute.

We now turn to a complex version of the above example. Let
U € B(H) be a unitary operator and T € B(#) an operator which
satisfies (18). Then by Lemma 16 the function ¢: R — B(%) defined
by

p(t)=U+ (e —1)T, teR

is real-analytic and p(R) consists of unitary operators, although the
operators ¢(0) and ¢(7) do not commute.

Example 22. Example 21 may be modified so as to show that in
Theorem 9 the open set {2y cannot be replaced by a set of uniqueness.
Let U and T be as in the previous paragraph. Define the analytic
function @: C — B(H) by

P(z)=U+2T, zeC.
Then E= {2z € C:|1 + 2| = 1} is a set of uniqueness in C and §(E)
consists of unitary operators, although ¢(C) is not commutative and
?(C) is not a family of normal operators, cf. Lemma 16. In fact, if
we choose U and T so that T'(H) € T*(H) and T*(H) ¢ T(H), then
for all z € C\ E, §(z) is neither hyponormal nor cohyponormal, cf.
Proposition 19 and Remarks 17 and 20.

Remark 23. Regarding Example 21, notice that if ¢: 2 — B(#) is an
analytic unitary-operator-valued (or an analytic self-adjoint-operator-
valued) function defined on a nonempty connected open subset of C,
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then the function ¢ is constant (mimic the proof of [16, Lemma] playing
with a Taylor series expansion of ¢ at a fixed point of {2, and then apply
Lemma 2).

7. Perturbing subnormal partial isometries. Regarding sub-
normality it is purposeful to study an operator for which norms of its
powers, excluding the Oth exponent, on an arbitrarily fixed vector form
a constant sequence. Such operators can be modeled on 2 by 2 op-

b's
00
a bounded linear operator. Thus they can be thought of as specific
perturbations of operators of the shape V @0 with V as above. In view
of [19, Problem 161] subnormal partial isometries are exactly those
operators which can be represented as the aforesaid V & 0.

erator matrices of the form }, where V' is an isometry and X is

Proposition 24. If S € B(H), then the following conditions are
equivalent

(1) IS™h|| = ||Sh|| for alln>1 and h € H,
(ii) |S™| = |S| for alln>1,

(iii) |S2| =15,

(iv) 8® = Wn LS for all n > 1, where W € B(H) is an isometry,
(v) §? =WS, where W € B(H) is an isometry,

(vi) S|S(H is an isometry,

(vii) S = [‘g )0(} with respect to a decomposition H = Hyi ® Ha,

where V € B(H1) is an isometry and X:Hy — Hy is a bounded linear
operator,

(viii) S satisfies (vii) and H1 = V(H1) + X (Hz); such V and X are
unique.

If S € B(H) satisfies (vii), then
(a) S is hyponormal if and only if S is subnormal,

(b) S is subnormal if and only if ||S|| < 1; the latter is equivalent to
IXII<1 and V(H1) L X(Ho),

(c) S is quasinormal if and only if S is a partial isometry; the latter
is equivalent to X being a partial isometry and V(H1) L X (H2),
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(d) S is an isometry if and only if X is an isometry and V(H1) L
X(HZ);

(e) S is cohyponormal if and only if V is unitary and X = 0.

Proof. The equivalence (i) < (ii) is easily seen to be true. The proof
of the equivalences (ii) < (iii) and (iv) < (v) is by induction on n. The
implication (iv) = (ii) is valid because W**W* = I for all k > 0.

(iii) = (vi). This is a consequence of the following equalities
IS(SR)II = [[1S*IR]| = [[ISIR]| = IS, heH.

(vi) = (iv). One can verify that any isometric extension W € B(#)
of the isometry S |m € B(S(#)) meets our requirements.

(vi) = (viii). Set H1 = S(H), Ho = HO M1, V = S|m and
X = S|u,. Then S = [V X} is the desired matrix representation of

S. The uniqueness of V and X satisfying the condition (vii) and the
equality Hq1 = V(H1) + X (#H2) is evident.

The implication (viii) = (vii) is obvious.

(vii) = (iii). A matrix computation combined with the isometricity
of V leads to S*25% = §*S, as desired.

Assume now that the operator S € B(#) satisfies (vii).

(a), (b). If S is hyponormal, then by the isometricity of V' we have
(19)
IV R PHIX P [* = (18" (ha@0)[|* < [|S (R1@0) || = [[Pa]|?,  h1 € Ha.

