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INVASION OF A PERSISTENT SYSTEM
GAIL S. K. WOLKOWICZ

Dedicated to the memory of Geoffrey J. Butler, my doctoral thesis
supervisor. His influence and inspiration continue to live on.

1. Introduction. Today, with genetic engineering no longer just
a topic of science fiction, but rather a reality, one of the intriguing
questions in ecology concerns how to predict the effect of introducing
a new species to a thriving ecosystem. In this paper we consider the
following special case: When is it possible for an invading population
to successfully infiltrate a community?

We formulate the problem in terms of the mathematical notions of
persistence (see, for example, Butler, Freedman, and Waltman [2, 3]
and Butler and Waltman [4]). Other closely related terminology in-
cludes cooperativity, permanent coexistence, permanence, and ecological
stability. For a discussion of how these terms are related, see Gard [8],
Hofbauer [10] and Hutson and Law [14]. The notion of uninvadability
is discussed in Sigmund and Schuster [16].

2. Preliminaries. For any positive integer n, define
R" = {(z1,72,... ,xp) €R" :2; >0, i =1,...,n}
and, for any J C N ={1,2,...,n}, define
R} = {(z1,22,...,2,) eRY 1 2; =0, i € N\J}.
Consider the autonomous system
it) = g(2(t)) (2= (21,22,-..,21)),

d
intRE (= —
2(0) € int RY. < dt>’

(2.1)
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where g : Rf“,_ — RF is sufficiently smooth so that global existence
and uniqueness of solutions and continuous dependence of solutions on
initial conditions and on parameters hold. Assume that both R’i and
int R’i are positively invariant with respect to (2.1). Given z € Rﬁ,
let z(t) be the solution of (2.1) satisfying z(0) = z. Let v(z) (v*(z)),
the trajectory (positive semi-trajectory) through x be defined to be the
set {z(t) : t € R} ({z(t) :t € Ry}). Let AT(x) (A (z)) denote the
positive or omega limit set (negative or alpha limit set) of the solution
through z.

System (2.1) is called dissipative if, for each z € Rﬁ_, At(z) £ @
and Uzert A (z) has compact closure, i.e., all solutions are uniformly

asymptotically bounded.

Following Butler, et al. [2], we define (2.1) to be weakly persistent if
z € int R% implies that limy_,o 2;(t) > 0, for all ¢ = 1,... , k. If lim is
replaced by lim, (2.1) is called strongly persistent or simply persistent.
System (2.1) is uniformly persistent if there exists a uniform ey > 0
such that lim zi(t) > e foralli = 1,... ,k and z € int R%..

——t—o0

REMARK 2.1. From the results in [3], it follows that (2.1) is uniformly
persistent in the above sense if, in addition to being persistent, it is
dissipative and ORX is isolated and acyclic. If (2.1) is both dissipative
and uniformly persistent, there is a global (stable, compact) attractor
in int R% (where global is with respect to int R% ). (The term attractor
used by Conley is the stable attractor of Bhatia and Szegd.)

Any concepts not defined are standard in dynamical systems theory
(see, for example, Bhatia and Szegé [1], Sell [15], and Conley [7]).

3. Results. Consider the following model describing the dynamics
of interacting populations as well as possibly of the limiting resources
of some ecosystem:

z = F(z,y,pn), (x=21,22,... ,2p)),

3.1
(3:) y=yh(z,y,p), zeRY, yeRiandpel,

and the corresponding subsystem,

(3.2) & = F(z,0, p), r € R and p € 1,
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where I is some set of parameters and F' and h are assumed to be
continuously differentiable. Let (3.1); and (3.2); denote (3.1) and
(3.2) for some fixed i € I. Assume that both the nonnegative cone and
the positive cone are positively invariant with respect to each system.
Interpret each x; as the concentration (as a function of time) of some
limiting resource being added to the system or the concentration of
some reproducing population interacting in the system. Let y represent
the concentration of the population attempting to invade (3.2). Assume
that, for 4 € L C I, system (3.2), is thriving in the sense that the
system is persistent. In applications (see Section 5) the parameters
i € I can often be thought of as bifurcation parameters. As these
parameters vary, the dynamics of the systems and, in particular, which
species survive may change.

