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MONOTONICITY PROPERTIES OF THE MICHAELIS-
MENTEN REACTIONS OF ENZYME KINETICS

D. SIEGEL AND D. W. LOZINSKI

ABSTRACT. The Michaelis-Menten reactions of enzyme

kinetics can be written E 4 ST ES - P + E (E is the
enzyme). Assuming mass-action kinetics, the concentrations
are governed by a system of ordinary differential equations.
An investigation is made of the signs of the derivatives of
the concentrations with respect to each initial concentration.
Although the system does not give rise to an order preserving
flow with respect to an orthant, many of the derivatives with
respect to an initial concentration are of one sign.

1. Introduction. The Michaelis-Menten reactions of enzyme
kinetics can be written

k1
E+Sk<:> ESB P4+ E,
—1

where E, S, ES, and P are the enzyme, substrate, complex, and prod-
uct, respectively. Denoting the concentrations of E, S, ES, and P by
x,y, 2, w, respectively, the law of mass-action gives the system of dif-
ferential equations

z=—kzy+ (k-1 +ko)z
y=—-kxy+k_ 1z
z
w

(1.1)

?

2 = klxy - (k‘_l + kz)z

where a dot indicates the time derivative and kq,k_;, and ks are
positive constants (the rate constants). For background, see [5] and
[3].
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We denote the initial concentrations
(1.2) 2(0)=¢, y(0)=n, 200)=¢ w(0)=y;
they are required to satisfy
(1.3) £E>0,n>0,¢>0,v>0,+¢>0, n+¢>0.

The last two inequalities of (1.3) are to insure that we are working
with nontrivial (i.e., nonequilibrium) solutions of (1.1). Biochemists
take ( =0,&>0,n>0.

Since the system (1.1) is smooth, any partial derivative of a concen-
tration with respect to an initial concentration exists and is smooth (in
fact, analytic) in its dependence on ¢, £, 7, ¢, and v. We shall investigate
the signs of these partial derivatives. Table 1 summarizes most of our
results.

TABLE 1. Behavior of concentrations with
respect to changes in initial concentrations.

T Yy z w
El+ |- |*|+
nl—|+|+ |+
¢ * |+
v[0]|0/|0]+

Each entry indicates the sign of a partial derivative of a concentra-
tion (column heading) with respect to an initial concentration (row
heading), for ¢ > 0. A + or — indicates a positive or negative partial
derivative, a 0 indicates a zero partial derivative, and a * indicates that
the partial derivative changes sign as a function of ¢. The +,— and 0
entries give monotonicity properties of the corresponding concentration
profiles (concentration versus time). For example, from 9y/0¢ < 0 it
follows that the y concentration profiles decrease as & is increased (see
Figure 1).

In the case of a * entry, we will prove that any two concentration
profiles, with two different initial concentrations intersect. This is
illustrated in Figure 2 for the z concentration profiles with respect to
changes in £. (Note: the entries for 0y/0¢ and 0z/0¢ were incorrectly
stated in [6]).
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FIGURE 1. Four y-concentration profiles with £ = 1,2,3,5,n =
5, =.5,and k1 = k_1 =k =1.

These results are related to the theory of monotone flows. For
background, see [4] and [7]. When a system of differential equations
x = f(x),x(0) = & generates an order preserving flow with respect
to an orthant (OPF), each partial derivative with respect to an initial
value, Ox;/0¢;, is nonnegative or nonpositive, as a function of time.
Necessary and sufficient conditions for a system of differential equations
to generate an OPF are given in [7]. These conditions depend on the
signs of the off-diagonal elements of the Jacobian matrix of f. The
first three equations of (1.1) (denoted (1.1a,b,c)) have corresponding
Jacobian matrix

. 7k1$ k_l + kg
—klﬂl . k,1
k_i1+ky k-

Since, for « # 0, there are an odd number of negative entries above

the diagonal, by [7, p. 102] (1.1a,b,c) does not give rise to an OPF. It
follows that the full system (1.1) cannot generate an OPF.