This implies that || X|| <1. Substituting V'hy in place of hy into (19)
and again using the isometricity of V' we get

bl + IX*Vha|* < [[Pa]l?,  ha € Ha,
which yields X*V = 0. Hence V(H1) L X (Ha).
If | X||<1 and V(H1) L X(#Hz), then by the isometricity of V' we
have

IS(hy @ ho)||* = [[Vhy + Xha||* = [[Vha|* + | X ha||* <[ by @ ha®

for all h; € H; and hy € Ha. This means that ||S|| < 1.
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The operator S is subnormal if and only if for every h € H the
sequence a,(h) déf||‘5’"h||2, n >0, is a Stieltjes moment sequence, cf.
[22, 23], see also [30, Proposition 2.3]. By (vii) < (i) we have

an(h) = |r||>  forn =0,
" LISA)?P for n> 1.

If |S|| <1, then one can check that an(h) = [;° t"dun(t) for all n>0
with

(20) pn = ([IR]1* = ISR]I*)d0 + [|S?61,

where §,, is the probability Borel measure on [0, co) with total mass at
x. Thus S is subnormal. It is well known that subnormal operators are
always hyponormal, cf. [19, Section 160].

(c) Notice first that S is quasinormal if and only if S|S|> = |S|2S
which is equivalent to the conjunction of the following four equalities

(21) XXV =0,
(22) (X*V)V =0, (X*V)X =0,
(23) X =V(X*'V)* + X|X %

Suppose that S is quasinormal. Multiplying both sides of (21) on
the left by V*, we get (X*V)*X*V = 0. This implies X*V = 0
which is equivalent to V(#H1) L X (#Hz2). Therefore, by (23), we have
X = X|X|?. This in turn is equivalent to X being a partial isometry, cf.
[19, Problem 98, Corollary 3]. The converse implication holds because
the equalities X*V = 0 and X = X|X|? imply (21), (22) and (23).

Next, S is a partial isometry if and only if S = SS5*S which is
equivalent to

V+XX'V=V VV'X+XX*X=X.

This in turn is equivalent to the equalities X*V =0 and X X*X = X,
which is the same as saying that V(#H;) L X(H2) and X is a partial
isometry.

(d) Since, as is easily seen, S*S = Iy if and only if X*V = 0 and
X*X = Iy,, part (d) is established.
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(e) Suppose that S is cohyponormal. Then for all h; € H; and
ho € Ho
(24)
[Vhi+Xha|[* = [|S(h1@h)||* < [[S™ (ha@h2) ||* = [[V*hua||* +[| X" ha ||

Substituting hy = 0, we deduce that X = 0. Thus, by (24),
[Vhi|| <|[V*hy|| for all hy € H;, which implies that the operator V'
is unitary. The reverse implication is manifestly true. The proof is
complete. u]

It turns out that bounded subnormal operators satisfying condition
(i) of Proposition 24 have minimal normal extensions of a special shape.
Indeed, let S be such an operator, N its minimal normal extension and
F a semi-spectral measure tied up to S via (2). It follows from (20)
that

F=(I-S5%S)d +5*S 6.

This yields supp F' C {0, 1}. Due to (6), the spectrum of N is contained
in {0} U{z € C:|z| = 1}, which forces N to take the form U &0, where
U is a unitary operator. In the following theorem we give an explicit
matrix construction of a normal extension of S.

Theorem 25. Let S € B(#H). Then the following conditions are
equivalent

(a) S is subnormal and it satisfies condition (i) of Proposition 24,

(b) S has a normal extension of the form U ®0, where U is a unitary
operator,

(c) S is subnormal and its minimal normal extension is of the form
U &0, where U is a unitary operator.

If S is a subnormal operator which satisfies condition (vii) of Proposi-
tion 24, then the operator

VvV X Q P 0 0
0 0 0 0 |X]? |XD

w |0 0 0 0 D*IX| D*D

(25) N=10 0 0o v o 0
00 0 X* 0 0

00 0 Q@ 0 0
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defined on Hi ® Ho ® Hz D Hi ® Ho D Hs is a normal extension of S,
where®

Hs is the closure of the range of | X|\/I — |X|?,
D=\ /T—|X|2J, J:Hs — Ha is the identity embedding,

def

Q =WD, W is the partial isometry in the polar decomposition X =
WX,

P is the orthogonal projection of Hy onto Hi1 ©V (Hi) + X (Hz).

The operator N 1is of the form U & 0, where U is a unitary operator.
Moreover, if S ts an isometry, then N is a unitary operator.

