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PERIODIC GENERALIZED FUNCTIONS

DENNIS NEMZER

ABSTRACT. A class of periodic generalized functions,
called periodic Boehmians, is studied. Each periodic Boehmian
is the sum of its Fourier series. The class of periodic Boehmi-
ans is strictly smaller than the class of periodic Mikusiński
operators, and strictly larger than the class of periodic distri-
butions.

1. Introduction. In this paper we shall construct the Boehmians
on the unit circle. For a general construction of Boehmians see [6].

Generalized functions on the unit circle have been classified by their
Fourier coefficients. For example, {αn}∞−∞ is the sequence of Fourier
coefficients of a distribution if the αn’s grow no faster than a poly-
nomial in n [7]. {αn}∞−∞ is the sequence of Fourier coefficients of a
hyperfunction if lim|n|→∞ |αn|1/|n| ≤ 1 [4]. Any sequence of complex
numbers is the sequence of Fourier coefficients of a Mikusiński operator
[3]. We will show that the coefficients of a periodic Boehmian satisfy
a growth condition much like that of a hyperfunction.

§2 is concerned with definitions. Most of the material in §3 and §4
can be found in [6] and [2], respectively, but is presented here for the
convenience of the reader. §3 has results on convergence. §4 gives
an example of a periodic Boehmian which is not a distribution. In
§5 Fourier coefficients are defined and it is shown that the Fourier
coefficients of a periodic Boehmian satisfy a growth condition (Theorem
5.14 and Theorem 5.15). It is not known whether the condition in
Theorem 5.14 is necessary and sufficient. Indeed there is a significant
gap between the condition in Theorem 5.14 and the condition in
Theorem 5.15; it is not even known if each sequence which is o(eo(n))
is a sequence of Fourier coefficients for a periodic Boehmian.
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2. Notation and construction of β. The unit circle will be
denoted by T . C(T ) will denote the collection of all continuous
complex valued functions on T . Cn(T ) (Cn

∞(T )) will be the collection
of sequences of continuous (infinitely differentiable) complex valued
functions on T .

The convolution of f and g in C(T ) is denoted by juxtaposition. Thus

(fg)(x) =
1
2π

∫ π

−π

f(x − t)g(t) dt.

If, for n = 1, 2, . . . , fn, f ∈ C(T ), then limn fn = f will mean fn

converges uniformly to f on T .

A sequence of continuous real valued functions, {δj}∞j=1, will be called
an approximate identity or a delta sequence if the following conditions
are satisfied:

(i) for each j, 1
2π

∫ π

−π
δj(t) dt = 1;

(ii) for each j and all t, δj(t) ≥ 0;

(iii) Given a neighborhood V of 1, there exists a positive integer N
such that for all j ≥ N , the support of δj is contained in V .

The collection of delta sequences will be denoted by Δ. The next,
well-known theorem gives some indication why an element of Δ is called
an approximate identity.

THEOREM 2.1. Let f ∈ C(T ) and {δj}∞j=1 ∈ Δ, then limj fδj = f .

Definition 2.2. Let A ⊂ Cn(T ) × Δ be defined by

A = {({fj}∞j=1, {δj}∞j=1) : for each i and each j, fiδj = fjδi}.

Two elements ({fj}∞j=1, {δj}∞j=1) and ({gj}∞j=1, {σj}∞j=1) of A are said
to be equivalent, denoted by

({fj}∞j=1, {δj}∞j=1) ∼ ({gj}∞j=1, {σj}∞j=1),

if, for all i and j, fiσj = gjδi. A straightforward calculation shows that
‘∼’ is an equivalence relation on A . The equivalence classes will be
called periodic Boehmians.
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Definition 2.3. The space of periodic Boehmians, denoted by β, is
defined as

β =

{[
{fj}∞j=1

{δj}∞j=1

]
:
(
{fj}∞j=1, {δj}∞j=1

)
∈ A

}
.

For convenience a typical element of β will be written as [fj/δj ].