The main result, Theorem 3.1 below, gives criteria that guarantee
that, for some i € I, the invasion by y of a persistent n-dimensional
system (3.2); will be successful (at least deterministically) in the sense
that they ensure that the resulting (n + 1)-dimensional system (3.1);
will be persistent. Theorem 3.3 is a generalization of Theorem 3.1. In
Theorem 3.3, invasion by y may drive certain species to extinction.

The proofs of all the results in this section are given in Section 4.
The approach is similar to the approach taken in [9, 11, and 13].

THEOREM 3.1. For i € I, define

(33) am= U At
r€int R1
where A (z) is defined with respect to system (3.2);. Assume
(i) system (3.3); is dissipative;

(i) all solutions p(t) = (z(t),y(t)) of (3.1); with ¢(0) € int R+
satisfy lim, . x(t) >0, k € N;

(iii) for each x € Q(fa), there exists a constant Ty, > 0 such that
0
(3.4) / h(w(s), 0, ) ds > 0
-7,

(where z(t) is the solution of (3.2); with z(0) = x).
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Then (3.1); is persistent.

REMARK 3.2. If (3.2); is dissipative, then (4) is a compact,
invariant set and if, in addition, (3.2); is uniformly persistent, Q(z) C
int R .

THEOREM 3.3. Assume that, for some i € I:
(i) system (3.1); is dissipative;

(ii) there exists J C N such that, for all solutions ¢(t) = (z(t), y(t))
of (3.1)5 with ¢(0) € int R or (0) € int R}, limg o0 z4(t) = 0
if k e N\J and lim, , xx(t) >0 if k € J;

(iil) for each x € Q5 (1) = Uzeintrn AT (z) (where z(t) is the solution
of (3.2); with x(0) = ), there exists a constant T, > 0 such that

(3.5) / h(a(s),0, i) ds > 0.

If y(0) > 0, then lim, , y(t) >0 for (3.1)a.

COROLLARY 3.4. The above theorems are also valid if (3.4) or (3.5)
of condition (iii) is replaced by

(3.6) /0 " h(a(s),0, i) ds > 0.

4. Technical lemmas and proofs. The technical lemmas are
mainly concerned with the implications of condition (iii) of Theorems
3.1 and 3.3. We state and prove the results in terms of the general
system (2.1), since (3.1) and (3.2) are both special cases of this system.

Throughout this section, assume that the set K is compact and
invariant with respect to system (2.1) and that the function f : K — R
is continuous.
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LEMMA 4.1. Assume that, for each x € K, there exists a constant
T, > 0 such that

0
(4.1) /4 F(z(s)) ds > 0,

where x(t) is the solution of (2.1) with x(0) = x. Then there exist
untform constants T > 0 and n > 0 such that, for any z € K, T, exists
satisfying 0 < T, < T and

0
(4.2) / R COTEYS

where z(t) is the solution of (2.1) with z(0) = z.

PROOF. Suppose not. Then, for any fixed 7' > 0 and n > 0, there
exists a corresponding solution #(t) of (2.1) with #(0) € K such that

0
f(@(s))ds <n for every 0 <7 <T.

Hence, there exist sequences of positive constants {I,,} 1 oo and
{en} 1 0 as n T 0o and a sequence of corresponding solutions {z, (t)} of
(2.1), with z,(0) € K for each n such that

0
(4.3) f(zn(s))ds <€, forevery 0 <7 <T,.