Proof. The implications (c) = (b) = (a) are obvious.

The implication (a) = (c) has been justified in the paragraph pre-
ceding Theorem 25. Yet another way of proving this (without recourse
to the spectral theorem) is to follow the diagrams: (a) = (b) and (b)
= (c). When dealing with the implication (a) = (b) we prove all the
desired properties of the matrix (25),

(a) = (b) The operator N given by (25) is evidently an extension of
S (identify H with H1 @ Ho® {0} ®---®{0}). We now show that NV is
a normal operator. Define the operators C, Z € B(H; ® H2 @ H3) by

V X Q P 0 0
(26) C=|0 0 0| and Z=|0 |X]? |X|D
0 0 0 0 D*|X| D*D

Then the operator N can be rewritten as

(27) N:[C Z].

0o cC*
Observe that

(28) V*X =0,
(29) V*Q =0
(30) Q*Q =D*D,
(31) X*Q =|X|D.
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Indeed, the equality (28) is a consequence of part (b) of Proposition 24.
Since

(32) Q(Ms) CW(Hse) = X(H2) LV (Ha),

we get (29). The product W*W is the orthogonal projection of Hs

onto | X|(Hz). Noticing that the range of D is contained in the range
of W*W, we obtain Q*Q = D*W*W D = D*D, which gives (30). The
equality (31) can be justified as follows

X*Q = X*WD = |X|W*WD = |X|D.

Since V is an isometry, the equalities (28), (29), (30) and (31) lead to

VYV VX VAQ I 0 0
33) C*'C=|X'V X*'X X*Q|=1|0 |X? |XD
QV QX QQ 0 D*|X| D*D

The standard calculation which is left to the reader yields

I 0 0
(34) (C*C)*= |0 |X|E|X| |X|ED|,
0 D*E|X| D*ED

where E = | X |24+ DD*. As Hs reduces | X|, the operator J.J*, which is
the orthogonal projection of Hs onto H3, commutes with /I — | X|2.
Thus, by the definition of D we have

DD* = T [XPJJ*VIT X[ = JJ*(I — |X]?).

This and (I — |X|?)(|X[(H2)) C H3 implies
(35) —_—
Eh=|XPh+JJ* (I X*)h = | X|?h+(I—|X|))h=h, h < |X]|(Hz).

Since the range of D is contained in |X|(#H2), we get E|X| = |X| and
ED = D, which together with (33) and (34) leads to

(36) (C*C)* = Cc*C.

This means that C is a partial isometry, cf. [19, Problem 98]. The above

2
analysis shows in particular that the operator [ Ll))*{\lx| ‘gjg} defined on
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Ho @ Hs is an orthogonal projection. As a consequence, the operator
Z defined in (26) is an orthogonal projection as well.

Continuing the proof of the normality of NV, we show that

I-P 0 0
(37) cc*=| 0 o0 0
0 00

In the matrix representing the operator C'C* the only nonzero entry
appears in its left upper corner and it is equal to VV* + X X™* + QQ"*.
Applying the definition of E and the equality W*(#H;) = |X|(Hz2), we
get

QQ*=WDD*W* = W(E — | X|*)W*

« (35)

= WEW* - W|X|(W|X])* = WW* - XX*.

Therefore, employing the facts that V'V* is the orthogonal projection of
Hy onto V(H1), WW* is the orthogonal projection of H; onto X (#2)
and V(H1) L X(H2) (because of part (b) of Proposition 24), we have

VV* 4+ XX +QQ  =VV* + WW*=1- P,

which justifies the equality (37).

The next step of the proof consists in showing that
(38) C*Z=0 and ZC =0.

It is easily seen that C*Z = 0 if and only if V*P = 0, X*P = 0 and
Q*P = 0. However, the last three equalities hold because the ranges
of V, X and @ are all orthogonal to the range of P, use (32). Since
Z = Z*, the other equality in (38) follows from the former.

Combining the equalities (26), (33) and (37) with fact that Z is an
orthogonal projection leads to Z*Z + CC* = C*C. This, the self-
adjointness of Z, (38) and (27) imply

anr | C*C c*Z _|cx¢ o
NN = [z*c Z*Z+Cc*] - { 0 C*C]
- [cer+zzr zZo
o c*z* c*C

(39) ] .
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which means that N is a normal operator and, by (36), |N| is an
orthogonal projection. Hence, N is a normal partial isometry, cf. [19,
Problem 98], and consequently by [19, Problem 161] N = U &0, where
U is a unitary operator.

