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AFFINE GEOMETRIC PROOFS OF THE BANACH
STONE THEOREMS OF KADISON AND KAUP

T. DANG, Y. FRIEDMAN1 AND B. RUSSO1

1. Introduction and preliminaries. In 1951, Kadison [14] proved
the following non-commutative extension of the Banach Stone Theorem,
thereby showing that the geometry of a C∗-algebra determines some
aspects of its algebraic structure.

THEOREM A. Let T be a surjective linear isometry of a unital C∗-
algebra A onto a unital C∗-algebra B. Then there is a unitary element
u in B and a Jordan ∗-isomorphism ρ of A onto B such that

(1.1) Tx = uρ(x), x ∈ A.

Recall that the proof of the Banach Stone theorem, i.e., the special
case of Theorem A in which A and B are abelian, say A = C(X) and
B = C(Y ), uses duality and the intimate relation between the topological
space X (respectively Y ) and the algebra C(X) (respectively C(Y )).

This approach was abandoned by Kadison because “the sparseness of
knowledge concerning the pure states of an operator algebra makes this
procedure seem difficult” [14, p. 326]. Instead he gives an intrinsic proof,
depending mainly on spectral theory and the geometry of the underlying
Hilbert spaces on which A and B act. Kadison points out that ρ preserves
the quantum mechanical structure of the C∗-algebras, i.e., the linear
structure and the power structure of self-adjoint elements. It follows,
and this is significant for the viewpoint expressed in this paper, that
T , given by (1.1), preserves powers of the form aa∗a, aa∗aa∗a, . . . , and
hence, by polarization, that T preserves the triple product ab∗c+ cb∗a.

By using some basic results on operator algebras which appeared in the
decade after Kadison’s theorem, we present here a proof of Theorem A
which is similar in spirit to the approach of Banach and Stone. Namely,
we use affine geometric properties of the convex set of states, i.e., instead
of pure states or extreme points, we consider faces, or extremal subsets
of the state space.
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This approach has the advantage of being independent of the order
structure. As such, it can be applied to a category of algebraic objects
(the JB∗-triples) which includes C∗-algebras and Jordan C∗-algebras, is
determined by geometric and holomorphic properties, and usually does
not have a global order structure. In this way we are able to also give
an elementary proof of Kaup’s generalization to JB∗-triples of Kadison’s
theorem. Before introducing the category of JB∗-triples we recall two
other analogues of Theorem A.

A significant generalization of Theorem A was obtained in 1973 by
Harris [12], by the use of holomorphic methods. A norm closed subspace
of B(H,K) which is closed under the triple product (x, y, z) → xy∗z +
zy∗x is called a J∗-algebra. This is now recognized as a misnomer
since J∗-algebras are not in general closed under a binary product or an
involution (J∗-algebras are now referred to as JC∗-triples). Equivalently,
J∗-algebras are precisely the norm closed subspaces of C∗-algebras which
are closed for the operation x→ xx∗x.

By introducing the analog of Möbius transformations, first studied by
Potapov [17], Harris [12] showed that the open unit ball of a J∗-algebra
is a bounded symmetric domain. As an application of his techniques, he
obtained the following generalization of Theorem A.

THEOREM B. Let T be a surjective linear isometry of a J∗-algebra A
onto a J∗-algebra B. Then T is a J∗-isomorphism, i.e.,

(1.2) T (xy∗z + zy∗x) = Tx(Ty)∗Tz + Tz(Ty)∗Tx, x, y, z ∈ A.

The study of Jordan operator algebras, pioneered by Størmer [20, 21],
and Topping [23], reached a certain level of maturity with the Gelfand-
Naimark Theorem of Alfsen-Schultz-Størmer [1], cf [11].

The conclusion of Theorem A suggested a Banach Stone Theorem for
Jordan C∗-algebras (also called JB∗-algebras), and such a Theorem was
proved in 1978 by Wright and Youngson [26]:

THEOREM C. Let T be a unital surjective linear isometry of a unital
Jordan C∗-algebra A onto a unital Jordan C∗-algebra B. Then T is a
Jordan ∗-isomorphism, i.e.,

T (a ◦ b) = Ta ◦ Tb, a, b ∈ A,
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and
T (a∗) = (Ta)∗, a ∈ A.

The proof of Theorem C leans heavily on the extensive analysis of JB-
algebras (= the self adjoint parts of Jordan C∗-algebras) in [1] (cf. [11]),
and the assumption T1 = 1, which allows a reduction to JB-algebras.
The key step is to show that (orthogonal) projections in A are mapped
by T into (orthogonal) projections in B. This idea will play a similar
role in our proofs of Theorems D and E below, with projection replaced
by tripotent and partial isometry, respectively.

A common generalization of each of the algebraic-topological structures
in Theorems A, B, and C is a JB∗-triple. This class arises naturally in the
study of bounded symmetric domains in complex Banach spaces (Kaup
[16]) and appears as the range of an arbitrary contractive projection
on a C∗-algebra (Friedman-Russo [8]). Thus Theorem D below, due
to Kaup [16], includes the previous three theorems as particular cases.
Kaup’s proof of Theorem D uses the deep connection between JB∗-triples
and bounded symmetric domains and therefore depends strongly on the
elaborate machinery of infinite dimensional holomorphy, cf. [15, 24].