-T

Since z,,(0) € K for each n and K is compact, without loss of generality,
assume {z,(0)} — 2(0) € K (taking a subsequence and relabelling if
necessary). Since z(0) € K, by hypothesis, there exist T > 0 and n > 0
such that fET f(2(s)) ds = n, where z(t) is the solution of (2.1) through
z(0). By continuous dependence of solutions on initial conditions, it
follows that z,(t) — z(t) uniformly for ¢ € [T, 0]. Thus,

0 0
1= see)as=tm [ s < im =0,
=T n— 00

n—oo | o

by (4.3), since T < T, for all sufficiently large n. This is clearly a
contradiction since, by definition, n > 0. O
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REMARK 4.2. Lemma 4.1 holds if (4.1) and (4.2) are replaced by
fOT” f(z(s))ds > 0 and fOTZ f(2(s)) ds > n, respectively. (The proof is
similar).

LEMMA 4.3. The following are equivalent:

(i) For each = € K, there exists a constant T, > 0 such that
f_OTz f(z(s))ds > 0, where z(t) is the solution of (2.1) satisfying
z(0) = z.

(ii) For each z € K there exists a constant T, > 0 such that
fOTZ f(2(s)) ds > 0, where z(t) is the solution of (2.1) satisfying z(0) =
z.

PROOF. (i)=-(ii). Select any z € K. Let T" > 0 and n > 0 be
the uniform constants (with respect to K) guaranteed by Lemma 4.1.
Define

¢
4.4 = mi ds.
(4.4) B tg[lg}}]/o f(z(s)) ds
Choose any integer m > 0 sufficiently large so that
(4.5) mn+ 8> 0.

Define T = mT and

T
(4.6) v = max/ f(z(s)) ds.

te[0,T] J¢

Then v < kn for some fixed integer & > 0. By definition of T', there
exists

T
(4.7) 0<Ty <T such that / f(z(s))ds =n.

T
Since (2.1) is autonomous and K is invariant, there exists

T—Ty
0 < Tp < T such that / f(z(s))ds =n.

T—(Tv+T2)
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Continuing thus, we find {T;}, such that 0 < T; < T, and so

m T
T - ZT’ >0 and /~ o f(=(s)) ds = mn.
] - T;

i=1

Case 1. I T — 31 | T; € [0, T, then

| " fe(o)) ds = | TR ey s

T
+/ — [f(a(s))ds = B+ mn >0,

by (4.4) and (4.5). Take T, = T.
Case IL If T — S, T; > T, continue to find Tryt1, Tyt 2, -« - s Dyt -

Eventually, T — ZZ’;T T; € [0,T], where m+ j < k since, if m +j > k,
then

T
| FE)ds =t i) > Ty >,
-y "

violating (4.6). Complete the proof now by arguing as in Case 1.

(if)=-(i). Since K is invariant, this follows by reversing time. O

The final lemma concerns system (3.2);. Define

(4.8) C(pr) = {z € intR] : y(z) C int R} is compact},

where v(z) is the closure of the trajectory through z, with respect to
(3.2)4-

LEMMA 4.4. Assume (3.2); is dissipative. If, for each v € Q(f),
there exists a constant T, > 0 such that

Ts
(4.9) /0 h(z(s),0,i)ds > 0,
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where x(t) is the solution of (3.2); satisfying x(0) = x, then, for each
z € C(f1), there exists a constant T, > 0 such that

T,
(4.10) / h(2(s),0, 1) ds > 0,
0
where z(t) is the solution of (3.2) satisfying z(0) = z.

PROOF. Select z € C(ji). Define A = vy(z) U2(f4). Then A is compact
and invariant with respect to (3.2);. Therefore, there exists a § > 0
such that, for any z1, 29 € A,

n
27"

where 7" > 0 and i > 0 are the uniform constants guaranteed by Re-
mark 4.2. By continuous dependence of solutions on initial conditions,
there exists a ¢ > 0 such that, for any solutions u(t) and w(t) of (3.2),,
(4.12) if p(w(0),u(0)) < & then p(w(t),u(t)) < & for all t € [0, T].
Since At (2(0)) C Q(f), there exists a 7' > 0 such that

(4.13) p(z(t),Q(i)) < 6 for all t > 7.

