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ON THE MULTILINEAR
GENERALIZATIONS OF THE CONCEPT

OF ABSOLUTELY SUMMING OPERATORS

ERHAN ÇALIŞKAN AND DANIEL M. PELLEGRINO

ABSTRACT. In this paper we investigate the several multi-
linear generalizations of the concept of absolutely summing
operators and their connections. We also introduce the con-
cept of p semi-integral mappings and establish the position of
p semi-integral mappings with respect to the other classes.

1. Introduction and notation. The core of the theory of
absolutely summing operators lies in the ideas of A. Grothendieck
in the 1950s. Further work of Pietsch [23] and Lindenstrauss and
Pe�lczyński [9] clarified Grothendieck’s insights, and nowadays the ideal
of absolutely summing operators is a central topic of investigation.
For details on absolutely summing operators we refer to the book by
Diestel-Jarchow-Tonge [7].

A natural question is how to extend the concept of absolutely sum-
ming operators to multilinear mappings and polynomials. A first
light in this direction is the work by Alencar-Matos [1], where several
classes of multilinear mappings between Banach spaces were investi-
gated. Since then, just concerning the idea of lifting the ideal of ab-
solutely summing operators to polynomials and multilinear mappings,
several concepts have appeared and so far none of the definitions pro-
posed appears as clearly better or more useful than the rest. However,
there seems to be no effort in the direction of comparing all these dif-
ferent classes. The aim of this paper is to investigate the connections
between these classes, to introduce the class of p semi-integral map-
pings and to establish the position of p semi-integral mappings with
respect to the other concepts.
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Throughout this paper the letters E,E1, . . . , En, G1, . . . , Gn,F, F0

represent Banach spaces, the symbol K represents the field of all scalars
(complex or real), and N denotes the set of all positive integers. Given
a natural number n ≥ 2, the Banach space of all continuous n-linear
mappings from E1 × · · · × En into F endowed with the sup norm
will be denoted by L(E1, . . . , En;F ). For i = 1, . . . , n, we denote
by Ψ(n)

i : L(E1, . . . , En;F ) → L(Ei;L(E1,
[i]. . ., En;F )) the canonical

isometric isomorphism

Ψ(n)
i (T )(xi)(x1

[i]· · ·xn) = T (x1, . . . , xn),

where [i]. . . means that the ith coordinate is not involved.

For p > 0, the linear space of all sequences (xj)∞j=1 in E such that
‖(xj)∞j=1‖p = (

∑∞
j=1 ‖xj‖p)1/p <∞ is denoted by lp(E). We represent

by lwp (E) the linear space of the sequences (xj)∞j=1 in E such that
(ϕ(xj))∞j=1 ∈ lp for every continuous linear functional ϕ : E → K
and define ‖.‖w,p in lwp (E) by ‖(xj)∞j=1‖w,p = supϕ∈B′

E
‖(ϕ(xj))∞j=1‖p.

If p = ∞ we are restricted to the case of bounded sequences and in
l∞(E) we use the sup norm. One can verify that ‖.‖p, respectively
‖.‖w,p, is a p-norm in lp(E), respectively lwp (E), for p < 1 and a norm
in lp(E), respectively lwp (E), for p ≥ 1.

If K is a Hausdorff compact topological space, C(K) denotes the
Banach space, under the supremum norm, of all continuous functions
on K.

We begin by presenting the several classes of multilinear mappings
related to the concept of absolutely summing operators:

• If p ≥ 1, T ∈ L(E1, . . . , En;F ) is said to be p-dominated (T ∈
Ld,p(E1, . . . , En;F )) if there exist C ≥ 0 and regular probability
measures μj on the Borel σ-algebras B(BE

′
j
) of BE′

j
endowed with the

weak star topologies σ(E′
j , Ej), j = 1, . . . , n, such that

‖T (x1, . . . , xn)‖ ≤ C
n∏

j=1

[ ∫
BE′

j

|ϕ (xj)|p dμj (ϕ)
]1/p

for every xj ∈ Ej and j = 1, . . . , n. It is well known that
T ∈ L(E1, . . . , En;F ) is p-dominated if and only if there exist Ba-
nach spaces G1, . . . , Gn, absolutely p-summing linear operators uj ∈



ABSOLUTELY SUMMING OPERATORS 1139

L(Ej ;Gj) and a continuous n-linear mapping R ∈ L(G1, . . . , Gn;F ) so
that T = R ◦ (u1, . . . , un).