Let’s recall that a JB∗-triple is a complex Banach space U endowed
with a continuous sesqui-linear map D : U × U → B(U) such that, for
x ∈ U,D(x, x) is Hermitian positive, ||D(x, x)|| = ||x||2, and, setting
{xyz} := D(x, y)z, one has

{xyz} = {zyx}
and

{xy{uvz}} + {u{yxv}z} = {{xyu}vz} + {uv{xyz}}.
For example, a C∗-algebra is a JB∗-triple with {xyz} = 1/2(xy∗z +
zy∗x), and a Jordan C∗-algebra is a JB∗-triple with {xyz} = (x ◦ y∗) ◦
z + (z ◦ y∗) ◦ x− (z ◦ x) ◦ y∗.

THEOREM D. Let T be a surjective linear isometry of a JB∗-triple U
onto a JB∗-triple V . Then T is a JB∗-triple isomorphism, i.e.,

(1.3) T{xyz} = {Tx, Ty, Tz}, for x, y, z ∈ U.

The purpose of this note is to give a proof of Theorem D which
is elementary in the sense that it uses only simple affine geometric
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properties of the dual unit ball of a JB∗-triple, together with analogs of
standard operator algebraic theoretical tools (spectral, polar, and Jordan
decompositions; biduals, and a Theorem of Effros). As a consequence we
also obtain new proofs of Theorems A, B and C.

In order to make our exposition as simple and self contained as possible,
and to foster a better understanding between operator algebraists and
complex analysts concerning the interplay between their respective fields,
we will first prove (in §2) the version of Theorem D in which U and V
are C∗-algebras (see Theorem E below). At the end of this paper (in
§3), we shall indicate, mostly by reference to the recent literature on
JB∗-triples, how the proof given here for C∗-algebras can be modified
to obtain a proof of Kaup’s Theorem D.

Thus our first goal is to give a geometric proof of

THEOREM E. Let T be a surjective linear isometry of a C∗-algebra A
onto a C∗-algebra B. Then

(1.4) T (xy∗z + zy∗x) = Tx(Ty)∗Tz + Tz(Ty)∗Tx, x, y, z ∈ A.

A sketch of our proof will emphasize its geometric character and
simplicity. Since T is an isometry, its adjoint T ∗ is an affine isometry
of the unit ball of the dual of B onto the unit ball of the dual of
A. As such, T ∗ maps faces (= extremal convex subsets) into faces.
Since orthogonality of functionals can be expressed in terms of a norm
condition, T ∗ preserves orthogonality of faces as well.

Motivated by the one to one correspondence between projections in
a von Neumann algebra and certain faces in its normal state space (cf.
[5, 18]), we show that there is a similar correspondence between partial
isometries in a von Neumann algebra and certain faces in the unit ball
of its predual. The fact that a von Neumann algebra is generated by
its partial isometries (via the polar and spectral decompositions) then
shows that T has the required algebraic property (1.4).

Returning to the general case, any JB∗-triple satisfies the “C∗-norm
condition” ||{xxx}|| = ||x||3. It follows easily from this that the converse
of Theorem D holds. Therefore Theorem D has the following conse-
quence.
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COROLLARY. Let δ be a bounded linear operator on a JB∗-triple. Then
δ is a triple derivation if and only if δ is skew-hermitian.

By a triple derivation on a JB∗-triple U we mean a linear mapping
δ : U → U satisfying

δ{abc} = {δa, b, c} + {a, δb, c} + {a, b, δc},

for a, b, c ∈ U . An operator H on any Banach space X is skew-hermitian
if exp tH is an isometry of X for all real t. The corollary follows since,
by a standard argument, δ is a bounded triple derivation if and only if
exp tδ is an automorphism of the triple structure, for all real t.

The importance of this corollary stems from the following quantum
mechanical considerations. The time evolution operator of a quantum
mechanical system is given by a one parameter group of isometries of
the state space of the system. The adjoint of this flow, acting on the
space of observables, is therefore infinitesimally generated, in general,
by a skew-hermitian operator. If the space of observables is represented
by the self-adjoint elements of a C∗-algebra (cf. Bratteli-Robinson [3]),
or even by the elements of a JB-algebra (cf. Segal [19]), it has been
customary to consider only the special case in which the above generator
is a derivation of the binary structure, which is not the most general
skew-hermitian operator.

On the other hand, as the corollary shows, one need consider only
(triple) derivations as infinitesimal generators of the time evolution of a
quantum mechanical system, provided that the space of observables is
taken to be a JB∗-triple. Justification for the use of a JB∗-triple as a
space of observables can be found in the Gelfand-Naimark Theorem for
JB∗-triples of Friedman-Russo [9].

The following five theorems, which are standard facts in operator
algebra theory, will be used in our proof of Theorem E (cf. [22, Chapter
III]).

THEOREM 1. (Bidual) The bidual of a C∗-algebra A is a von Neu-
mann algebra which contains A as a C∗-subalgebra via the canonical em-
bedding.



414 T. DANG, Y. FRIEDMAN AND B. RUSSO

THEOREM 2. (Spectral and polar decomposition of opera-

tors) Let x be any element of a von Neumann algebra M .

(a) There is a unique partial isometry u in M with the properties
x = u|x| (where |x| = (x∗x)1/2), and uu∗ = the projection on the closure
of the range of x.

(b) There is a partial isometry valued spectral measure σ → v(σ) on
the Borel subsets of [0, ||x||] such that

x =
∫ ||x||

0

λdvλ.