The paper is organized as follows. In Section 2 we discuss the long
time behavior of solutions to (1.1) based on a preliminary transforma-
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FIGURE 2. Four z-concentration profiles with £ = 1,2,3,5,n =
5, =.5,and k1 = k_1 =k =1.

tion to a two-dimensional system. Section 3 has the nonmonotonicity
results corresponding to the * entries in Table 1. Section 4 contains the
monotonicity results corresponding to the rest of Table 1. In Section 5
we make some final remarks.

We will use an informal method of presentation of our results, in-
dicating main results by boldface numbers. Individual equations in a
system of equations will be referred to by adding a letter (a,b,c, etc.)
to the equation number.

2. Long time behavior. In this section we examine the long time
behavior of solutions to (1.1). First, we reduce considerations to a
two-variable problem.

Comparing (1.1a) and (1.1c), we have Z = —#, from which follows
(2.1) r=&+(— =

Also, by adding (1.1b), (1.1c), and (1.1d), we have § + 2 + @ = 0, from
which follows

(2.2) w=n+(+v—y—-=z
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FIGURE 3. The three types of trajectories of the yz-system.

We can now (using (2.1)) obtain a system of two equations which
determine y and z, the yz-system

g=-k(+(—2)y+k_z
(23) z=ki(§+ ¢ —2)y — (k-1 + k2)z.

When we determine the behavior of y and z, the behavior of z and w
can be obtained from (2.1) and (2.2).

The first quadrant in the yz-plane is divided into three regions by the
curves
k
Loty g, REHDy
k1 +kiy k_1+ ke +kiy

where y = 0 and Z = 0, respectively. Starting at (n, (), a trajectory can
take one of three forms (see Figure 3). Each trajectory ends up between
the two curves and must tend to (0,0) as ¢ — co. Thus, y(¢) > 0 and
0<z(t) <&+, for t >0, and lim; 00 y(t) = lims 00 2(¢) = 0.

We can say more. Because any solution to (2.3) approaches the
equilibrium point (0,0), it must behave asymptotically like a solution
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to the linearized system (linearized about (0,0))

y=—ki(E+Q)y+Fk_1z

(24) z=ki(§+Q)y — (k-1 + ka)z.

We find that the coefficient matrix of (2.4) has two real eigenvalues
Ay < A1 < 0,

—(a+b+e)E£/(a+b+c)?—4dbe
2 )

(25a,b) )\1,)\2 =

with a = k_1,b = kg, and ¢ = k1 (£ + ¢). Two independent solutions of
(2.4) are

(2.6) B1(t) = eM? <A1‘16> and ¢y (t) = et (Aﬁm)'

Since (0,0) is a stable node, by [2; Chapter VIII, Theorem 3.5, part
(ii), p. 218], any solution to (2.3) must satisfy
(2.7)

(Z) = o™ <A1Tco+(lo)(1)> o <Z> = 0™ (Aziti(l.?u))

as t — oo, where ¢; and ¢ are constants. To see which possibility
holds, note that

(2.8) A1 +c>0and Ay +¢<0.

These inequalities follow from the simple inequality

(2.9) V(a+b+c)2—4be> |a+b—cl

for positive a,b and ¢ (which is proved by squaring both sides). Now,
since y and z are positive for all time, they must satisfy the first
possibility in (2.7), i.e.,

(2.10) (Z) = e <>\16:t:1(t)(1)>

as t — 0o, with ¢; > 0. Of course, the positive constant ¢; depends on
the specific solution.
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3. Nonmonotonicity results. In this section we prove two sorts of
nonmonotonicity results for each * entry in Table 1: (a) intersection of
concentration profiles and (b) change in the sign of the partial derivative
of the concentration with respect to the initial concentration. We shall
use the terminology that a statement is true initially if it is true for
0 <t < ty, some ty, and true eventually if it is true for ¢t > t5, some t,.

3a. Intersection of concentration profiles. Consider the z component
of two solutions to (1.1)—(1.3) with different & values, z(t) = z(¢; £) and
Z(t) = z(t; €), where ¢ < £, and all other initial conditions are the same.
We first show that

(3.1) z(t) < Z(¢t) initially.