(b) = (c). We show a little bit more, namely that if £ is a closed

linear space which is invariant for U &0 and M = (U & 0)|z is normal,

then M = U; & 0, where U; is a unitary operator. Indeed, by the
implication (i) = (vii) of Proposition 24, M = [‘g )(()1
V1. Since M is normal, part (e) of Proposition 24 implies that V; is
unitary and M = V; & 0, as desired.

} with isometric

If S is an isometry, then the operator X is an isometry as well. This
and (33) implies that H3 = {0} and C*C is the identity matrix. Hence
by (39) the operator N is unitary. This completes the proof. o

Remark 26. In our matrix construction (25) of the operator N, the
Hilbert space Hs, which is a component of the space K on which
N acts, depends heavily on the entry X. Fixing the decomposition
H = H1 ® Hz, we can easily avoid the dependence of X on X simply
by replacing K by a new Hilbert space

H1 DHo DHaDH1 D Ha D Ho

and the operator J by the orthogonal projection of Hs onto H3, where
Hs is as in Theorem 25. The reader can check that

Hs = {0} < X is a partial isometry & sisa partial isometry,

Hz =Hy < ker X ={0} and ker(I —|X]|)= {0},

where the equivalence L can be deduced from parts (b) and (c) of
Proposition 24.

Let us comment on the proof of Theorem 25. The matrix form (25)
of the normal extension N of S is obtained in three steps. First, we
find a matrix form of the operator A satisfying condition (27) in [32];
the operator A turns out to be an orthogonal projection which dilates
S*S. Fortunately, such an A can be created with the help of [17]. In
the next step, we find a quasinormal extension C' of S, cf. (26), via
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an abstract procedure appearing in the proof of [32, Lemma 5] making
essential use of the identification H + A(H) = H1DH2PH3 (recall that
H = Hy, ® Hs). Finally, we extend C to N with the help of another
matrix construction proposed in the proof of [32, Theorem 2]. It is
worth noting that ||S|| = || V|| which can be inferred from part (b) of
Proposition 24 and Theorem 25.

Let us mention that a general matrix construction of normal exten-
sions of subnormal operators proposed in [2] seems to be ineffective in
our case. As with matrix constructions, their minimality appears to be
rare. Fortunately, in our case we can give a satisfactory description of
minimality of N.

Proposition 27. Let S € B(H) be a subnormal operator satisfying
condition (vii) of Proposition 24, and let N be as in Theorem 25. Then
the following conditions are equivalent

1° N is a minimal normal extension of S,

2° X is an isometry (equivalently, S is an isometry) and V is unitarily
equivalent to a unilateral shift,

3° S is unitarily equivalent to a unilateral shift.

Proof. Set K = Hy1 ® Ho ® Hs & H1 © Ha & Hs. As in Theo-
rem 25, we identify H with H; ® Ho ® {0} @ --- @ {0}. Recall that
M(N,H) = V{N*"H:m >0} is the least closed linear subspace of K
reducing N and containing H. Given an isometry 7' € B(L) in a
Hilbert space £, we write H,(T) for the largest closed linear sub-
space of £ which reduces T to a unitary operator. It follows from
the von Neumann-Wold decomposition of T, cf. [27, Theorem 4.7.1],
that T'| g, (r) is unitarily equivalent to a unilateral shift.

2° < 3°. Since S is assumed to be subnormal, part (b) of Proposi-
tion 24 implies that the spaces V(#1) and X (#H2) are orthogonal and,
consequently, by part (d) of Proposition 24, S is an isometry if and
only if X is an isometry. As V = S|y, and S(H) C Hi, we see that
Hu(S) = Hu(V), which yields the desired equivalence.

1° & 2°. First we show that 1° implies that X is an isometry.

2
According to the proof of Theorem 25, the operator Y’ Lt |:D|X|‘X| ‘DXJg}
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defined on Ho @ Hs is an orthogonal projection. Suppose that, contrary
to our claim, X is not an isometry. Then the orthogonal projection Y
is not equal to I,qw,, which means that the range of Y is a proper
closed linear subspace of Hs @ Hs. Hence, there exists a nonzero vector
(g2,93) € Ha @ H3 which is orthogonal to the range of Y. Employing
(25), we get

<N*(k‘1,...,k6),(0,... ,0,92,93»

= <Y(k27k3)’ (92a93)> =0,
(kl,... ,kg) e kK.