THEOREM 3. (Polar decomposition of functionals) Let f be a
normal functional on a von Neumann algebra M . Then there is a positive
normal functional ϕ and a partial isometry u with ||ϕ|| = ||f ||, f(x) =
ϕ(ux), for x ∈M , and uu∗ is the support projection of ϕ.

THEOREM 4. (Jordan decomposition)

(a) Let f be a normal hermitian functional on a von Neumann algebra
M . Then there exist normal positive functionals g and h with

f = g − h, ||f || = ||g|| + ||h||.

(b) Normal positive functionals g and h have orthogonal support pro-
jections if and only if ||g − h|| = ||g|| + ||h||.

THEOREM 5. (Neutrality) Let f be a normal functional on a von
Neumann algebra M and let e be any projection in M . The following are
equivalent:

(a) f = f · e, where f · e(x) = f(xe) for x ∈M ;

(b) ||f || = ||f · e||.

Theorem 5 is due to Effros [5] and has a physical interpretation: the
state f is unchanged by the filter determined by e if its intensity is
unchanged by the filter.

Note that the Theorems A E show that the geometry of the unit ball
of the spaces involved is rich enough to determine the non-associative
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algebraic structure. In Theorem C one needs an assumption of order
preserving. By contrast, in order to capture the associative structure (in
the case of a C∗-algebra) one needs to assume, as shown by M.-D. Choi,
that the isometry is unital and a matricial order isomorphism.

2. Isometries of C∗-algebras. In this section we shall give a proof
of Theorem E.

Let A and B be C∗-algebras and let T : A → B be a surjective linear
isometry. Then T ∗∗ : A∗∗ → B∗∗ is a surjective linear isometry of the von
Neumann algebra A∗∗ onto the von Neumann algebra B∗∗ (by Theorem
1). We shall show that, with {abc} := 1/2(ab∗c+ cb∗a),

(2.1) T ∗∗{abc} = {T ∗∗a, T ∗∗b, T ∗∗c}, for a, b, c ∈ A∗∗.

Since A is a C∗-subalgebra of A∗∗ and T ∗∗ extends T , we will have

(2.2) T{xyz} = {Tx, Ty, Tz}, for x, y, z ∈ A,

which is (1.4).

We have thus reduced the proof of (2.2) to the case where A and B are
von Neumann algebras and T is weak ∗-continuous. Moreover, by the
standard polarization formula

{abc} = 1/8
∑
α4=1
β2=1

αβ(a+ αb+ βc)(3),

it suffices to prove (2.2) with x = y = z, i.e.,

(2.3) T (x(3)) = (Tx)(3), for x ∈ A,

where we have written x(3) for {xxx} = xx∗x.

The proof of (2.3) depends on the following two properties of T acting
on partial isometries.

PROPOSITION 1. Let T be a weak∗-continuous surjective linear isome-
try of a von Neumann algebra A onto a von Neumann algebra B.
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(a) If u is a partial isometry in A then Tu is a partial isometry in B.

(b) If u and v are orthogonal partial isometries in A, then Tu and Tv
are orthogonal partial isometries in B.

Partial isometries u, v are orthogonal if their left and right support
projections are orthogonal, i.e., uu∗vv∗ = 0 and u∗uv∗v = 0.

Assume Proposition 1 and let x ∈ A. For any ε > 0 there are (by
Theorem 2) orthogonal partial isometries u1, u2, . . . , un and positive
scalars λ1, . . . , λn such that ||x − y|| < ε and ||y|| ≤ ||x||, where
y =

∑n
i=1 λiui.

It follows that ||Tx − ΣλiTui|| < ε and, by Proposition 1, that
||x(3) − Σλ3

iui|| < 3ε||x||2, ||(Tx)(3) − Σλ3
iTui|| < 3ε||x||2. Therefore

||T (x(3)) − (Tx)(3)|| < 6ε||x||2, and since ε is arbitrary, (2.3) follows.

Before proving Proposition 1, and hence Theorem E, we show how
to obtain Theorem A from Theorem E. Assume (1.4). Since T1 =
T (11∗1) = T1(T1)∗T1, T1 is a partial isometry. Moreover, 2Tx =
T (11∗x + x1∗1) = 
(Tx) + (Tx)r where 
 = T1(T1)∗ and r = (T1)∗T1.
Since T is onto, 2z = 
z + zr for all z in B. This implies 
 = r = 1, so
T1 is unitary.

Now set T̃ x = (T1)∗Tx for x ∈ A. Then T̃ is a unital surjective
isometry and so T̃ (xy + yx) = T̃ (x1∗y + y1∗x) = T̃ xT̃ y + T̃ yT̃ x, and
T̃ (x∗) = T̃ (1x∗1) = T̃1(T̃ x)∗T̃1 = (T̃ x)∗. Since Tx = T1T̃ x, T satisfies
(1.1).

In order to prove Proposition 1, we prepare five lemmas, some of which
are of independent interest.

Let v be partial isometry in a C∗-algebra A. Setting 
 = vv∗ and
r = v∗v, the projections Pj(v), j = 0, 1, 2, on A are defined by

P2(v)x = 
xr, P1(v)x = (1 − 
)xr + 
x(1 − r)

P0(v)x = (1 − 
)x(1 − r), x ∈ A.

The decomposition x = x2 + x1 + x0, where xj = Pj(v)x, is called
the Pierce decomposition of x relative to v. Note that Pj(v)A is the
j-eigenspace of the map x→ vv∗x+ xv∗v, j = 0, 1, 2. We have

(2.3′)
||P2(v)x+ P0(v)x|| = max(||P2(v)x||, ||P0(v)x||), x ∈ A,

||P2(v)∗g + P0(v)∗h|| = ||P2(v)∗g|| + ||P0(v)∗h||, g, h ∈ A∗.
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LEMMA 1. Let v be a partial isometry in a C∗-algebra A.