• If p ≥ 1, T ∈ L(E1, . . . , En;F ) is of absolutely p-summing type
(T ∈ [Πas(p)](E1, . . . , En;F )) if Ψ(n)

j (T ) is absolutely p-summing for
every j ∈ {1, . . . , n}.

• If p ≥ 1, T ∈ L(E1, . . . , En;F ) is p semi-integral (T ∈ Lsi,p(E1, . . . ,
En;F )) if there exist C ≥ 0 and a regular probability measure μ on
the Borel σ−algebra B(BE′

1
× · · · ×BE′

n
) of BE′

1
× · · · ×BE′

n
endowed

with the product of the weak star topologies σ(E′
l, El), l = 1, . . . , n,

such that

‖T (x1, . . . , xn)‖

≤ C

( ∫
BE′

1
×···×BE′

n

|ϕ1(x1) · · ·ϕn(xn)|p dμ(ϕ1, . . . , ϕn)
)1/p

for every xj ∈ Ej and j = 1, . . . , n. The infimum of the C defines a
norm ‖.‖si,p for the space of p semi-integral mappings.

• If p ≥ 1, T : E1 × · · · ×En → F is fully, or multiple, p-summing if
there exists C > 0 such that

( ∞∑
j1,... ,jn=1

‖T (x(1)
j1
, . . . , x

(n)
jn

)‖p

)1/p

≤ C

n∏
k=1

‖(x(k)
j )∞j=1‖w,p

for every (x(k)
j )∞j=1 ∈ lwp (Ek), k = 1, . . . , n. The space of all fully p-

summing n-linear mappings from E1 × · · · ×En into F will be denoted
by Lfas,p(E1, . . . , En;F ), and the infimum of the C for which the in-
equality always holds defines a norm ‖.‖fas,p for Lfas,p(E1, . . . , En;F ).

• If p ≥ 1, T ∈ L(E1, . . . , En;F ) is strongly p-summing (T ∈
Lsas,p(E1, . . . , En;F )) if there exists C ≥ 0 and a regular probability
measure μ on the Borel σ-algebra B(BL(E1,... ,En;K)) of BL(E1,... ,En;K)

with the weak star topology such that

‖T (x1, . . . , xn)‖ ≤ C

(∫
BL(E1,... ,En;K)

|φ(x1, . . . , xn)|p dμ(φ)
)1/p

for every xj ∈ Ej and j = 1, . . . , n.



1140 E. ÇALIŞKAN AND D.M. PELLEGRINO

• If p, q1, . . ., qn > 0, T ∈ L(E1, . . ., En;F ) is absolutely (p; q1, . . ., qn)-
summing, or (p; q1, . . . , qn)-summing, at the point (a1, . . . , an) in E1×
· · · ×En when

(T (a1 + x
(1)
j , . . . , an + x

(n)
j ) − T (a1, . . . , an))∞j=1 ∈ lp(F )

for every (x(s)
j )∞j=1 ∈ lwqs

(E), s = 1, . . . , n. In the case that T
is (p; q1, . . . , qn)-summing at every (a1, . . . , an) ∈ E1 × · · · × En

we say that T is (p; q1, . . . , qn)-summing everywhere. Notation:
Lev

as(p,q1,... ,qn)(E1, . . . , En;F ) or Lev
as,p(E1, . . . , En;F ) if p = q1 = · · · =

qn.

• If 1/p ≤ 1/q1 + · · · + 1/qn and T is (p; q1, . . . , qn)-summing
at (0, . . . , 0) ∈ E1 × · · · × En, we say that T is (p; q1, . . . , qn)-
summing, and we write T ∈ Las(p,q1,... ,qn)(E1, . . . , En;F ). When
p = q1 = · · · = qn we write Las,p(E1, . . . , En;F ). It is well known
that Ld,p(E1, . . . , En;F ) = Las((p/n),p,... ,p)(E1, . . . , En;F ).