The partial derivative with respect to £ will be denoted by a prime.
Differentiating z(0) = ¢ and 2(0) = k1&n — (k—1 + k2)¢, we have

(3.2) Z(0)=0, Z(0) = k.

Differentiating (1.1c) with respect to ¢t and ¢, and evaluating at ¢t = 0,
gives

(3.3) 2(0) = kik_1&  ifp=0.

Equations (3.2) and (3.3) show that either z(0) > 2(0) or z(0) = 2(0)
and z(0) > #(0) (using the assumption that not both & or 1 are zero).
This implies (3.1).

We next show that
(3.4) Z(t) < z(t)  eventually.
By (2.10), we have

(3.5) 2(t) = cre’™ A + e+ o(1)]

' 2(t) = e\ + &+ o(1)]

as t — oo, where ¢; and ¢; are positive constants. Differentiating (2.5a)
with respect to & gives

201 - 14 a—b+e

(3.6) k1 Vi{a+b+c)% —dbc’
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and inequality (2.9) implies that
(3.7) Al <O0.

From (3.7) we have A\; < A;. The conclusion (3.4) now follows from
(3.5).

The same type of reasoning also produces the following results. Let
¢ < (; then,

(3.8) y(t;¢) < y(t;¢) initially, and y(t,{) < y(t;¢) eventually.

The same statement (3.8) holds with y replaced by z.

3b. Sign changes of derivatives with respect to initial concentrations.
Again, the partial derivative with respect to £ will be denoted by a
prime. Equations (3.2) and (3.3) show that
(3.9) Z' >0 initially.

We next prove

(3.10) 2/ <0 eventually.

Differentiating (2.3) with respect to & gives

(3.11)

<y,> 3:<k1(£+42) k1y+k_1 ><yl>+(k1y>
z kEi(+C¢—2) —kiy— (k_1+ ko) 2! kwy )

We know y and z approach zero exponentially, hence (3.11) can be

considered to be a perturbed linear system, x = (A + P(t))x + b(t),
with constant matrix A,

_ <—k:1(§+() k1 )
ki(€+¢) —(k-1+k2) )’

This is the same matrix as that for the linearized system (2.4). Note
that lim;, o P(t) = 0 and lim;_, o, b(t) = 0. The eigenvalues of A are
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negative, so that, by the method of proof of Theorem 3.1 of Chapter
13 [1, pp. 327-328], we have

lim 2z’ = 0.
t—o0

. o
(3.12) tll)r{.loy =0,

In view of the precise behavior of y and z given by (2.10), we can
write (3.11) as

(3.13) <5> _A<g>+d,

with
=k (;ﬁl:o?gg)) = s (11++0?%)>

as t — oo and c3 a positive constant. We now solve (3.13) for (y',2') by
the variation of parameters method. A fundamental matrix for (2.4) is
given by X (t) = (¢1(t) ¢2(t)), with ¢1(t) and ¢2(t) defined in (2.6).
Since y'(0) = 2’(0) = 0, we have

(3.14) (g>_;nn1fxw@mgd&

A calculation using the asymptotic formulas fot(l—i—o(l)) ds = t(1+o0(1))
and fot ek*(1+o(1))ds = (e*/k)(1+0(1)), k > 0, as t — oo, then gives

(3.15) o= sato)

= D o e At (14 o(1)

as t = o0o. Since a + ¢ + A2 < 0 (by inequality (2.9)) and the other
terms are positive, (3.10) now follows from (3.15).

The same type of reasoning shows

0 z
Y and Z are initially positive and eventually negative.

(3.16) 3¢ 3¢

There is another way to prove that 0z/90( = 2z’ changes sign. By
adding equations (2.3a) and (2.3b), we obtain

J+ 5= —kaz.
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Differentiating with respect to £ and integrating from 0 to ¢ yields
t
Yy +2 = —kg/ 2 ds.
0
Applying (3.12) in taking a limit as t — oo, it follows that

(3.17) / 2'ds =0,
0

which shows that 2z’ cannot have one sign.