It follows from Theorem 2.1 that if f, g ∈ C(T ), {δj}∞j=1 ∈ Δ and
for each j, fδj = gδj , then f = g. Thus if [fδj/δj ] = [gδj/δj ] then
f = g. So C(T ) can be viewed as a subset of β by identifying f
with [fδj/δj ], where {δj}∞j=1 is some fixed delta sequence. Similarly,
let {δj}∞j=1 be a fixed element of Cn

∞(T ) ∩ Δ. Then D′(T ), the class
of distributions on the unit circle, can be viewed as a subset of β by
identifying u with [u∗δj/δj ], where u∗δj denotes the convolution of u
and δj as distributions (see [7]).

By defining a natural addition, multiplication and scalar multiplica-
tion, β becomes an algebra.

Definition 2.4. (i) [fj/δj ] + [gj/σj ] = [(fjσj + gjδj)/δjσj ].

(ii) [fj/δj ][gj/σj ] = [fjgj/δjσj ].

(iii) α[fj/δj ] = [αfj/δj ], where α is a complex number.

Note. It is not difficult to show that if {δj}∞j=1, {σj}∞j=1 ∈ Δ, then
{δjσj}∞j=1 ∈ Δ.

3. Convergence in β. Let an, a ∈ β for n = 1, 2, . . . , as in [6].
We say that an is δ-convergent to a if there exists a delta sequence
{δj}∞j=1 such that, for each n and j, aδj , anδj ∈ C(T ), and, for each j,
limn anδj = aδj . This will be denoted by δ − limn an = a.

We state, without proofs, several lemmas from [6].

LEMMA 3.1. Let an ∈ β, fn ∈ C(T ) for n = 1, 2, . . . . If there exists
{δn}∞n=1 ∈ Δ such that, for each n and j, anδj ∈ C(T ) and for each
j, limn anδj = fj , then δ − limn an = [fj/δj ].
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LEMMA 3.2. (Unique Limits). Let an, a, b ∈ β for n = 1, 2, . . . . If
δ − limn an = a and δ − limn an = b, then a = b.

LEMMA 3.3. Let a ∈ β and {δj}∞j=1 ∈ Δ. If, for each j, aδj ∈ C(T ),
then a = [aδj/δj ].

A more natural way of looking at δ-convergence is

LEMMA 3.4. Let an, a ∈ β for n = 1, 2, . . . . Then δ − limn an = a
if and only if there exist representations an = [fj,n/δj ] and a = [fj/δj ]
where for each j, limn fj,n = fj.

LEMMA 3.5. Let an, bn, a, b ∈ β for n = 1, 2, . . . . If δ − limn an = a,
and δ − limn bn = b, then δ − limn(an + bn) = a + b.

LEMMA 3.6. Let an, a, b ∈ β for n = 1, 2, . . . . If δ− limn an = a, then
δ − limn anb = ab.

4. Quasi-analytic classes.

Definition 4.1. Let {Mn}∞n=0 be a sequence of positive numbers
with M0 = 1. Let I be a closed interval of R . Then

CI {Mn} = {ϕ ∈ C∞(R ) : ∃αϕ > 0, Bϕ > 0

with max
x∈I

|ϕ(n)(x)| ≤ αϕBn
ϕMn for n = 0, 1, 2, . . . }.

Definition 4.2. A sequence of real numbers {Mn}∞n=0 is called
logarithmically convex if, for each n, M2

n ≤ Mn−1Mn+1.

Definition 4.3. CI {Mn} is called quasi-analytic if ϕ ∈ CI {Mn}, x0 ∈
I and, for each n, ϕ(n)(x0) = 0 implies that, for each x ∈ I , ϕ(x) = 0.
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THEOREM 4.4. If {Mn}∞n=0 is a logarithmically convex sequence then
CI {Mn} is not quasi-analytic if and only if

∞∑
n=0

Mn

Mn+1
< ∞.

PROOF. See [5].

Proofs of the following two theorems can be found in [2].

THEOREM 4.5. Suppose CI {Mn} is not quasi-analytic. Then there
exists a logarithmically convex sequence {M̃n}∞n=0 such that CI {M̃n} ⊂
CI {Mn}, CI {M̃n} is not quasi-analytic, and, for every B > 0,

∞∑
n=0

BnM̃n

Mn
< ∞.