Except perhaps for the concept of p semi-integral mappings, all of
the above concepts are well known and individually investigated. The
p semi-integral mappings were introduced in [18] motivated by the
work of Alencar-Matos [1]. Dominated mappings were first explored
by Schneider [24] and Matos [11] and more recently in [3, 5, 14,
16]. Multilinear mappings of absolutely summing type are motivated
by abstract methods of creating ideals and are explored in [18]. The
ideal of fully summing multilinear mappings was introduced by Matos
[12] and investigated by Souza [25] in her doctoral thesis under his
supervision. It was also independently introduced by Bombal et al.
(with a different name “multiple summing”) and developed in [2, 22].
The ideal of strongly summing multilinear mappings was introduced
by Dimant [8] and the concept of absolutely summing multilinear
mappings appears firstly in Alencar-Matos [1], Matos [11] and have
been vastly studied (we mention [13, 16 19, 22], for example). In
the next section we investigate the class of p semi-integral mappings
and in the last section we study the connections between the classes
previously introduced.

2. p semi-integral mappings. We begin with a characterization of
p semi-integral mappings that will be useful in the subsequent section.
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Theorem 1. T ∈ Lsi,p(E1, . . . , En;F ) if and only if there exists
C ≥ 0 such that

(2.1)
( m∑

j=1

‖T (x1,j , . . . , xn,j)‖p

)1/p

≤ C

(
sup

ϕl∈BE′
l
,l=1,... ,n

m∑
j=1

|ϕ1(x1,j) . . . ϕn(xn,j)|p
)1/p

for every m ∈ N, xl,j ∈ El with l = 1, . . . , n and j = 1, . . . ,m.
Moreover, the infimum of the C in (2.1) is ‖T‖si,p.

Proof. If T is p semi-integral, it is not hard to obtain (2.1). Con-
versely, suppose that (2.1) holds. The proof follows the idea of the case
p = 1 in [1]. Define

• Γ1 = {f ∈ C(BE′
1
× · · · ×BE′

n
); f < C−p}.

• Γ2 = co {f ∈ C(BE′
1
× · · · × BE′

n
); there are xl ∈ El, l = 1, . . . , n,

so that ‖T (x1, . . . , xn)‖ = 1 and f(ϕ1, . . . , ϕn) = |ϕ1(x1) · · ·ϕ(xn)|p}.

where co {.} denotes the convex hull. Let us show that Γ1 ∩ Γ2 = φ.

If h ∈ Γ2, then h =
∑m

j=1 αjfj , αj > 0,
∑m

j=1 αj = 1 and

fj(ϕ1, . . . , ϕn) = |ϕ1(x1,j) · · ·ϕn(xn,j)|p

for every ϕl ∈ BE′
l
. By hypothesis we have

‖h‖ =
(

sup
ϕl∈BE′

l
,l=1,... ,n

m∑
j=1

|ϕ1(α1/p
j x1,j) · · ·ϕn(xn,j)|p

)

≥ C−p
m∑

j=1

(α1/p
j )p‖T (x1,j , . . . , xn,j)‖p = C−p.

Hence h /∈ Γ1. By the Hahn-Banach separation theorem, there exist
λ > 0 and

ψ ∈ C(BE′
1
× · · · ×BE′

n
)′

so that ‖ψ‖ = 1 and
ψ(f) < λ ≤ ψ(g)
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for every f ∈ Γ1, g ∈ Γ2. Since each f < 0 belongs to Γ1, we
have ψ(mf) < λ for every m ∈ N. Thus ψ(f) ≤ 0 and ψ is a
positive functional and thus, by the Riesz representation theorem, there
exists a regular probability measure μ, defined on the Borel sets of
BE′

1
× · · · ×BE′

n
so that

ψ(f) =
∫

BE′
1
×···×BE′

n

f dμ.

Defining fm by fm = C−p − (1/m), we have fm ∈ Γ1 for every m ∈ N.
Thus

∫
BE′

1
×···×BE′

n

fm dμ = C−p − 1
m

≤ λ for every m,

and hence λ ≥ C−p. Therefore, if ‖T (x1, . . . , xn)‖ = 1, defining
f(ϕ1, . . . , ϕn) := |ϕ1(x1) · · ·ϕ(xn)|p, we have f ∈ Γ2 and

(2.2)
∫

BE′
1
×···×BE′

n

f dμ = ψ(f) ≥ C−p = C−p‖T (x1, . . . , xn)‖

i.e.,

Cp

∫
BE′

1
×···×BE′

n

|ϕ1(x1) · · ·ϕ(xn)|p dμ ≥ ‖T (x1, . . . , xn)‖,

and, since ‖T (x1, . . . , xn)‖ = 1, we obtain

‖T (x1, . . . , xn)‖ ≤ C

( ∫
BE′

1
×···×BE′

n

|ϕ1(x1) · · ·ϕ(xn)|p dμ
)1/p

.

