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ON THE DIOPHANTINE EQUATION yx − xy = z2∗

MAOHUA LE

ABSTRACT. In this paper we prove that the equation
yx − xy = z2, min(x, y) > 1, gcd(x, y) = 1, has no positive
integer solutions (x, y, z) with xy odd.

1. Introduction. Let Z,N be the sets of all integers and positive
integers, respectively. Recently, using a combination of lower bounds of
linear forms in p-adic and archimedian logarithms, Luca and Mignotte
[4] proved that the equation

(1) yx − xy = z2, x, y, z ∈ N, min(x, y) > 1, gcd(x, y) = 1

has only the solution (x, y, z) = (2, 3, 1) with xy even. This equation is
related to a special case of the famous Catalan’s equation. In addition,
the authors of [4] showed that they have no idea how to solve (1) when
xy is odd. In this paper we completely solve this problem as follows.

Theorem. The equation (1) has no solutions (x, y, z) with xy odd.

2. Preliminaries. Let D be a positive integer, and let h(− 4D)
denote the class number of positive binary quadratic forms of discrim-
inant − 4D.

Lemma 1. Let k be an odd integer with gcd(D, k) = 1. If D > 1,
then every solution (X, Y, Z) of the equation

(2) X2 + DY 2 = kZ , X, Y, Z ∈ N, gcd(X, Y ) = 1, Z > 0

can be expressed as

Z = Z1t, t ∈ N,

X + Y
√−D = λ1(X1 + λ2Y1

√−D )t, λ1, λ2 ∈ {1,−1},
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where X1, Y1, Z1 are positive integers satisfying

X2
1 + DY 2

1 = kZ1 , gcd(X1, Y1) = 1, h(− 4D) ≡ 0 (mod Z1).

Proof. This lemma is the special case of [3, Theorems 1 and 2] for
D1 = 1 and D2 < −1.

Lemma 2 [2, Theorems 12.10.1 and 12.14.3]. For any positive integer
D, we have

h(− 4D) <
4
√

D

π
log(2e

√
D ).

Let α, β be algebraic integers. If α + β and αβ are nonzero coprime
integers and α/β is not a root of unity, then (α, β) is called a Lucas
pair. Further, let a = α + β and c = αβ. Then we have

α =
1
2

(a + λ
√

b ), β =
1
2

(a − λ
√

b ), λ ∈ {1,−1},

where b = a2 − 4c. We call (a, b) the parameters of the Lucas
pair (α, β). Two Lucas pairs (α1, β1) and (α2, β2) are equivalent if
α1/α2 = β1/β2 = ±1. Given a Lucas pair (α, β), one defines the
corresponding sequence of Lucas numbers by

Ln(α, β) =
αn − βn

α − β
, n = 0, 1, 2, . . . .

For equivalent Lucas pairs (α1, β1) and (α2, β2), we have Ln(α1, β1) =
±Ln(α2, β2) for any n ≥ 0. A prime p is called a primitive divisor of
Ln(α, β), n > 1, if

p | Ln(α, β) and p � bL1(α, β) · · ·Ln−1(α, β).

A Lucas pair (α, β) such that Ln(α, β) has no primitive divisors will be
called an n-defective Lucas pair. Further, a positive integer n is called
totally nondefective if no Lucas pair is n-defective.

Lemma 3 [5]. Let n satisfy 4 < n ≤ 30 and n �= 6. Then, up
to equivalence, all parameters of n-defective Lucas pairs are given as
follows :
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(i) n = 5, (a, b) = (1, 5), (1,−7), (2,−40), (1,−11), (1,−15), (12,−76),
(12,−1364).

(ii) n = 7, (a, b) = (1,−7), (1,−19).

(iii) n = 8, (a, b) = (2,−24), (1,−7).

(iv) n = 10, (a, b) = (2,−8), (5,−3), (5,−47).

(v) n=12, (a, b)=(1, 5), (1,−7), (1,−11), (2,−56), (1,−15), (1,−19).

(vi) n ∈ {13, 18, 30}, (a, b) = (1,−7).

Lemma 4 [1]. If n > 30, then n is totally nondefective.

3. Proof of the theorem. Let (x, y, z) be a solution of (1) with xy
odd. Since min(x, y) > 1 and gcd(x, y) = 1, we have x > y > 1, x ≥ 5
and y ≥ 3.

Since x and y are both odd, we see from (1) that (X, Y, Z) =
(z, x(y−1)/2, x) is a solution of (2) for D = x and k = y. Therefore,
by Lemma 1, we get

x = Z1 t, t ∈ N,(3)

z + x(y−1)/2
√−x = λ1(X1 + λ2Y1

√−x )t, λ1, λ2 ∈ {1,−1},
(4)

where X1, Y1, Z1 are positive integers satisfying

(5) X2
1 + xY 2

1 = yZ1 , gcd(X1, Y1) = 1, h(− 4x) ≡ 0 (mod Z1).

Let

(6) α = X1 + Y1

√−x, β = X1 − Y1

√−x.

By (5) and (6), we get

(7)
α + β = 2X1, αβ = yZ1 ,

α

β
=

1
yZ1

((X2
1 − xY 2

1 ) + 2X1Y1

√−x ).

Since gcd(X1, Y1) = gcd(x, y) = 1, we observe from (7) that α + β
and αβ are nonzero coprime integers and α/β is not a root of unity.
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Hence, (α, β) is a Lucas pair with parameters (2X1,− 4xY 2
1 ). Further,

let Ln(α, β), n = 0, 1, 2, . . . , denote the corresponding Lucas numbers.
By (4) and (6), we get

(8) x(y−1)/2 = Y1|Lt(α, β)|.

We find from (8) that the Lucas number Lt(α, β) has no primitive
divisors. Therefore, by Lemma 4, we obtain t ≤ 30. Since x is odd, t
is also odd and by Lemma 3 we see that t ∈ {1, 3}. Thus, by (3) and
(5), we obtain either

h(− 4x) ≡ 0 (mod x)(9)

or

h(− 4x) ≡ 0
(

mod
x

3

)
.(10)

By Lemma 2, if (9) holds, then h(−4x) ≥ x and

(11) x <
4
√

x

π
log(2e

√
x ),

whence we conclude that x ≤ 17. But (9) is impossible if x is an odd
integer with 5 ≤ x ≤ 17.

By (3) and (5), if (10) holds, then 3 | x. When x is a power of 3, we
have x = 3r, where r is a positive integer with r > 1. Since h(−12) = 1
and h(−36) = 2, by [2, Theorems 12.10.1 and 12.10.2], we get

(12) h(− 4 · 3r) =
{

2 · 3r/2−1 if r is even,
3(r−1)/2 if r is odd.

We see from (12) that (10) is false if x = 3r and r > 1. When x is not
a power of 3, x has at least two distinct odd prime divisors, since 3 | x.
By the genus theory of binary quadratic forms, we have 2 | h(− 4x).
Therefore, by Lemma 2, we get from (10) that

(13)
2
3

x <
4
√

π

π
log(2e

√
x ),
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whence we conclude that x ≤ 51. Notice that h(− 4 · 15) = 2,
h(− 4 · 21) = 4, h(− 4 · 33) = 4, h(− 4 · 39) = 4, h(− 4 · 45) = 4
and h(− 4 · 51) = 6. It implies that (10) is false if x ≤ 51, 3 | x and x
is not a power of 3. To sum up, the theorem is proved.
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