(a) Av := v∗Ar, with r = v∗v, is a C∗-subalgebra of A, with unit r. If
A is a von Neumann algebra, so is Av.

(b) The map x→ vx is a linear isometric bijection of Av onto P2(v)A
with inverse a → v∗a. Thus P2(v)A becomes a C∗-algebra with unit v
and operations

a · b := av∗b, a# := va∗v.

(c) The map f → f |P2(v)A is an affine isometry of {f ∈ A∗ : f(v) =
‖f ||} onto (P2(v)A)∗+. If A is a von Neumann algebra, this map restricts
to an affine isometry of {f ∈ A∗ : f(v) = ||f ||} onto (P2(v)A)∗,+.

PROOF. Verifications of (a), (b), (c) are straightforward calculations
which the reader is encouraged to carry out. Theorem 5 is needed in the
proof of (c).

The Pierce 2 subspace P2(v)A will occur frequently in the sequel. It
will be denoted by A2(v). If A is a von Neumann algebra, then by Lemma
1(c), the normal state space of A2(v) is affinely isometric to the norm
exposed face Fv defined by Fv = {f ∈ A∗ : f(v) = ||f || = 1}. Norm
exposed faces of A∗,1 will be studied below in Lemmas 3, 4, and 5.

Orthogonal partial isometries were considered in Proposition 1. More
generally, elements x, y in a C∗-algebra are orthogonal if xy∗ = 0 = y∗x.
This is equivalent to D(x, y) = 0, where D(x, y) is the operator z →
1/2(xy∗z + zy∗x) on A. If u is a partial isometry in A and x ∈ A, then
x and u are orthogonal if and only if x ∈ P0(u)A.

LEMMA 2. Let f and g be normal functionals on a von Neumann
algebra A and let u and v be the partial isometries occurring in their
polar decompositions, respectively. Then u and v are orthogonal if and
only if

(2.4) ||f + g|| = ||f − g|| = ||f || + ||g||.

PROOF. Suppose u and v are orthogonal, and set w± = u ± v. Then
||w±|| = 1 and (f ± g)(w±) = f(u) + g(v) = ‖f || + ||g||. Therefore (2.4)
holds.
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For the converse let w∗ be the partial isometry occurring in the polar
decomposition of f + g. Then, by (2.4), ||f || + ||g|| = ||f + g|| =
(f + g)(w) = f(w) + g(w) ≤ |f(w)| + |g(w)| ≤ ||f || + ||g||. Thus f(w) =
‖f ||, g(w) = ||g||, so, by Lemma 1(c), the restrictions ϕ = f |A2(w)
and ψ = g|A2(w) are normal positive functionals on A2(w) for which
||ϕ − ψ|| = ||ϕ|| + ||ψ||. If p and q denote the support projections in
A2(w) of ϕ and ψ respectively, then, by Theorem 4(b), p and q are
orthogonal projections in A2(w), i.e.,

(2.5)
p = p · p = pw∗p, q = q · q = qw∗q,
p = p# = wp∗w, q = q# = wq∗w,
p · q = pw∗q = 0.

From (2.5) we have p = p ·p# ·p = pw∗(wp∗w)w∗p = p(ww∗pw∗w)∗p =
pp∗p and pq∗ = p(q#)∗ = p(wq∗w)∗ = pw∗qw∗ = 0. Therefore p and q
are orthogonal partial isometries in A.

For x ∈ A2(w), ϕ(x) = ϕ(p · x · p). But p · x · p = pw∗xw∗p =
(pw∗p)w∗xw∗(pw∗p) = p(wp∗w)∗x(wp∗w)∗p = pp∗xp∗p. Moreover,
since f(w) = ‖f ||, f vanishes off A2(w) (Theorem 5). Thus for x ∈
A, f(x) = f(pp∗xp∗p). Since uu∗ and u∗u are the left and right supports
of f on A, we have uu∗ ≤ p∗p and u∗u ≤ pp∗.

Similarly vv∗ ≤ q∗q and v∗v ≤ qq∗. Since p and q are orthogonal
partial isometries in A, so are u and v.

The next lemma examines the relation between partial isometries in a
von Neumann algebra A, and norm exposed faces in the unit ball A∗,1

of its predual.

Recall that by a norm exposed face of A∗,1 we mean a non-empty subset
Fx of A∗,1 of the form

Fx = {f ∈ A∗ : ||f || = f(x) = 1},
where x ∈ A, ||x|| = 1. Note that if u is a non-zero partial isometry in
A, then, by Lemma 1(c), Fu �= φ.

LEMMA 3. For each x in a von Neumann algebra A with ||x|| = 1 and
Fx �= φ, there is a partial isometry w in A with Fx = Fw. Moreover
x = y + w with y orthogonal to w.
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PROOF. Let x =
∫ 1

0
λdvλ be the polar spectral decomposition of x. We

shall show that Fx = Fw, where w =
∫
{1} λdvλ.

For ε > 0, write

x =
∫

[0,1−ε)

λdvλ +
∫

[1−ε,1]

λdvλ = x1(ε) + x2(ε), say.