If ‖T (x1, . . . , xn)‖ 
= 0, it suffices to replace x1 by x1‖T (x1, . . . , xn)‖−1

in (2.2), and we deduce

‖T (x1, . . . , xn)‖ ≤ C

(∫
BE′

1
×···×BE′

n

|ϕ1(x1) · · ·ϕ(xn)|p dμ
)1/p

.
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The preceding theorem has various straightforward consequences
whose proof we omit:

Proposition 1. (i) (Ideal property). If T ∈ Lsi,p(E1, . . . , En;F ),
Ak ∈ L(Dk;Ek), k = 1, . . . , n, and S ∈ L(F ;G), then S ◦ T ◦
(A1, . . . , An) is p semi-integral and

‖S ◦ T ◦ (A1, . . . , An)‖si,p ≤ ‖S‖‖T‖si,p

n∏
k=1

‖Ak‖.

(ii) If T ∈ Lsi,p(E1, . . . , En;F ) and i : F → F0 is an isometric
embedding, then ‖i ◦ T‖si,p = ‖T‖si,p.

(iii) If L(E1, . . . , En;F ) = Lsi,p(E1, . . . , En;F ), then

L(Ej1 , . . . Ejn
;F ) = Lsi,p(Ej1 , . . . Ejn

;F ),

for every j1, . . . , jk in {1, . . . , n} with jr 
= js for r 
= s.

For r ≥ 1 we have the following characterization of r semi-integral
mappings defined in C(K1) × · · · × C(Kn) whose proof is based on an
argument used in [1].

Theorem 2. Let K1, . . . ,Kn be Hausdorff compact topological
spaces. If T ∈ L(C(K1), . . . , C(Kn);F ) and r ≥ 1, then the following
conditions are equivalent :

(i) T is r semi-integral.

(ii) There exist C ≥ 0 and a regular probability measure μ on the
Borel σ−algebra B(K1 × · · · ×Kn) of K1 × · · ·× Kn such that

‖T (f1, . . . , fn)‖

≤ C

( ∫
K1×···×Kn

|f1(x1) · · · fn(xn)|r dμ(x1, . . . , xn)
)1/r

for every fl ∈ C(Kl) with l = 1, . . . , n.
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(iii) There exist D ≥ 0 such that

( m∑
j=1

‖T (f1,j , . . . , fn,j)‖r

)1/r

≤ D

(
sup

xl∈Kl,l=1,... ,n

m∑
j=1

|f1,j(x1) · · · fn,j(xn)|r
)1/r

for every m ∈ N, fl,j ∈ C(Kl) with l = 1, . . . , n and j = 1, . . . ,m.

Proof. A modification on the proof of Theorem 1 shows the equiva-
lence between (ii) and (iii). Hence we only need to prove the equiva-
lence between (i) and (iii), which follows from Theorem 1 and from the
identity

sup
ϕl∈BC(Kl)

′ ,l=1,... ,n

m∑
j=1

|ϕ1(f1,j) · · ·ϕn(fn,j)|r

= sup
xl∈Kl,l=1,... ,n

m∑
j=1

|f1,j(x1) · · · fn,j(xn)|r

for every fl,j ∈ C(Kl) with l = 1, . . . , n, j = 1, . . . ,m, and m ∈ N.

Note that, for xl ∈ Kl, l = 1, . . . , n, we have

m∑
j=1

|f1,j(x1) · · · fn,j(xn)|r =
m∑

j=1

|δx1(f1,j) · · · δxn
(fn,j)|r

where δxl
∈ BC(Kl)′ is given by δxl

(f) = f(xl), for every f ∈ C(Kl),
l = 1, . . . , n. Hence

sup
xl∈Kl,l=1,... ,n

m∑
j=1

|f1,j(x1) · · · fn,j(xn)|r

≤ sup
ϕl∈BC(Kl)

′ ,l=1,... ,n

m∑
j=1

|ϕ1(f1,j) · · ·ϕn(fn,j)|r.