If [ h(z(s),0,)ds > 0 for some 0 < 7 < T, we are done. Otherwise,
it suffices to show that, for some T}, > T,

(4.11) if p(z1,22) < 8 then |h(z1,0, i) — h(22,0, 1) <

(4.14) /Tzh(z(s),O,ﬂ) ds > —/0 h(2(s), 0, ) ds.

By (4.13), there exists a w; € Q(ii) such that p(z(T),w;) < 6.
Let wq(t) be the solution of (3.2); with wi(0) = w;. Then, by
(4.12), p(2(T + t),wyi(t)) < & for all ¢ € [0,T], and so, by (4.11),
|W(z(T +1),0, i) — h(wy (£),0, it < n/(2T) for all t € [0, T]. Since w; €
Q(f), there exists 0 < T,,, < T such that fOT'”l h(wi(s),0,i)ds > n.
But then,

Twl N Twl
/ BT + 5),0, i) ds > / h(wy(s),0, ) ds
0 0

- / " BT + 5),0, ) — B(wi(s), 0, )] ds

>n—nTy, /(2T) > n/2.
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Therefore, by a simple change of variables, fTT T h(z(t),0, ) dt >
n/2. Repeating the argument, one can construct a sequence {I3, }3°
with 0 < T,,, < 7T such that

h(2(t),0, i) dt > kn/2.

Py Tu,
J
Hence, one can define T, = T + Zi:;l T, for some NN large enough to
ensure (4.14) holds. O

We are finally in a position to prove the main result.

PROOF OF THEOREM 3.1. By (ii) it suffices to show that, for
p = fi, all solutions ¢(t) = (z(t),y(t)) of (3.1) with ¢(0) € int R}
satisfy lim, , y(t) > 0. Suppose not. Then there exists a solution
o) = (2(t),9(t)) with ¢(0) € int R} for which lim, ,__§(¢) = 0.
Since §(t) > 0 for all t > 0, there exists a sequence {tx} 1 0o as k T 00
such that

(4.15) g(te) < g(t) forall 0 <t <ty

and {(2(tx),9(tx))} — (2,0) € AT(p) as k — co. By (i) AT(¢) is
compact, and by (ii) AT () C int R x R. By the invariance of A" (),
(&) x {0} € At () (where v is defined with respect to (3.2);), and so

v(2) C int R} Therefore, & € C(f1).

Let ¢(t) = (Z(t),0), where Z(t) is the solution of (3.2), satisfying
Z(0) = Z. By (iii) and Lemmas (4.3) and (4.4), it follows that there
exist 7' > 0 and € > 0 such that

(4.16) % /0 hE(s —T).0. 4 ds > 2.

By (i) and the fact that (&) is compact, there exists a compact set A
containing (&) x {0} in which all solutions of (3.2); eventually lie. By
the uniform continuity of h on A, there exists § > 0 such that, for all
(z1,91), (z2,92) € 4,

(4.17) if p((z1,y1)(z2,92)) <& then |h(zy,y1,0) — h(z2,y2, )| < €.
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By continuous dependence of solutions on initial conditions, there exists
0 > 0 such that, for any solution (Z(t),7(t)) of (3.2); satisfying

p((%(0),0),(z(0),7(0))) <9,

(4.18) ( (
' then  p((2(t),0), (2(t),y(t))) <& forall t € [-T,0].