THEOREM 4.6. If CI {Mn} is not quasi-analytic and I ′ ⊂ I then
there is a nontrivial nonnegative function ϕ ∈ CI {Mn} with support in
I ′.

Let {δj}∞j=1 ∈ Cn
∞(T ) ∩ Δ, and, for each m, define sm = [δ(m)

j /δj ].

THEOREM 4.7. If {αn}∞n=0 is a sequence of complex numbers such
that CI {1/|αn|} is not quasi-analytic, then δ − limn

∑n
k=0 αksk exists.

PROOF. Suppose CI {1/|αn|} is not quasi-analytic. Without loss of
generality assume I = [−1, 1].

By Theorem 4.5 there exists a logarithmically convex sequence
{Mn}∞n=0 such that CI {Mn} ⊂ CI {1/|αn|}, CI {Mn} is not quasi-
analytic, and, for each positive B,

(∗)
∞∑

n=0

Bn|αn|Mn < ∞.
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Let I j = [−1/j, 1/j], for j = 1, 2, . . . . Then, by the previous theorem
for each j, there exists ϕj ∈ CI {Mn} such that ϕj is nontrivial and
nonnegative and supp ϕj ⊂ I j . For each j let ϕ̃j denote the function
of period 2π whose restriction to [−π, π] is ϕj . For each j let

δj =
ϕ̃j∫ π

−π
ϕj dt

.

Then {δj}∞j=1 is a delta-sequence.

Since, for each j, δj ∈ CI {Mn}, there exist positive constants
θj and Bj such that, for each j and all n, maxx∈I |αnδ

(n)
j (x)| ≤

θjB
n
j |αn|Mn. So, by (∗) for each j,

∑∞
n=0 αnδ

(n)
j converges uniformly.

Thus δ − limn

∑n
k=0 αksk exists.

The Gamma function is defined by Γ(x) =
∫ ∞
0

e−ttx−1 dt for x > 0.

Since, for each α > 1, CI {Γ(αn)} is not quasi-analytic (see [5]),

∞∑
n=1

sn

inΓ(αn)
∈ β.

5. Main result. The Fourier coefficients of an L1(T ) function are
defined in the usual way. That is, if f ∈ L1(T ) for k = 0,±1,±2, . . .
define

Ck(f) =
1
2π

∫ π

−π

f(t)e−ikt dt.

The next two lemmas follow from definition.

LEMMA 5.1. Let {δn}∞n=1 be a delta sequence. Then, for each
k, limn Ck(δn) = 1.

LEMMA 5.2. Let a = [fj/δj ] ∈ β. If, for some positive integer j0 and
some k0, Ck0(δj0) = 0, then Ck0(fj0) = 0.

Using Lemmas 5.1 and 5.2 we define the Fourier coefficients of a
Boehmian.
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Definition 5.3. Let a = [fj/δj ] ∈ β, for k = 0,±1,±2, . . . . Define
Ck(a) = Ck(fj)/Ck(δj), where, for a fixed k, j is the smallest index
such that Ck(δj) �= 0.

The preceding definition easily gives the following, which we state as
a theorem.

THEOREM 5.4. Let a, b ∈ β, then, for each k, Ck(ab) = Ck(a)Ck(b).

THEOREM 5.5. Let a, an ∈ β, for n = 1, 2, . . . . Suppose δ− limn an =
a. Then, for each k, limn Ck(an) = Ck(a).

PROOF. Let an ∈ β,for n = 1, 2, . . . , such that δ − limn an = 0. That
is, there exists a delta sequence {δj}∞j=1 such that, for each n and all
j, anδj ∈ C(T ) and, for each j, limn anδj = 0. So, for each k and all j,
limn Ck(anδj) = 0. Thus, for each k and all j,

Ck(δj) lim
n

Ck(an) = lim
n

[Ck(an)Ck(δj)] = lim
n

Ck(anδj) = 0.

Hence by Lemma 5.1 for each k, limn Ck(an) = 0.

Definition 5.6. Let a ∈ β, then, the Fourier series of a is∑∞
k=−∞ Ck(a)eikt.

THEOREM 5.7. For each a ∈ β, a = δ − limn

∑n
k=−n Ck(a)eikt.