ABSOLUTELY SUMMING OPERATORS 1145

Now we show the converse. We have

m∑
j=1

|ϕ1(f1,j) · · ·ϕn(fn,j)|r

= sup
|λj |=1

∣∣∣∣
m∑

j=1

|ϕ1(f1,j) · · ·ϕn(fn,j)|r−1λjϕ1(f1,j) · · ·ϕn(fn,j)
∣∣∣∣

= sup
|λj |=1

∣∣∣∣ϕ1 ⊗ · · · ⊗ ϕn

( m∑
j=1

λj |ϕ1(f1,j) · · ·ϕn(fn,j)|r−1f1,j ⊗ · · · ⊗ fn,j

)∣∣∣∣

≤ ‖ϕ1 ⊗ · · · ⊗ ϕn‖ sup
|λj |=1

∥∥∥
m∑

j=1

λj |ϕ1(f1,j) · · ·ϕn(fn,j)|r−1f1,j ⊗ · · · ⊗ fn,j

∥∥∥

≤ sup
|λj |=1,xl∈Kl,l=1,... ,n

∣∣∣
m∑

j=1

λj |ϕ1(f1,j) · · ·ϕn(fn,j)|r−1f1,j(x1) · · · fn,j(xn)
∣∣∣

≤ sup
xl∈Kl,l=1,... ,n

m∑
j=1

|ϕ1(f1,j) · · ·ϕn(fn,j)|r−1|f1,j(x1) · · · fn,j(xn)|

≤ sup
xl∈Kl,l=1,... ,n

⎡
⎣( m∑

j=1

(|ϕ1(f1,j) · · ·ϕn(fn,j)|r−1
)r/r−1

)(r−1)/r

×
( m∑

j=1

|f1,j(x1) · · · fn,j(xn)|r
)1/r

⎤
⎦ .

Hence,

( m∑
j=1

|ϕ1(f1,j) · · ·ϕn(fn,j)|r
)1−(r−1/r)

≤ sup
xl∈Kl,l=1,... ,n

( m∑
j=1

|f1,j(x1) · · · fn,j(xn)|r
)1/r

,

and the proof is done.

3. Connections between the different classes. Recall that
an n-linear mapping T is said to be completely continuous if it takes
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sequences weakly converging to zero into sequences norm converging
to zero. It is well known that every absolutely p-summing operator
is weakly compact and completely continuous. So, a natural question
is to ask whether their multilinear generalizations still preserve these
properties.

Concerning completely continuous mappings, it is not hard to prove
that every p semi-integral mapping is completely continuous. On
the other hand, contrary to the linear case, the absolutely sum-
ming (and strongly summing) multilinear mappings are not completely
continuous, in general. For example, T : l2 × l2 → K given by
T ((xj)∞j=1, (yj)∞j=1) =

∑∞
j=1 xjyj is absolutely 1-summing and strongly

2-summing but fails to be completely continuous.

In this section we will obtain certain connections between the different
classes investigated in this paper and apply our results to give an
alternative direct answer for a question (concerning weak compactness
for strongly summing mappings) posed by Dimant [8] and recently
answered in Carando-Dimant [6].

Theorem 3. Let E and F be Banach spaces. Then

(i) [Πas(p)](nE;F ) = Las(p;p,∞,... ,∞)(nE;F )∩ · · ·∩Las(p;∞,... ,∞,p) ×
(nE;F ).

(ii) If T ∈ Lsi,p(E1, . . . , En;F ), then Ψ(n)
i (T ) ∈ Las,p(Ei;L(E1,

[i]. . .,

En;F )) and Ψ(n)
i (T )(x) is p semi-integral for every x in Ei.

(iii) Ld,p(nE;F ) ⊂ Lsi,p(nE;F ) ⊂ [Πas(p)](nE;F ).

(iv) Lsi,p(nE;F ) ⊂ Ld,np(nE;F ).

(v) Lsi,p(nE;F ) ⊂ Lfas,p(nE;F ) ⊂ Lev
as,p(nE;F ) ⊂ Las,p(nE;F ).

(vi) Lsi,p(nE;F ) ⊂ Lsas,p(nE;F ).