Choose N sufficiently large so that ¢ty — T > 0, (2(t),9(t)) € A, for all
t >ty — T, and so that p((£(0),0), (Z(tn),§(tn))) < d. By (4.18) and
the fact that (3.1) is autonomous

p((Z(¢),0), (Z(tn +t),5(tn +1))) <é forallt e [-T,0],
and, hence, by (4.17),
R(E(),0,4) — h(E(ty + 1), 3(tx +1),4)] < forall t € [T,0]

From this and (4.16) it follows that

1 T
T/ h(E(s+tny —T),9(s+tn —T), 1) ds > ¢,
0

or, equivalently,

1 [
tnN—T

1), it follows that tt]iviT(@'}/gj) dt > e

From the y equation of (3.
> g(ty — T)e! > g(ty — T), contradicting

Integrating yields §(tn)
(4.15). O

PROOF OF THEOREM 3.3. This is similar to the proof of Theorem
3.1.0

PROOF OF COROLLARY 3.4. This is an immediate consequence of
Theorem 3.1 and Lemma 4.3. O

5. Applications. In many examples it will be possible to apply
Theorem 3.1 with very little known about the structure of Q(j) (see
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Example 5.5 below). In other cases the structure of (/1) may be simple
and well understood. It may consist only of equilibrium points (see
Example 5.3) or of equilibrium points and periodic orbits. For each
equilibrium Z € Q(f), in order to verify (iii) it suffices to show that
h(z,0, &) > 0. For periodic solutions, the following proposition applies.

PROPOSITION 5.1. Assume that y(x) is a periodic solution of system
(2.1) with minimum period T > 0. Then the following are equivalent:

() Jo' F((s))ds > 0;
(ii) for each T € y(x), there exists Ty > 0 such that the solution Z(t)
with Z(0) = T satisfies fOT“" f(z(s))ds > 0.
PROOF. (i)=(ii). This is obvious; just define 7, = T for each
z € vy(z).
(ii)=(i). Proceed by contradiction. Assume that fOT f(z(s))ds < 0.
Define

(5.1) olt) = / f(a(s)ds, 20,

Then ¢g(0) = 0 and g(7") < 0. Since g(t) is continuous, z(t) is periodic
of period T' > 0 and ¢(T') < 0, g attains its maximum at some point
t € [0,T]. Thus,

(5.2) g(t) > g(t) for all t > 0.

Consider the solution Z(t) where Z(0) = z(f). The periodicity of Z(t)
and (ii) imply that there exists T; with 0 < T3 < T such that

T

o< | " f(@(s)) ds = 0

T-

z T+t
f(a(E+s)) ds = / f((s)) ds.

But then g(Ts+%) = g(f)—i—f?iﬁ(f(m(s)) ds > g(t), contradicting (5.2).

t
O

Next we show how to apply Theorem 3.1 using the following nondi-
mensional version of a system modelling predator-mediated competi-
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tion in a chemostat:

(5.3) £1(t) = 21 () (=1 +p1(S(?))) — y(O) a1 (z1(¢)),
Ea(t) = z2(t) (=1 + p2(S(1))),
y(t) = y() (=1 + q(z1(2))),

S(0)=0, ;(0)>0, i=1,2, y(0)>0.

S(t) denotes the concentration of the growth-limiting resource, x;(t)
and x2(t) the concentrations of populations competing for the resource
and y(t) the concentration of a predator population. p;(S) represents
the per capita growth rate of the i*" competitor as a function of resource
concentration and g(z1(t)) the per capita growth rate of the predator
which predates solely on z4(t), the superior competitor in the absence
of predation.

Assume that p;,q : Ry — Ry, are continuously differentiable,
pi(S) > 0 for all S € Ry, ¢'(x) > 0 for all z € R4, p;(0) = 0,
i = 1,2, and ¢(0) = 0. Assume, as well, that there exist uniquely
defined positive real numbers \; and ¢ such that

pl(S) <1l ifS<A, pi(S) >1 ifS>),
(5.4) glz) <1l ifzx<é, gqz)>1 ifz>4,
p;(A) >0 and ¢'(8) > 0.

Assume also that all \; and § are distinct from each other and from 1
and

(5.5) 0< A\ < Ao

It is this condition that makes x; the superior competitor in the absence
of predation (see Butler and Wolkowicz [5]).