Let vi be the partial isometry occurring in the polar decomposition of
xi. Then v1 and v2 are orthogonal and xi = P2(vi)xi. If f ∈ Fx,

1 = 〈f, x〉 = 〈f, x1 + x2〉 = 〈(P2(v1)∗ + P2(v2)∗)f, x1 + x2〉
≤ |〈P2(v1)∗f, x1〉| + |〈P2(v2)∗f, x2〉|
≤ ||P2(v1)∗f ||(1 − ε) + ||P2(v2)∗f ||.

By (2.3′), 1 + ε||P2(v1)∗f || ≤ ||P2(v1)∗f || + ||P2(v2)∗f || = ||(P2(v1)∗ +
P2(v2)∗)f || ≤ ||f || = 1. Thus P2(v1)∗f = 0, and f(x1) = 〈f, P2(v1)x1〉
= 〈P2(v1)∗f, x1〉 = 0. Therefore, for all ε > 0, f(x2) = 1. Now write
x2 =

∫
[1−ε,1)

λdvλ+w, and note that, by Lebesgue bounded convergence,
w∗ − limε→0 x2 = w. Thus f(w) = limε→0 f(x2) = 1. We have proved
that Fx ⊂ Fw.

Conversely, if f ∈ Fw, then, by Theorem 5, f = P2(w)∗f and
f(x) = f(P2(w)(y + w)) = f(w) = 1. Thus Fw ⊂ Fx and the proof
is complete.

Lemma 3 says that the map u→ Fu from the set of partial isometries
in a von Neumann algebra A to the set of norm exposed faces in the
unit ball A∗1 of the predual A∗ is onto. In fact, this map is also one to
one. Indeed, by Theorem 4(a) and Lemma 1(c), for any partial isometry
u, P2(u)∗A∗ = spFu. Also u ∈ P2(u)A. Therefore u is determined by its
values on spFu. It follows that if Fu = Fw, then u = w.

The following lemma strengthens Lemma 2. To facilitate its statement
we define f �g to mean that the normal functionals f and g satisfy (2.4).
Motivated by Theorem 4(b) and Lemma 2 we say f and g are orthogonal
if f � g.

LEMMA 4. Let u and v be partial isometries in a von Neumann algebra
A. Then u and v are orthogonal if and only if f � g for all pairs
(f, g) ∈ Fu × Fv.
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PROOF. If u and v are orthogonal, then u ∈ P0(v)A, v ∈ P0(u)A, and
||u± v|| = 1. If (f, g) ∈ Fu × Fv, then, by Theorem 5, f = P2(u)∗f, g =
P2(v∗)g, so that f(v) = f(P2(u)P0(u)v) = 0 and similarly g(u) = 0.
Hence ||f ||+ ||g|| = f(u)+ g(v) = (f ± g)(u± v) ≤ ‖f + g|| ≤ ||f ||+ ||g||,
so that f � g.

For the converse, we use the fact that, in any von Neumann algebra, the
identity element is the supremum, hence the weak∗-limit of a sequence
of support projections of normal states. By Lemma 1, u is the identity
of A2(u) and so u = w∗ − lim pn where pn is the support projection of
the normal state fn|A2(u) for some fn ∈ Fu. It is clear that pn is the
partial isometry occurring in the polar decomposition of fn. Similarly
v = w∗ − lim qn and qn is the partial isometry occurring in the polar
decomposition of some gn ∈ Fv. By Lemma 2 and our hypothesis, pn

and qm are orthogonal in A. Therefore uv∗ = limn(limm pnq
∗
m) = 0, and

similarly v∗u = 0.

Our final lemma in this section gives a geometric characterization of a
partial isometry.

For any set S of normal functionals, let S� = {f ∈ A∗ : f � g for all g
in S}.

LEMMA 5. Let x be an element of a von Neumann algebra A. Then x is
a non-zero partial isometry if and only if ||x|| = 1, Fx �= 0, and f(x) = 0
for all f in F �

x .

PROOF. If x = u is a non-zero partial isometry then ||u|| = 1 and we
have already noted that Fu �= φ. Let f ∈ F �

u and let v be the partial
isometry occurring in the polar decomposition of f . By Lemma 4, u
and v are orthogonal, i.e., u = P0(v)u. Also f = P2(v)∗f . Therefore
f(u) = (P2(v)∗f)(u) = f(P2(v)P0(v)u) = 0.

Conversely, let x satisfy the conditions stated in the lemma. By Lemma
3, Fx = Fw for a partial isometry w and y := x− w is orthogonal to w.
We show that g(y) = 0 for all g ∈ A∗, forcing y = 0.

Since y = P0(w)y, we may assume g = P0(w)∗g. Then if v is the partial
isometry occurring in the polar decomposition of g, we have v ∈ P0(w)A,
i.e., v and w are orthogonal. Then, by Lemma 4, g ∈ F �

w = F �
x , so
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that g(x) = 0 by assumption. Since also g(w) = P0(w)∗g(P2(w)w) =
g(P0(w)P2(w)w) = 0 we have g(y) = g(x− w) = 0.

We are now ready to prove Proposition 1. We note first that, since
T : A → B is weak∗-continuous, S := T ∗|B∗ is a linear isometry of B∗
onto A∗. Therefore, by direct verification,

(2.6) S(Fx) = FT−1x for x ∈ B.

PROOF OF PROPOSITION 1.

(a) If u is a partial isometry in A, then ||u|| = 1, Fu �= φ, and f(u) = 0
for all f in F �

u .