Proof. (i) The case n = 3 is illustrative. If T ∈ [Πas(p)](3E;F ) and
(xj)∞j=1 ∈ lwp (E), (yj)∞j=1 ∈ l∞(E), (zj)∞j=1 ∈ l∞(E) are nonidentically



ABSOLUTELY SUMMING OPERATORS 1147

null, we have
( ∞∑

j=1

‖T (xj , yj , zj)‖p

)1/p

=
∥∥(yj)∞j=1

∥∥
∞

∥∥(zj)∞j=1

∥∥
∞

( ∞∑
j=1

∥∥∥∥T
(
xj ,

yj∥∥(yj)∞j=1

∥∥
∞
,

zj∥∥(zj)∞j=1

∥∥
∞

)∥∥∥∥
p)1/p

≤ ∥∥(yj)∞j=1

∥∥
∞

∥∥(zj)∞j=1

∥∥
∞

( ∞∑
j=1

∥∥∥Ψ(3)
1 (T )(xj)

∥∥∥p
)1/p

≤
∥∥∥Ψ(3)

1 (T )
∥∥∥

as,p

∥∥(yj)∞j=1

∥∥
∞

∥∥(zj)∞j=1

∥∥
∞

∥∥(xj)∞j=1

∥∥
w,p

,

and thus T ∈ Las(p;p,∞,∞)(3E;F ). The other cases are similar. The
converse is not difficult.

(ii) Let T ∈ Lsi,p(E1, . . . , En;F ). Fix a natural number i ∈
{1, . . . , n} and let xj ∈ Ei, j = 1, . . . ,m. For ε > 0, there exist
xk,j ∈ BEk

, k = 1, [i]. . ., n such that

‖Ψn
i (T )(xj)‖p ≤ ‖Ψn

i (T )(xj)(x1,j ,
[i]. . ., xn,j)‖p +

ε

m
.

Hence
m∑

j=1

‖Ψn
i (T )(xj)‖p

≤ ε+
m∑

j=1

‖Ψn
i (T )(xj)(x1,j ,

[i]. . ., xn,j)‖p

≤ ε+ ‖T‖p
si,p sup

ϕl∈BE′
l
,l=1,... ,n

m∑
j=1

|ϕi(xj)ϕ1(x1,j)
[i]· · ·ϕn(xn,j)|p

≤ ε+ ‖T‖p
si,p sup

ϕi∈BE′
i

m∑
j=1

|ϕi(xj)|p.

Since ε is arbitrary, we have

m∑
j=1

‖Ψn
i (T )(xj)‖p ≤ ‖T‖p

si,p

∥∥(xj)m
j=1

∥∥p

w,p
.
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Hence Ψ(n)
i (T ) ∈ Las,p(Ei;L(E1,

[i]. . ., En;F )) for every i = 1, . . . , n.

Now we show that Ψ(n)
i (T )(x) is p semi-integral for every x ∈ Ei,

i = 1, . . . , n. Since

( m∑
j=1

‖Ψ(n)
i (T )(x)(x1,j,

[i]. . ., xn,j)‖p

)1/p

=
( m∑

j=1

‖T (x1,j , . . . , x, . . . , xn,j)‖p

)1/p

≤ ‖T‖si,p

(
sup

ϕl∈BE′
l
,l=1,... ,n

m∑
j=1

|ϕ1(x1,j) · · ·ϕi(x) · · ·ϕn(xn,j)|p
)1/p

≤ ‖T‖si,p‖x‖
(

sup
ϕl∈BE′

l
,l=1,[i]...,n

m∑
j=1

|ϕ1(x1,j)
[i]· · ·ϕn(xn,j)|p

)1/p

,

we get ‖Ψ(n)
i (T )(x)‖si,p ≤ ‖T‖si,p‖x‖, for every x ∈ Ei, i = 1, . . . , n.

(iii) The proof that Lsi,p(nE;F ) ⊂ [Πas(p)](nE;F ) is a consequence
of (ii). If T ∈ Ld,p(nE;F ), then

‖T (x1, . . . , xn)‖ ≤ C

(∫
BE′

1

|ϕ1(x1)|p dμ1(ϕ1)
)1/p

· · ·
( ∫

BE′
n

|ϕn(xn)|p dμn(ϕn)
)1/p

= C

(∫
BE′

1
×···×BE′

n

|ϕ1(x1)

· · ·ϕn(xn)|p d(μ1 ⊗ · · · ⊗ μn)(ϕ1, . . . , ϕn)
)1/p

,

and hence T ∈ Lsi,p(nE;F ).
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(iv) Suppose that T is p semi-integral. Then, from Theorem 1 we
deduce

( m∑
j=1

‖T (x1,j , . . . , xn,j)‖p

)1/p

≤ C

(
sup

ϕl∈BE′
l
,l=1,... ,n

m∑
j=1

|ϕ1(x1,j) · · ·ϕn(xn,j)|p
)1/p

≤ C sup
ϕl∈BE′

l
,l=1,... ,n

⎡
⎣( m∑

j=1

|ϕ1(x1,j)|np

)1/np

· · ·
( m∑

j=1

|ϕn(xn,j)|np

)1/np
⎤
⎦

= C
∥∥(x1,j)m

j=1

∥∥
w,np

· · · ∥∥(xn,j)m
j=1

∥∥
w,np

.