4. Monotonicity properties. The monotonicity properties with
respect to &,7,(, and v will be proved in subsections (4a)—(4d). We
again use the terminology that a statement is true initially if it holds
for some interval, 0 < t < t;. A prime will denote a derivative with
respect to £,7m,(, or v in each of the corresponding subsections.

4a. Monotonicity with respect to &. Let

/_6_37 1_@ z/_% w’_a_w
o Ve T e YT e

T
First we show that
(4.1) x’ and w' are initially positive,y’ is initially negative.

This follows from

(4.2) z'(0)=1

—~

4.3) y'(0)=0, 7'(0)=—kn, §(0)=—kik ¢ ifn=0
4.4)
w'(

(=]

) = O, ’LU/(O): 0, w'(O): k2k17], w'(O) = kzklkflg if n= 0,

since 7 and ¢ are not both zero. The equations (4.2)—(4.4) are obtained
from differentiating the differential equations (1.1) and the initial
conditions (1.2).
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It is convenient to introduce the zy-system ((1.1a,b), making use of

(2.1)),

t=—-kizy+ (k-1 +k)((+(—2)

4,
( 5) y:—k1$y+k71(§+g—x).

Subtracting (4.5b) from (4.5a) gives us
t—y=ka({+(—a).
By differentiating with respect to £ and rearranging, we see that
i+ kor' = ko + 9/,

and, solving for z’, we get

¢
o' = e ket (1 + / k2% (ky + 9) ds).
0

Integrating by parts yields
t
(4.6) 2 =1+9y — k2€—k2t/ ek2sy’ ds.
0

We now show that
(4.7) y <0, for t>0.
Differentiating (4.5b) gives
(4.8) v =—ki(z'y+azy)+k_1(1—12").
Suppose y'(t) = 0 at some positive ¢; let 7 be the first such time.
We have y'(t) < 0 for 0 < t < 7, and y'(7) = 0, hence ¢'(7) > 0.

On the other hand, by (4.6), z/(7) > 1, so that, by (4.8), ¢'(r) =
—k12' (T)y(7) + k_1(1 — 2'(7)) < 0, a contradiction.

Next, we show

(4.9) ' >0, for t>0.
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Differentiating (4.5a) gives
(4.10) ¥ =—ki(z'y+zy') + (k-1 + ko)(1 — 2)

Suppose that z'(t) = 0 at some positive ¢; let 7 be the first such time.
We have z'(t) > 0 for 0 < t < 7 and 2/(7) = 0, hence &'(7) < 0.
However, by (4.10), &'(r) = —kiz(7)y'(7) + (k-1 + k2) > 0 (using
(4.7)), a contradiction.

Finally, we show that
(4.11) w' >0, for ¢t>0.
By (1.1d) and (2.2),
(4.12) w=k(n+C+v—y—w).
Differentiating gives
(4.13) W' = —ko(y' + ).

Suppose w'(t) = 0 at some positive t. Denoting the first such time 7, we
have w'(¢) > 0 for 0 < t < 7 and w'(7) = 0, hence w'(7) < 0. However,
by (4.13), w'(1) = —ka2y/(7) > 0 (using (4.7)), a contradiction.

4b. Monotonicity with respect to n. Let

, Ox , Oy , 0z ,  Ow
r = — y:—’ Zz = — w =

on’ on on’ o’
First, we show that
(4.14) ¥ <0,y >0, 2 >0, w' >0 initially.
This follows from

(4.15)

2'(0) =0, &'(0) = —ki&, #(0) = —ky(k_1 +k2)¢ i £=0
(4.16) y'(0) =1
(4.17) 2/(0) =0, #'(0) = ki€, #(0) =ky(k—y + k2)¢ if € =0
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and
(4.18)
w'(0) =0, W'(0) =0, @' (0) = kok1&, W'(0) = koky(k_1+ko)C if € =0.