Since T and S are surjective isometries, it follows that ||Tu|| = 1, FTu =
S−1Fu �= φ and h(Tu) = 0 for all h ∈ F �

Tu. By Lemma 5, Tu is a partial
isometry in B.

(b) If u and v are orthogonal partial isometries in A, then, by Lemma
4 and (2.6), ||f ± g|| = ||f || + ||g|| for all (f, g) ∈ Fu × Fv, and
||h ± k|| = ||h|| + ||k|| for (h, k) ∈ S−1Fu × S−1Fv = FTu × FTv. By
Lemma 4 again, Tu and Tv are orthogonal.

The proof of Theorem E is now complete.

3. Isometries of JB∗-triples. In this section we shall outline a proof
of Theorem D which parallels the proof of Theorem E given in §2.

This proof is affine geometric in character and avoids nearly all of
the extensive machinery of infinite dimensional holomorphy required in
Kaup’s original proof.

We begin by stating the analogs for JB∗-triples of Theorems 1 to 5
of §1. These results were obtained by several authors and most have
appeared since 1983.

It is natural to define a JBW ∗-triple to be a JB∗-triple which is the
normed dual of some Banach space with respect to which the triple
product is separately weak∗-continuous. Dineen, in [4], proved that the
bidual of a JB∗-triple is a JB∗-triple, and Barton-Timoney [2] proved
that a dual JB∗-triple is a JBW ∗-triple. Hence we have
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THEOREM I. The bidual of a JB∗-triple U is a JBW ∗-triple which
contains U as a JB∗-subtriple via the canonical embedding.

The analog of Theorem 2 involves the functional calculus in a JB∗-
triple. For purposes of motivation, we first take a close look, from a
different viewpoint, at the functional calculus in a C∗-algebra.

Let A be any C∗-algebra and let x be a self adjoint element of A. The
C∗-subalgebra Ax of A generated by x is isomorphic to C0(σ(x) ∪ {0}),
so that, for any continuous function f on σ(x)∪ {0} with f(0) = 0, f(x)
is an element of A.

Now let Ux be the smallest norm closed subspace of A closed under the
triple product y → yy∗y. It is easy to see that Ux ⊂ Ax corresponds to
the functions h in C0(σ(x) ∪ {0}) satisfying h(−λ) = −h(λ) whenever λ
and −λ both belong to σ(x). This analysis leads easily to the fact that
Ux is (triple) isomorphic to the commutative C∗-algebra C0(S), where
S = (σ(x) ∪ (−σ(x)) ∪ {0}) ∩ [0,∞), and the triple product on C0(S) is
given by {fgh} = fgh.

The following theorem, due to Kaup [15, 16], (cf. Friedman-Russo [6,
Theorem 2; 7, Remark 1.9]) implies that the preceding discussion is valid
for arbitrary elements x in a C∗-algebra.

THEOREM II.

(a) Let U be a JB∗-triple and let x ∈ U . Then the JB∗-subtriple of U
generated by x (i.e., the smallest norm closed subtriple of U containing
x) is isomorphic to a commutative C∗-algebra C0(S), where S ⊂ [0,∞).

(b) If U is a JBW ∗-triple, then the JBW ∗-subtriple of U generated by
x, namely U

w∗

x , is isomorphic to a commutative von Neumann algebra.

(c) For each x ∈ U,U a JBW ∗-triple, there is a tripotent-valued
spectral measure σ → v(σ) on the Borel subsets of [0, ||x||] such that

x =
∫ ||x||

0

λdvλ.

An element e in a JB∗-triple is a tripotent if {eee} = e.

In order to state the analogs of Theorems 3 and 5 for JB∗-triples,
we need the following notions (cf. Friedman-Russo [7, §1]). Each tri-
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potent e gives rise to a Pierce decomposition (generalizing the Pierce
decomposition described in §2) and Pierce projections as follows. Let
Q(x)y := {xyx}, for x, y ∈ U and define

P2(e) = Q(e)2, P1(e) = 2(D(e, e) −Q(e)2),

P0(e) = I − 2D(e, e) +Q(e)2.

We let Uk(e) denote the range of Pk(e), for k = 0, 1, 2. Note that Uk(e)
is the k/2-eigenspace of D(e, e). Then we have

(3.1) U = U2(e) ⊕ U1(e) ⊕ U0(e),

(3.2) {Ui(e), Uj(e), Uk(e)} ⊂ Ui−j+k(e)

(where U�(e) := {0} if 
 �∈ {0, 1, 2}),
(3.3) {U2(e), U0(e), U} = {U0(e), U2(e), U} = {0}.

Moreover, U2(e) is a complex Jordan algebra, with unit e and opera-
tions

(3.4) x ◦ y := {xey}, z# = {eze}.

It is convenient at this point to state the JB∗-triple analogs of Theorem
5 (which is proved in Friedman-Russo [7, Proposition 1]) and Lemma 1.

THEOREM V. Let U be a JB∗-triple, let f be a bounded linear functional
on U and let e be any tripotent of U .

(a) If ||P2(e)∗f || = ||f‖, then P2(e)∗f = f ;

(b) If ||P0(e)∗f || = ||f ||, then P0(e)∗f = f .

LEMMA I. Let e be a tripotent in a JB∗-triple U .

(a) U2(e) is a JB∗-algebra with unit e and operations given by (3.4).
If U is a JBW ∗-triple, then U2(e) is a JBW ∗-algebra.