(v) If T ∈ Lsi,p(nE;F ), then

m∑
j1,...jn=1

‖T (x1,j1 , . . . , xn,jn
)‖p

≤ Cp

∫
BE′

1
×···×BE′

n

m∑
j1,...jn=1

|ϕ1(x1,j1) · · ·ϕn(xn,jn
)|p dμ(ϕ1, . . . , ϕn).

So

( m∑
j1,...jn=1

‖T (x1,j1 , . . . , xn,jn
)‖p

)1/p

≤ C

( ∫
BE′

1
×···×BE′

n

m∑
j1,...jn=1

|ϕ1(x1,j1) · · ·ϕn(xn,jn
)|p dμ

× (ϕ1, . . . , ϕn)
)1/p

≤ C sup
ϕl∈BE′

l
,l=1,... ,n

( m∑
j1,...jn=1

|ϕ1(x1,j1) · · ·ϕn(xn,jn
)|p

)1/p
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= C sup
ϕl∈BE′

l
,l=1,... ,n

⎡
⎣
( m∑

j1=1

|ϕ1(x1,j1)|p
)1/p

· · ·
( m∑

jn=1

|ϕn(xn,jn
)|p

)1/p
⎤
⎦ ,

and thus T ∈ Lfas,p(nE;F ). Now let us consider T ∈ Lfas,p(nE;F ).
The case n = 2 is illustrative and indicates the proof. If (xj)∞j=1, (yj)∞j=1

∈ lwp (E), we have

( ∞∑
j=1

‖T (a+ xj , b+ yj) − T (a, b)‖p

)1/p

≤
( ∞∑

j=1

‖T (a, yj)‖p

)1/p

+
( ∞∑

j=1

‖T (xj , b)‖p

)1/p

+
( ∞∑

j=1

‖T (xj , yj)‖p

)1/p

≤
( ∞∑

j,k=1

‖T (zk, yj)‖p

)1/p

+
( ∞∑

j,k=1

‖T (xj , wk)‖p

)1/p

+
( ∞∑

j,k=1

‖T (xj , yk)‖p

)1/p

<∞,

where (zk)∞k=1 = (a, 0, 0, . . . ) and (wk)∞k=1 = (b, 0, 0, . . . ).

The proof of (vi) is easy and we omit it.

Remark 1. Obviously, each one of the assertions in Theorem 3
holds for spaces E1, . . . , En instead of E, . . . , E. The inclusion
Lsi,1(E1, . . . , En;F ) ⊂ Lsas,1(E1, . . . , En;F ) is sometimes strict. In
fact, if T : l1 × l1 → K is given by

T ((xi)∞j=1, (yj)∞j=1) =
∞∑

j=1

yj

j∑
k=1

xk,

then T fails to be semi-integral, see [1], but T is obviously strongly
1-summing.
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The inclusion Lsi,1(E1, . . . , En;F ) ⊂ Lfas,1(E1, . . . , En;F ) is also
sometimes strict, since

L(l2, l1; K) = Lfas,1(l2, l1; K) [20]

and

L(l2, l1; K) 
= Lsi,1(l2, l1; K).

In fact, if we had L(l2, l1; K) = Lsi,1(l2, l1; K), by Theorem 3 (ii) we
would have

L(l2, l∞) = Las,1(l2, l∞),

and it is a contradiction. The inclusion

Lfas,1(E1, . . . , En;F ) ⊂ Las,1(E1, . . . , En;F )

is also strict, see [12].