This implies that the nonzero vector g*= (0,0,0,0, g2, g3) € K is or-
thogonal to N*(K), hence to all N*"*(K) with m >1, and finally to
IM(N,H) (because evidently g L 7). This contradicts the assumed
minimality of N.

By virtue of the preceding paragraph, without loss of generality we
can assume that X is an isometry. Our next task is to show that in
this case

(40) MN,H) =H1 DH2 D Hs D (H1 ©Hu(V)) D Ho & Hs.

Due to the proof of 2° < 3°, S is an isometry and V(#1) L X (#2). By
Theorem 25, the operator N is unitary. This and the von Neumann-
Wold decomposition applied to the isometry S enables one to deduce
that
(41)
M(N,H) = Ho(S) & PN (HOSH) =He P N™"(HeoS(H)).

nez n>1

It is easily checked that

HeSH)=AdH {0} ---® {0},
where A= H; © (V(H1) @ X(H2)). Using (25) and the equalities
A= (H16V(H1))N(H16X (H2)) =ker V*Nker X* and Hs = {0},

we successively compute

N*(HeSH)={0}d{0}dH:D ADHs D Hs,
N*""(He S(H))={0}a{0}eHsd V" *(V(A) + X (H2))
®{0}dHs;, n=2.
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Adding the fourth “coordinates” of the righthand sides of the above
equalities and making use of the orthogonality Vi*1(A) L V(X (Hs)),
i>0, (as A® X(Ha) = Hi1 © V(H1) is a wandering space for the
isometry V) we come to

A® (VA +X(H2)) @ V(V(A) + X (Ha)) @ - -
=(AeX(H))dV(A®X(Ha)) &V (ADX(H)) B -
=M eVH))eV(HieV(H)) @V (HieV(Hi)) &---
=M1 0 Hu(V).

This and the above description of N**(H & S(#H)), n > 1, leads to

(42) @ N*"(HeS(H)) = {0}o{0}oHs® (H1oHu(V)) D H2 B Hs.

n>1

Combining (41) with (42), we get (40). Now the equivalence 1° < 2°
is a direct consequence of (40). This completes the proof. m]

Specifying Proposition 27 for S being an isometry we are able to
write the matrix (25) in a form which is independent of the matrix
representation of S.

Corollary 28. Let S € B(H) be an isometry and R the orthogonal
projection of H onto H © S(H). Then the operator N= [g 1;*} €
B(H ® H) is a unitary extension of S. Moreover, N is minimal if and
only if S is unitarily equivalent to a unilateral shift.

Proof. Apply Theorem 25 and Proposition 27 to H1 = S(#H). O

Remark 29. Notice that if a subnormal operator S € B(H) satisfies
condition (vii) of Proposition 24 and X = W|X]| is the polar decompo-

sition of X, then
g — V. Wi |Iy 0
0 O 0 |X|

is the polar decomposition of S. This can be verified with the help of
parts (b) and (c¢) of Proposition 24.
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Example 30. We construct a class of analytic operator-valued
functions ¢: C — B(#) such that

1° ¢(z) is subnormal but not quasinormal if 0 < |z| < 1, and ¢(0) is
quasinormal,

2° (z) is a non-unitary isometry if |z| =1,
3° ¢(z) is not hyponormal if |z| > 1,
4° ¢(z) is never cohyponormal.

For this, consider an orthogonal decomposition H = H; @ Ho with
Hi # {0} and H2 # {0}, a nonunitary isometry V € B(#;1) and a
linear isometry X:Ho — M1 such that V(H;) L X(Hz). Then in view
of Proposition 24 the function ¢: C — B(H) defined by

0=y o] see

has all the desired properties. Since any two distinct values of ¢ do
not commute, no restriction of ¢ to a nonempty open subset of C
is jointly subnormal. Recall that in view of Theorem 9 there is no
analytic normal-operator-valued function @ : 2 — B(K) defined on a
nonempty open subset {2 of C such that H C K (isometric embedding)
and p(z) = D(z)|y for all z € 2.

Example 31. Following Example 3.2 of [7], we can define a
subnormal-operator-valued analytic function ¢ on C which is not
jointly subnormal:

p(z)=A+2z2B, z¢€C,

where A, B € B(#) are isometries with mutually orthogonal nonzero
ranges. Indeed, each operator ¢(z) being a multiple of an isometry
is subnormal, while the operators A and B do not commute and
consequently the function ¢ is not jointly subnormal. The same
reasoning shows that the 1-homogeneous subnormal-operator-valued
polynomial ¢(z1, 22) = 21 A+ 29 B, 21, 22 € C, is not jointly subnormal.