(b) The map f → f |U2(e) is an affine isometry of {f ∈ U∗ : f(e) =
||f ||} onto (U2(e))∗+. If U is a JBW ∗-triple (with predual U∗), this map
restricts to an affine isometry of {f ∈ U∗ : f(e) = ||f ||} onto (U2(e))∗,+.
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The proof of Lemma I(a) is indicated in Friedmann-Russo [7, p. 70],
and the proof of Lemma I(b) follows from Theorem V (cf. Friedman-
Russo [10, Lemma 1.1]).

We can now state the analog for JB∗-triples of Theorem 3. The proof
is in Friedman-Russo [7, Proposition 2].

THEOREM III. Let U be a JBW ∗-triple and let f be a normal functional
on U , i.e., f ∈ U∗. Then there is a unique tripotent e in U , denoted by
e(f), such that f = P2(e)∗f , and f |U2(e) is a faithful normal positive
functional on the JBW ∗-algebra U2(e).

Before stating the analog of Theorem 4 we recall that JB-algebras
are precisely the self-adjoint parts of JB∗-algebras (Wright [25]). The
same result holds for JBW -algebras and JBW ∗-algebras. The proof of
Theorem IV can therefore be found in Iochum [13] [cf. also [11]).

THEOREM IV.

(a) Let f be any normal functional on a JBW -algebra (equivalently, f
is any normal hermitian functional on a JBW ∗-algebra). Then f = g−h
for some positive normal functionals g, h with ||g − h|| = ||g|| + ||h||.

(b) Positive normal functionals g and h on a JBW ∗-algebra have
orthogonal support projections if and only if ||g − h|| = ||g|| + ||h||.

The argument given at the beginning of §2 to prove (2.3) now applies
verbatim with C∗-algebra replaced by JB∗-triple and partial isometry
replaced by tripotent. In particular, this reduces the proof of Theorem
D to the proof of the following analog of Proposition 1.

PROPOSITION I. Let T be a weak ∗-continuous surjective linear isome-
try of a JBW ∗-triple U onto a JBW ∗-triple V .

(a) If e is a tripotent in U , then Te is a tripotent in V ;

(b) If e1 and e2 are orthogonal tripotents in U , then Te1 and Te2 are
orthogonal tripotents in V .
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We recall that tripotents e1, e2 are said to be orthogonal if e2 ∈ U0(e1).

As in §2, in order to prove Proposition I we need to prepare four more
lemmas.

LEMMA II. Let f and g be normal functionals on a JBW ∗-triple U and
let e(f), e(g) be the tripotents given by Theorem III. Then e(f), e(g) are
orthogonal if and only if

(3.5) ||f + g|| = ||f − g|| = ||f || + ||g||.

PROOF. If e(f), e(g) are orthogonal, then (3.5) follows by the same
argument as in the proof of Lemma 2.

Conversely, if (3.5) holds, then, with w := e(f + g), the argument
in Lemma 2 yields f(w) = ‖f ||, g(w) = ||g||, so that, by Theorem V,
f = P2(w)∗f and g = P2(w)∗g and, by Friedman-Russo [7, Proposition
3], ef ∈ U2(w) and e(g) ∈ U2(w).

Setting ϕ = f |U2(w), ψ = g|U2(w), we still have ||ϕ+ψ|| = ||ϕ−ψ|| =
||ϕ|| + ||ψ||, so, by Theorem IV, ϕ and ψ have orthogonal support
projections in U2(w). These support projections coincide with e(ϕ), e(ψ)
because ϕ and ψ are positive functionals on U2(w). Moreover, by
Friedman-Russo [10, Proposition 2.2] e(ϕ) = P2(w)e(f) = e(f) since
e(f) ∈ U2(w). Similarly e(ψ) = e(g). Since e(ϕ) and e(ψ) are orthogonal
in U2(w), it follows that e(f) and e(g) are orthogonal in U .

The next lemma is proved in Friedman-Russo [7, Proposition 8].

LEMMA III. For each x in a JBW ∗-triple U , with ||x|| = 1 and Fx �= φ
(where Fx is the norm exposed face of U∗,1 given by Fx = {f ∈ U∗,1 :
f(x) = ‖f || = 1}), there is a tripotent w in U with Fx = Fw. Moreover
x = y + w with y orthogonal to w.

The orthogonality of y and w is expressed by y ∈ U0(w) or D(w, y) = 0.

As in §2 we define f � g to mean that (3.5) holds for the normal
functionals f, g.
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LEMMA IV. Let e1 and e2 be tripotents in a JBW ∗-triple U . Then e1
and e2 are orthogonal if and only if Fe1 � Fe2 , i.e., f � g for all pairs
(f, g) ∈ Fe1 × Fe2 .

PROOF. The proof of the only if part is the same as the corresponding
proof of Lemma 4.

For the converse, we use the fact that, in any JBW ∗-algebra, the unit
element is a weak ∗-limit of a sequence of support projections of normal
states. Thus, by Lemma I, e1 = w∗ − lim pn, where pn is the support
projection of the normal state fn|U2(e1) for some fn ∈ Fe1 . It is clear
that pn = e(fn). Similarly e2 = w∗−lim qn with qn = e(gn), gn ∈ Fe2 . By
Lemma II and our hypothesis, pn and qn are orthogonal in U . Therefore,
for any z ∈ U,D(e1, e2)z = limn(limm{pnqmz}) = 0, i.e., e1 and e2 are
orthogonal.

We can now give a geometric characterization of tripotents.