For a more thorough discussion of this model and for references
to others who have studied it and its subsystems, see Butler and
Wolkowicz [6].
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REMARK 5.2. Identify (S,z1,z2,y)-space with R* - R} and int R%
are positively invariant for (5.3) for any J C {1,2,3,4}, and (5.4) is
dissipative. In fact, the simplex

2
{(Samlaw%y) : Saxlam%yzo; S+sz+y: 1}

i=1

is a global attractor of (5.3). The proofs are straightforward (for similar
proofs see, for example, Hsu et al. [12]).

EXAMPLE 5.3. Consider the following subsystems of (5.3):

S(t) = 1= 8(t) — a1 (B)pa(S(2),
(5.6) i1(t) = 21() (-1 + pr(S(1) — y(Balaa (1),
y(t) = y() (=1 + q(2.(2))),
and
S(t) = 1= 5(t) — 21 (t)p(S(1)),
1(t) = z1(8)(~ 1+ p(S(D))),
S(0) =0, =z1(0) > 0.

Then (5.6) plays the role of (3.1) and (5.7) of (3.2) in Theorem 3.1, and
y plays the role of the invading population. Let the parameter set be
I={\,6} €intR2.

If A\; < 1, using the Lyapunov function,

(5.7)

s pi(§) —

V(S,z1) = / —_ df + 1 — 2] — 2] In(zy/27),
A1 p1(§)

where 27 = 1 — Ay, it follows that the critical point (A1, z7) is globally

asymptotically stable for (5.7) with respect to solutions initiating in
int R%. Therefore, with respect to (5.7), for any Ay < 1, Q((A1,6)) =

Uscint R1A+($) = {(\1,z})}. Thus, by Theorem 3.1, if \; < 1, (5.6) is
persistent provided —1 + ¢(z7) > 0, that is, provided z} > §. In fact,
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this result is sharp in the following sense. If z] < §, then the critical
point (A1, z7,0) is globally asymptotically stable for (5.6) with respect
to int R%, and, hence, (5.6) is not persistent (see [6, Theorem 6.3]).

REMARK 5.4. If 1 — A\; = 27 > 4, it is now possible to apply the
theorem in Butler et al. [3] (see Remark 2.1) to show that (5.6) is
uniformly persistent.

In the previous example, condition (iii) of Theorem 3.1 is easy to
verify since Q(j) is a single equilibrium point. It is shown in [17] that,
if the class of response functions p; and ¢ is restricted appropriately,
then Q(f), with respect to (5.6), is again a single equilibrium point. In
fact, for (5.6), using the Lyapunov function,

S _ *
Vs = [ PO g a) —af - sfna o)

+y—y" -y In(y/y"),

where (S*, 2%, y*) is the unique equilibrium point in int Rﬁ_, it can be
shown that provided ¢ is Lotka-Volterra, it is not even necessary to
restrict p;. In this case, (S*, 7, y*) is globally asymptotically stable
with respect to int R%. On the other hand, in [6] an example is given
in which p; is Lotka-Volterra, ¢ is Michaelis-Menten and Q(j), with
respect to (5.6), contains a periodic orbit.

EXAMPLE 5.5. Let (5.3) play the role of (3.1) and (5.6) the role of
(3.2) in Theorem 3.1. Consider z2 as the invading population. Let
the parameter set I = {\1,A2,0}. In [6, Lemma 8.1] it is shown that
if Ay < 1 and 2,(0) > 0, then lim, , z;(t) > 0, and if \; +J < 1,
x1(0) > 0, and y(0) > 0, then lim, ., y(¢) > 0. That lim, , S(t) >0
if S(0) > 0 is obvious. From this and by Remark 5.2, to verify that
Theorem 3.1 applies it remains to find conditions for (iii) to hold.

We assume that we can parameterize ¢(z) = gs(z), where

(5.8) im ¢gs(€) = +oo  for every fixed € > 0.

1
6—0

It is easily verified that, for most realistic response functions including
Lotka-Volterra, Michaelis-Menten, and multiple saturation, g can be
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parameterized in this way. Generally, § — 0 is equivalent to the
maximum growth rate tending to +oo.