Now, differentiating the zy-system (4.5) with respect to 7 results in

(4.19) &' = ~ki(z'y +zy) — (k-1 + k2)2’
' = —ki(a'y +ay’) — koaa’.

We show that

(4.20) #' <0 and ¥y >0 for ¢t>0.

Since these statements are true initially, if one of these statements fails,
there must be a smallest positive time 7 at which this occurs. There are
then three possibilities: (1) /(1) = 0,y'(7) > 0; (2) 2'(7) < 0,y'(7) =
0; and (3) 2/(7) = ¥'(v) = 0. Under case (1), #'(7) > 0; but, by (4.19a),
#'(r) = —k12(7)y'(7) < 0, a contradiction. Under case (2), ¢'(7) < 0;
but, by (4.19b), ¢'(7) = —k12'(7)y(7) — k_12'(7) > 0, a contradiction.
Under case (3), by uniqueness of solutions to (4.19), '’ =0 and y' =0,
also a contradiction.

Next, we show

(4.21) Z>0 and w' >0 for t>0.

By (2.1), 2/ = —a', so that 2’ > 0. Integrating (1.1d), w = v+k2 fot zds,
hence w' = ko fot 2'ds >0, for t > 0.

4c. Monotonicity with respect to (. Let a prime denote the partial
derivative with respect to (. First, we show

(4.22) z' >0 and w' >0 initially.
This follows from

(4.23) 2 (0)=0, '(0)=k_ 1+ ke
and

(4.24) w'(0) =0, w'(0)= ks
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(using 2'(0) = 1).
Next we show that

(4.25) 2’ and y’ cannot both be > 1.

To prove this, we argue by contradiction. If, for some time, both 2’ and
y' are > 1, then, since z'(0) = y'(0) = 0, there is a smallest positive
time 7 in the set {t : 2/(t) > 1,y'(t) > 1}. Att =7, 2/(7) > 1 and
y'(7) > 1. Now, differentiating the zy-system (4.5) with respect to ¢
yields

(4.26) i = —hi(a'y + oy + (hoy + k) (1 - )

) v =-ki(2'y+zy)+k (1 —2).

From (4.26), ¢'(7) < 0 and §'(7) < 0, hence 2’ > 1 and 3’ > 1 in an
interval o < t < 7, contradicting the definition of 7.

We can now establish
(4.27) w' >0 for t>0.
By (1.1d) and (2.2),
(4.28) W =ko(1—y —w).
Suppose w'(t) = 0 at some positive t. Denoting the smallest such time
7, then w'(7) < 0. By (4.28), W'(7) = k2(1 — y'(7)), so that y'(7) > 1.
Also, by (2.1) and (2.2),
(4.29) z=uw+y,
giving z'(7) = 3/'(7) > 1, which contradicts (4.25).
Next we show

(4.30) ' >0 for t>0.

Suppose z'(t) = 0 at some positive time ¢. Denote the first such time
7; then &'(7) < 0. By (4.26a) and (4.29),

i'(1) = —krz(T)y' (1) + ko1 + ko
=kiz(r)w' (1) + k1 + k2 >0
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(using (4.27)), a contradiction.
From (4.25), it also follows that

(4.31) y' <1 for t>0.

Noting that y' = 2’ —w’ < 2’ (by (4.29) and ( 4.27)), if ' < 1, then
y' <1, and if 2’ > 1, then 3’ < 1 by (4.25).

4d. Monotonicity with respect to v. Let a prime denote the partial
derivative with respect to v. Since equations (1a,b,c) do not involve w
it is clear that 2’ =y’ = 2’ = 0. Integrating (1d), w = v + k» fot zds.
Hence, w' = 1. We have shown

(4.32) =0, =0 2=0 w=1

5. Final remarks. We have given a complete discussion of
monotonicity and nonmonotonicity results for solutions to (1.1)—(1.3).
These results are obtained for a system which does not generate a
monotone flow with respect to an orthant. For other results of this
sort, see [6].

In view of this work, there is some hope that a general theory
providing partial monotonicity results can be developed.
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