PROOF. Let a = [fj/δj ]. We can assume that {fj}∞j=1 ∈ Cn
∞(T ). Let

{σj}∞j=1 ∈ Cn
∞(T ) ∩ Δ; then a = [fjσj/δjσj ] and {fjσj}∞j=1 ∈ Cn

∞(T ).
For n = 0, 1, 2, . . . , let pn(t) =

∑n
k=−n Ck(a)eikt. Then, for each n and

all m,

pnδm(t) =
n∑

k=−n

Ck(a)Ck(δm)eikt =
n∑

k=−n

Ck(aδm)eikt

=
n∑

k=−n

Ck(fm)eikt.
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Hence, for each m, limn pnδm = fm = aδm. That is, δ − limn pn = a.

The next several lemmas are needed to prove the main result, Theo-
rem 5.14.

LEMMA 5.8. Let α0, α1, . . . , αk−1 be the kth roots of unity. Then

k−1∑
j=0

αn
j =

{
k if n ≡ 0(mod k)
0 otherwise.

LEMMA 5.9. Let z ∈ C , then, for each k = 1, 2, . . .

∞∑
j=1

zj

Γ(kj)
=

1
k

k−1∑
j=0

ξj exp(ξj)

where ξ0, ξ1, . . . , ξk−1 are the kth roots of z.

PROOF. Let z ∈ C . Fix k. Let α0, α1, . . . , αk−1 be the kth roots of
unity. Then, for j = 0, 1, 2, . . . , k − 1, ξj = αjξ0. So

1
k

k−1∑
j=0

ξj exp(ξj) =
1
k

k−1∑
j=0

αjξ0

∞∑
n=0

αn
j ξn

0

n!
=

1
k

∞∑
n=0

ξn+1
0

n!

k−1∑
j=0

αn+1
j .

And applying the previous lemma to the above, we obtain

1
k

k−1∑
j=0

ξj exp(ξj) =
∞∑

n≡−1

(mod k)

ξn+1
0

n!
=

∞∑
j=1

ξjk
0

(jk − 1)!
=

∞∑
j=1

zj

Γ(kj)
.

LEMMA 5.10. For each k = 1, 2, 3, . . . there exist positive constants
Ak and Mk such that, for each x ≥ Mk,

∞∑
n=1

xn/Γ(kn) ≥ Ak exp(x1/k).
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PROOF. We can assume x ≥ 0. Fix k and let r = x1/k and
α = exp(2πi/k). Then

S =
∞∑

n=1

xn

Γ(kn)
=

r

k

k−1∑
j=0

αj exp(αjr).

After noting that S is real and using

Re (αj exp(αjr)) = (Reαj)Re (exp(αjr)) − (Im αj)(Im (exp(αjr))),

some computation gives

S =
r

k
Re

( k−1∑
j=0

αj exp(αjr)
)

=
r

k

{
er +

k−1∑
j=1

exp(r cos(2πj/k)) cos((2πj/k) + r sin(2πj/k))
}

≥ r

k

{
er −

k−1∑
j=1

exp(r cos(2πj/k))
}
.

In Lemma 5.10, by replacing x with xp, we obtain

LEMMA 5.11. Let p be a positive number. Then, for each k = 1, 2, . . . ,
there exist positive constants Ak and Mk such that, for each x ≥ Mk,

∞∑
n=1

(xp)n

Γ(kn)
≥ Ak exp(xp/k).

For m = 0, 1, 2, . . . , let αm = (2m + 1)2−m and

am =
∞∑

n=1

sn

inΓ(αmn)
∈ β.

Then, by Theorem 5.5, for each m and all k,

Ck(am) =
∞∑

n=1

(ik)n

inΓ(αmn)
=

∞∑
n=1

kn

Γ(αmn)
.



666 D. NEMZER

LEMMA 5.12. For each m = 0, 1, 2, . . . , there exist positive constants
Am and Mm such that, for each k ≥ Mm,

Ck(am) ≥ Am exp(k1/αm).

PROOF. Fix m. By Lemma 5.11 there exist positive constants A and
M such that, for each k ≥ M ,

∞∑
n=1

(k2m

)n

Γ((2m + 1)n)
≥ A exp(k1/αm).