8. Open questions.

Question 1. Let © and ¥ be as in Corollary 5. Is @ a unique
continuous algebra homomorphism which extends ¥?
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Regarding the definition of flatness of jointly subnormal operator-
valued functions, cf. Section 3, one can ask

Question 2. Is every jointly subnormal operator-valued function flat?

A partial answer to Question 2 is contained in

Proposition 32. If a function ¢: 2 — B(H) is jointly subnormal
and ¢(2) is separable with respect to the operator norm topology, then

@ is flat.

Proof. Let : 2 — B(K) be a minimal normal extension of ¢, and let
2 be a countable subset of 2 such that ¢(2) C ¢(2). By Theorem 4
(use ©), we get

(43) (2) C B(12y).

Denote by © the countable set of all finite products of operators from
&(29)* U{Ix}. Take an orthonormal basis £ of H. One can deduce
from (43) that

(44) K = M(®,H) = InDE.

Consider now two cases. If A is finite dimensional, then ¢ = & (because
subnormal operators in finite dimensional Hilbert spaces are normal,
cf. [19, Problem 163]). If A is infinite dimensional, then one can infer
from (44) that?®

dim K < card (D€) < card (D x £) = card (D) - card (£) < Ng - dim H
=dim#,

which completes the proof. u]

It follows from Proposition 32 that every continuous jointly subnor-
mal operator-valued function defined on an open subset of a separable
metric space is flat.

What most interests us is the following.
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Question 3. Let {2 C C be a nonempty connected open set and
¢: 2 — B(H) be an analytic subnormal-operator-valued function
whose values mutually commute. Does ¢ have to be jointly subnor-
mal?

The answer to Question 3 seems to be unknown even in the case
of a polynomial of degree 1, cf. [25, Problem|. If 2 = C, then by
Lemma 1, Question 3 can be reformulated in an equivalent way by
assuming the commutativity of Taylor coefficients of ¢ at 0 in place
of the commutativity of o(C). Notice that if the assumption on the
connectedness of (2 is dropped, then the answer to Question 3 is in
the negative. This can be deduced from the fact that there exist two
commuting subnormal operators which are not jointly subnormal, cf.
1, 24, 26].

Consider an operator-valued function ¢: 2 — B(#) defined on a
nonempty set 2. Assume that the space linp({2) is separable, e.g., this
is the case if (2 is an open subset of a separable metric space and ¢
is continuous. Then there exists a sequence {w,}52, C 2 such that
lin{p(wy,):n >0} = linp(£2). For every n >0 choose a real number
en > 0 such that e,]|¢(wy)|| < 1/n!, and define the analytic function
: C — B(H) by

¥(2) =Y enp(wn)2", z€C.
n=0

Then by Lemma 1 linp(£2) = lingy(C), which means that the sets ¢({2)
and ¢(C) are simultaneously commutative, and the functions ¢ and
are simultaneously jointly subnormal (the latter can be deduced from
Theorem 4). However, in general the equality linp(£2) = liny)(C) does
not imply that ¢ and v are simultaneously subnormal-operator-valued
functions. Indeed, let @ and E be as in Example 22; then

ling(C) = ling(F) = lin{U, T},

@?(E) consists of unitary operators and ¢(C) is not a set of subnormal
operators.
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ENDNOTES

1. The righthand side of (2) is related to the Hamburger operator
moment problem which goes back at least as far as [34]; for operator-
valued integrals the reader may consult [27].

2. In our settings the measures under consideration are necessarily
regular, e.g., see [28, Theorem 2.18]; as a consequence, they admit
closed supports.

3. With respect to the operator norm topologies on 8 and B(K).

4. Because all minimal normal extensions of ¢ are unitarily equiva-
lent.

5. This means that the series > - P,(z) converges to ¢(z) in
operator norm for every z € By (r).

6. Apply [8, Theorem 9.18 (c)] to ®(zz) = >..° ,2"Qn(z), 2z €
Be(r/||z]]),  # 0 being fixed.

7. In view of Proposition 11 such @ must be analytic.

8. By part (b) of Proposition 24, X is a contraction and so the
definition of D makes sense.

9. Recall that if F is a subset of a Hilbert space M and linF = M,
then dim M < card F.
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