In general Lsas,p(E1, . . . , En;F ) is not contained in Las,p(E1, . . . , En;
F ) and Las,p(E1, . . . , En;F ) is not contained in Lsas,p(E1, . . . , En;F ).
In fact, Las,1(2l1; l1) = L(2l1; l1) and Lsas,1(2l1; l1) 
= L(2l1; l1). On the
other hand, Lsas,2(2l2; K) = L(2l2; K) and Las,2(2l2; K) 
= L(2l2; K).

In [4], Botelho proves that Pn : l1 → l1 : Pn((αi)∞i=1) = ((αi)n)∞i=1

is n-dominated and is not weakly compact. The same occurs with the
symmetric n-linear mapping associated to P .

The question, “Is every strongly p-summing n-linear mapping weakly
compact?” appears in [8] and was recently answered by Carando-
Dimant in [6]. However, by Theorem 3, since Ld,p(E1, . . . , En;F ) ⊂
Lsas,p(E1, . . . , En;F ), one can see that Botelho’s counterexample is a
direct answer to this question.

The next result shows that the spaces of semi-integral and dominated
mappings coincide in some situations. Firstly, let us recall the concept
of cotype: Let 2 ≤ q ≤ ∞ and (rj)∞j=1 be Rademacher functions. We
say that E has cotype q if there exists C ≥ 0 such that for any choice
of k ∈ N and x1, . . . , xk ∈ E we have

( k∑
j=1

‖xj‖q

)1/q

≤ C

( ∫ 1

0

‖
k∑

j=1

rj(t)xj‖2 dt

)1/2

.

In the case q=∞, we replace (
∑k

j=1 ‖xj‖q)1/q by max{‖xj‖; 1≤j≤k}.
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Theorem 4. If E has cotype 2, then Lsi,1(2E;F ) = Ld,1(2E;F ) for
every F .

Proof. If E has cotype 2, we know that Las,1(E;F ) = Las,2(E;F ) for
every Banach space F . Thus, if T ∈ Ld,2(2E;F ), then T = R◦(u1, u2),
with R ∈ L(2G;F ) and u1, u2 ∈ Las,2(E;G) = Las,1(E;G). Hence,
T ∈ Ld,1(2E;F ) and thus

Ld,1(2E;F ) = Ld,2(2E;F )

for every F . Since Ld,1(2E;F ) ⊂ Lsi,1(2E;F ) ⊂ Ld,2(2E;F ), we thus
have Lsi,1(2E;F ) = Ld,1(2E;F ).

Remark 2. We can find Banach spaces E and F so that Ld,1(2E;F ) �

[Πas(1)](2E;F ). The following example is suggested by M.C. Matos.

Consider T : l2 × l2 → K given by T (x, y) =
∑∞

j=1(1/jα)xjyj with
α = 1/2 + ε and ε ∈ ]0, 1/2[. We will show that T ∈ [Πas(1)](2l2; K) \
Ld,1(2E;F ). Since

( m∑
j=1

‖T (ej , ej)‖1/2

)2

=

⎡
⎣ m∑

j=1

(
1
jα

)1/2
⎤
⎦

2

≥
⎡
⎣ m∑

j=1

(
1

mα/2

)⎤
⎦

2

= m2−α,

if we had ( m∑
j=1

‖T (ej , ej)‖1/2

)2

≤ C
∥∥(ej)m

j=1

∥∥2

w,1
,

for every m, we would obtain m2−α ≤ C(m1/2)2 = Cm, a contradic-
tion.

In order to prove that Ψ(2)
1 (T ) ∈ Las,1(l2; l2), observe that

Ψ(2)
1 (T )((xj)∞j=1) =

(
1
jα

xj

)∞

j=1

.

Now it suffices to show that Ψ(2)
1 (T ) is a Hilbert-Schmidt operator, see

[15]. But it is easy to check, since
∞∑

k=1

∥∥∥Ψ(2)
1 (T )(ek)

∥∥∥2

l2
=

∞∑
k=1

[
1
kα

]2

<∞.
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Hence the inclusion is strict. Since l2 has cotype 2, Theorem 4 yields
that

Lsi,1(2l2; K) = Ld,1(2l2; K) � [Πas(1)](2l2; K).

Acknowledgments. The authors thank Professor Matos for intro-
ducing the subject and for valuable suggestions. The authors also thank
the referee for detecting several misprints and mistakes on the original
version.

Note added in proof. A recent paper [21] due to David Pérez-Garćıa
presents nice information comparing the classes of multiple (fully)
summing, dominated and absolutely summing multilinear mappings.
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