So, for each k ≥ M ,

Ck(am) =
∞∑

n=1

kn

Γ(αmn)
≥

∞∑
n=1

(k2m

)n

Γ((2m + 1)n)
≥ A exp(k1/αm).

LEMMA 5.13. For 0 ≤ γ < 1 there exists a delta sequence {δj}∞j=1

such that, for each j, Ck(δj) = 0(exp(−|k|γ)) as |k| → ∞.

PROOF. Let 0 ≤ γ < 1. Pick m such that γ < 1/αm < 1. Let

a =
∞∑

n=1

sn

inΓ(αmn)
∈ β.

Then, by the previous lemma, there exist positive constants A and M
such that, for each k ≥ M ,

Ck(a) =
∞∑

n=1

kn

Γ(αmn)
≥ A exp(k1/αm).

Now suppose a has the representation a = [fj/δj ]. Then, for each j,
there exists a positive constant M̃j such that, for each k ≥ M̃j ,

|Ck(δj)| =
|Ck(fj)|
|Ck(a)| ≤ exp(−k1/αm) < exp(−kγ).
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The lemma follows by observing that the δj ’s are real; hence, for each
k and all j,

|Ck(δj)| = |C−k(δj)|.

With the aid of the previous lemma we can now prove the following
theorem.

THEOREM 5.14. Let {ξn}∞n=−∞ be a sequence of complex numbers
such that, for some 0 ≤ γ < 1, ξn = 0(exp(|n|γ)) as |n| → ∞, then
there exists a ∈ β such that, for each k, Ck(a) = ξk.

PROOF. Pick α such that γ < α < 1. Let {δj}∞j=1 be a delta sequence
such that, for each j,

Ck(δj) = 0(exp(−|k|α)) as |k| → ∞.

Now, for n = 1, 2, . . . , let

pn(t) =
n∑

k=−n

ξkeikt.

Then, for each m and all n,

pnδm(t) =
n∑

k=−n

ξkCk(δm)eikt.

Since ξk = 0(exp(|k|γ)) as |k| → ∞, where γ < α < 1, for each m, pnδm

converges uniformly.

Hence, by Lemma 3.1, there exists an a ∈ β such that

a = δ − lim
n

n∑
k=−n

ξkeikt.

Therefore, by Theorem 5.5, for each k, Ck(a) = ξk.

The Fourier coefficients of a Boehmian can not grow too fast, as the
next theorem will show.



668 D. NEMZER

THEOREM 5.15. Let ε > 0, A and N be positive numbers. Suppose
{ξn}∞n=−∞ is a sequence of complex numbers such that, for each n ≥
N, |ξn| ≥ Aeεn, then, for each a ∈ β, there exists an integer ka such
that Cka

(a) �= ξka
.

PROOF. For n = 0, 1, 2, . . . , let pn(t) =
∑n

k=−n ξkeikt. Let {δj}∞j=1

be a delta sequence. Fix j. Since δj is not analytic there exists
a subsequence {kq}∞q=1 of {k}∞k=1 such that, for each q, |Ckq

(δj)| ≥
exp(−εkq) (see [1]). Now, for each n,

pnδj(t) =
n∑

k=−n

ξkCk(δj)eikt.

From the above there exists a positive integer M such that, for each
q ≥ M ,

|ξkq
Ckq

(δj)| ≥ A.

Therefore, pnδj does not converge uniformly as n → ∞.

Since the above is true for each j and {δj}∞j=1 was an arbitrary delta
sequence the conclusion follows.

Thus, the set of all distributions on the unit circle is properly con-
tained in β, which is itself properly contained in the set of all Mikusiński
operators on the unit circle. If {ξn}∞n=−∞ is a sequence of complex
numbers which satisfies Theorem 5.14, then lim|n|→∞ |ξn|1/|n| ≤ 1 and
hence the ξn’s are the Fourier coefficients of some hyperfunction [4].
An interesting open problem is: how does β compare to the set of all
hyperfunctions?

Recently, Theorems 5.14 and 5.15 have been strengthened and an
example of a Hyperfunction that is not a Boehmian has been found
by the author (Periodic Boehmians, Internat. J. Math. and Math. Sci.
12(4), 1989, 685-692).
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