LEMMA V. Let x be an element of a JBW ∗-triple U . Then x is a
non-zero tripotent if and only if ||x|| = 1, Fx �= φ, and f(x) = 0 for all
f ∈ F �

x where, for S ⊂ U∗, S� = {f ∈ U∗ : f � g for all g ∈ S}).

PROOF. The proof is identical to the proof of Lemma 5. To show that
e(g) ∈ U0(w), use Friedman-Russo [7, Proposition 3].

The proof of Proposition I now follows the exact same lines as the proof
of Proposition 1 in §2. Thus Theorem D has been proved.

As noted earlier, Theorem D includes as special cases each of Theorems
A, B, C (and E). Theorem D, specialized to JB∗-algebras does not require
the assumption that T1 = 1. Since multiplication by a unitary element is
not in general an isometry, one cannot reduce the case T1 �= 1 to the case
T1 = 1 by staying in the category of JB∗-algebras. On the other hand,
since {11x} = x for all x in the unital JB∗-algebra A, it follows from
Theorem E, with u = T1, that {uuy} = y for all y in the JB∗-algebra B,
i.e., B = B2(u). Thus the isometry T is a unital Jordan C∗-isomorphism
from A to the JB∗-algebra B2(u) with structure given by (3.4).
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The ideas expressed in this paper suggest an affine geometric approach
to the study of JB∗-triples. The second and third authors, motivated by
the geometry imposed by measuring processes on the set of observables
of a quantum mechanical system, have introduced and studied the class
of “facially symmetric spaces” for this purpose. (Cf. A geometric spectral
theorem, Quart. J. Math., Oxford Ser. (2), 37 (1986), 263 277, and a
preprint: Affine structure of facially symmetric spaces.)

REFERENCES

1. E. Alfsen, F.W. Shultz and E. Størmer, A Gelfand-Neumark theorem for Jordan
algebras, Adv. in Math. 28 (1978), 11 56.

2. T. Barton and R. Timoney, Weak∗-continuity of Jordan triple products and its
applications, Math. Scand. 59 (1986), 177 191.

3. O. Bratteli and D.W. Robinson, Operator algebras and quantum statistical
mechanics I, II, Springer Verlag, Berlin-Heidelberg, New York, 1979, 1981.

4. S. Dineen, “The second dual of a JB∗-triple system,” in Complex analysis,
functional analysis, and approximation theory, ed. J. Mujica, North Holland, Ams-
terdam, 1986, 67 69.

5. E. Effros, Order ideals in a C∗-algebra and its dual, Duke Math. J. 30 (1963),
391 412.

6. Y. Friedman and B. Russo, Function representation of commutative operator
triple systems, J. London Math. Soc. 27 (1983), 513 524.

7. and , Structure of the predual of a JBW ∗-triple, J. Reine Angew.
Math. 356 (1985), 67 89.

8. and , Solution of the contractive projection problem, J. Funct.
Anal. 60 (1985), 56 79.

9. and , The Gelfand Naimark theorem for JB∗-triples, Duke Math.
J. 53 (1986), 139 148.

10. and , Conditional expectation and bicontractive projections on
Jordan C∗-algebras and their generalizations, Math. Z. 194 (1987), 227 236.

11. H. Hanche-Olsen, E. Størmer, Jordan operator algebras, Pitman, London,
1984.

12. L.A. Harris, “Bounded symmetric homogenous domains in infinite dimensional
spaces,” in Proceedings on infinite dimensional holomorphy, eds. T.L. Hayden and
T.J. Suffridge, Lecture Notes in Math., vol. 364, Springer-Verlag, Berlin-Heidelberg-
New York, 1974, 13 40.

13. B. Iochum, Cones autopolaries et algebraes de Jordan, Lecture Notes in Math.,
vol. 1049, Berlin-Heidelberg-New York, 1984.

14. R.V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951),
325 338.

15. W. Kaup, Algebraic characterization of symmetric complex Banach manifolds,
Math. Ann. 228 (1977), 39 64.



428 T. DANG, Y. FRIEDMAN AND B. RUSSO

16. , A Riemann mapping theorem for bounded symmetric domains in
complex Banach spaces, Math. Z. 183 (1983), 503 529.

17. V.P. Potapov, The multiplicative structure of J-contractive matrix functions,
Amer. Math. Soc. Transl. 15 (1960), 131 243.

18. R. Prosser, On the ideal structure of operator algebras, Mem. Amer. Math.
Soc. 45 (1963).

19. I.E. Segal, Postulates for general quantum mechanics, Ann. of Math. 48
(1947), 930 48.

20. E. Størmer, Jordan algebras of type I, Acta Math. 115 (1966), 165 184.

21. , Irreducible Jordan algebras of self-adjoint operators, Trans. Amer.
Math. Soc. 130 (1968), 153 166.

22. M. Takesaki, Theory of operator algebras I, Springer-Verlag, Berlin-Heidelberg-
New York, 1979.

23. D. Topping, Jordan algebra of self-adjoint operators, Mem. Amer. Math. Soc.
53 (1965).

24. H. Upmeier, Symmetric Banach manifolds and Jordan C∗-algebras, North
Holland, Amsterdam, 1985.

25. J.D.M. Wright, Jordan C∗-algebras, Michigan Math. J. 24 (1977), 291 302.

26. and M. Youngson, On isometries of Jordan algebras, J. London Math.
Soc. 17 (1978), 339 344.

Department of Mathematics, University of California, Irvine, CA 92717

Jerusalem College of Technology, Israel