By Remarks 2.1, 5.2 and 5.4, it follows that
Q) C{(S,z1,9) € intRi’_ :0< S 21,y <1}

is compact. Also, for each fixed § satisfying § < 1 — Ay, there exists
I =I5 such that 0 < ! <y for all y for which (S, z1,y) € Q(4).

PROPOSITION 5.6. Assume A1 < Ay < 1. Define
(6.9) €e=pa(A2+(L—A2)/2) —1. (Then &> 0 since Ay < 1.)
Select € such that

R

Let 6 > 0 such that Ay + 6 < 1 and

2 pi(1)+1 1
11 — |1+ —— here k = — — 1.

(5.11) gs(e) > e ( + 7 ), where e
Let i = {(A1,A2,0)}, and define Q1) with respect to (5.6). Take
(5.12) T > max[—In(l),2/€], where | < y.
Then

0
(5.13) / (=14 pa(S(v))) dv > 0,

-r

for any solution of (5.6) with (S(0),z1(0),y(0)) € Q(4), and, hence,
(5.3) is uniformly persistent.

PROOF. Define

( ) M =p:i(1), (p1(1) > 1 since \; < 1),
(5.15) X ={te[-T,0]: z1(t) > €},
(5.16) V={te[-T,0]: S(t) <1— (1L+k)eM},
(5.17) X =[-T,0\X,

(5.18) V¢ =[-T,0)\V.
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If t € X, then g(t)/y(t) > —1+gs(e). If t € X, then y(t)/y(t) > ~1.
Let v denote the Lebesque measure. Integrating the y equation from
—T to 0 yields

In(y(0)/s(-T) = [ 1+ e v+ [ rav

= (=14 gs(e))v(X) — (T — v(X))

_T <V(;()q5(e) - 1) .

Therefore,
(5.19) v(X)/T < 2/qgs(e),

since otherwise —1In(l) > In(y(0))/y(—1")) > T, contradicting (5.12).
Next, let [-T,0] = U}_, G;, where

G, =VvVnx¢ (= v(G1) > v(V) — v(X)),
G, =VnNnX (= v(G2) < v(X)),
Gy =V9nXx© (= v(G3) < T),
G,=V9nX (= v(G4) < v(X)).
Then
S(t)>1—(1—(1+k)eM) —eM =ekM for t € G,
S(t)>1—(1—(1+k)eM) —M?*>—-M? forte Gy,
S(t)y>1—1—eM =—eM forte Gs,
S(ty>1-1-M=— for t € Gy.

Integrating the S equation of (5.6) from —7 to 0 yields
1>5(0)—S(t) > ekMw(V) —v(X)) — M*v(X) — eMT — Mv(X).
Therefore, v(V)/T < 1/(TekM)+w(X)/T)(14+M/(ek)+1/(ek))+1/k.

Since 0 < € < 1/4, it follows that k£ > 1/(2+/€), and, hence, 1/k < 2y/e.
By (5.12), T > 2/¢, and by (5.14), M > 1 so that 1/(TekM) <
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1/(2k) < y/e. By (5.11) and (5.19), (v(X)/T)(1 + M/(ck) + 1/(ek)) <
V€. Hence,

(5.20) v(V)/T < 4/

Thus,

Vc(*l + p2(S(t))) dv
(by (5.9), (5.10), (5.11), (5.14)

I
L T

L

_|_

3

[V

™ 2
=

) =
S

AN

+
N— \

>T (”:ﬁv) +e— —”(;/) and (5.16))
_T <_VT(V)(1+6) +e>

>T(E-4/e(l+8)  (by (5.20))
>T<‘—4<4(1+€)) (1+e)> (by (5.10))

=0.

Thus, (iii) of Theorem 3.1 holds, and, hence, (5.3) is persistent. As
in Example 5.3, one can apply the results in [3] to obtain uniform
persistence. O
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