ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 20, Number 4, Fall 1990

A THEORETICAL JUSTIFICATION OF
THE METHOD OF HARMONIC BALANCE
FOR SYSTEMS WITH DISCONTINUITIES

JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

ABSTRACT. We prove a theorem which provides a rigorous
justification of an intuitive method used by electrical engineers
to predict the presence or absence of periodic oscillations in
nonlinear systems. Although the literature contains some
excellent discussions of the conditions under which the method
can be rigorously justified, there are some oversights and there
is lacking a completely detailed treatment, particularly for
unforced discontinuous systems. By applying the theory of
topological degree for differential inclusions, we are able to
present a unified rigorous justification in full detail, and we
can illustrate how our abstract hypotheses match up, point
by point, with the standard hypotheses used by engineers.

1. Introduction. In this paper we investigate the existence of
periodic solutions to differential inclusions of the form

(1) (t) — Az(t) € Flz(t)], te[0,00),

where z(t) € R™, A is a constant m x m matrix and F : R™ — 2R",
Our principal tool will be the topological degree for upper semi-
continuous, compact multivalued maps with compact, convex values
(see Cellina-Lasota [5], Ma [11], Lloyd [10]). One of our principal
motivations is the method of harmonic balance, of which a particular
case is the “describing function method” used by electrical engineers.
The central idea is to use a finite-dimensional approximation (via
Fourier series) to the infinite-dimensional function space on which (1) is
defined. Under certain conditions, the existence of a periodic solution
to the approximation implies the existence of a periodic solution to
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FIGURE 1.

the original problem. For an intuitive description of the method, with
numerous examples, see Jordan and Smith [7] and Vidyasagar [20].

Our work has been motivated by that of Bergen et al. [2], Mees [13],
Mees and Bergen [14], and Miller and Michel [15, 16]. In [2] and [14]
there is a thorough discussion of computational procedures and error
bounds, with a brief discussion of rigorous justification for unforced
continuous problems; in [15] and [16] a method is presented for dealing
with discontinuous forced problems via continuous approximations; in
[13] Mees presents an excellent overview of the state-of-the-art with a
brief mention that the theory of degree for relations provides a method
for dealing with discontinuous systems of a certain type. However, there
are some minor problems. In some of the cited papers it is claimed that
problems involving hysteresis can be directly treated, and in [13] the
same comment is made about toggles. In a problem with hysteresis,
there are two difficulties which make the treatment more difficult. The
first difficulty is that a problem with hysteresis has a memory with
threshold (see Figure 1)—for a value of u € (a, ),

the system remembers whether it has decreased from S or increased
from a. The phenomena cannot be modelled by single-valued contin-
uous approximations nor by set-valued functions (multifunctions). If,
for example, one tries to use multifunctions to model §y = f(y) by using
y € F(y), with F(y) = “the interval from h.(y) to ho(y),” then, in ad-
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dition to the problem of memory, one has the possibility of nonphysical
solutions—for example ¢ might always be the midpoint of F'(y), which
gives a trajectory in the interior of the region delineated by the hys-
teresis curves. If one attempts to circumvent the “interior solutions”
problem by defining F(y) to be the two isolated points h.(y), ho(y),
then one is faced with a dearth of positive results—and a wealth of
counter examples—for differential inclusions § € F(y) when F(y) fails
to be either convex-valued or acyclic, as in this case.

In another paper [12] we will show how our approach can be used to
obtain theorems on periodic oscillations in systems with relay hystere-
sis. Skar and Miller [18] have earlier studied this problem, obtaining
similar results by a different method. There is an extensive Russian lan-
guage literature on hysteresis, in particular we refer the reader to the
book of Krasnosel’skii and Pokrovskii [8] and the papers of Braverman,
Meerkov and Pyatnitskii [3, 4].

In this paper we present a complete, detailed, rigorous justification
of the harmonic balance method, using fixed point theory and degree
theory for differential inclusions. This yields a unified theory which
covers any discontinuities which can be modelled by convex-valued mul-
tifunctions, and offers an alternative to the approximation procedure
of Michel-Miller for the case when the discontinuous terms are limits of
continuous functions. The connection between their approach and ours
is clear—the graph of a convex-valued multifunction, under certain rea-
sonable hypotheses, can be approximated by the graphs of a sequence of
single-valued continuous functions (in the Hausdorff metric). However,
this sequence of approximations can be extremely difficult to determine
in complicated high-dimensional problems. The theory of differential
inclusions allows us to bypass this problem.

We mention that, in addition to the well-known application of dif-
ferential inclusions in optimization and control, they are becoming an
important tool in many other areas. As examples, we point out the
areas of robotics [17] and variable structure systems [1, 19].

Finally, we point out that one major limitation of degree theory lies
in its inability to directly prove non-existence results. If the degree of
a mapping is zero, it could be due to the fact that there are several
solutions whose degrees add to zero. In fact, the only nonexistence
results presently available are for a class of scalar problems for which
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one can use Bergen’s graphical approach on the describing function
diagram.

2. The approximation method. To make our presentation more
readable, we first give some background material. Consider the case of
a system with a scalar state z(t) which satisfies an integral equation of
the form

() #(t) = / ot — Tnla(r)]dr, te[0,00),

with g(-),n[-] well-behaved, and n[-] assumed odd, g(-) even for sim-
plicity. If we seek T-periodic (T" unknown) solutions of (*) which (for
simplicity) also satisfy z(t+7/2) = —x(t), 2(0) = 0, then such solutions
will have Fourier expansions of the form ZZO:O agk+1 sin(2k + Nwt,w =
2r/T. 1If we approximate z(t) by a;sinwt, then since n[] is odd,
nlay sinwt] has a Fourier expansion Y- o bog1 sin(2k + 1)wt. The de-
scribing function is (a1, w) = by(a1,w)/a;. Now the idea is to equate
the leading terms of the Fourier expansions (the first harmonic) of
the left and right sides of (*), obtaining an implicit relationship to
be solved for (aj,w). The first harmonic of the left side is obviously
a1 sinwt. Since the right side is in convolution form, its first harmonic
can be written §(iw)n(ai,w)a; sinwt, where § is the Fourier transform

of g,g(iw) = (1/2m) 02" e~ wtg(t) dt. Equating these, we get

(H) -1+ g(iw)n(ar,w) = 0.

This is the principle of harmonic balance of order 1.

The equation (H) is often written n(a;,w) = —1/§(iw). In many
simple cases, 17 does not depend on w, so one can graph the two
curves 7(a1), —1/g(iw) in the complex plane. The points of intersection
give solutions of (H). This is the basis for the now standard graphical
procedures (cf. Bergen et al. [2]).

Under suitable conditions, if (H) has a solution (@,w), then ()
will have a periodic solution (in general of different period). One
situation in which the use of (H) is plausible is when the linear
operator G [y](t) = fot g(t — 7)y(7) dr attenuates higher harmonics, i.e.,
it represents a low-pass filter. In mathematical terms, this means that
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G [y](t) is very well approximated by G applied to the first harmonic
of y(-). For a full treatment of the ideas presented above, we refer to
Vidyasagar [20, pp. 96-112] and Jordan and Smith [7, pp. 111-123].

The replacement of a function by one or more initial terms from its
Fourier expansion can be represented by a projection. If we use the
complex Fourier series y(t) = ag + Y e, (axe™® + bre "**) then we
define, for example,

P1 : y() — ag + alei“’t + ble_i“’t,

and P, can be defined analogously. The harmonic balance principle can
then be efficiently summarized by the statement that, under certain
conditions, the equation (%) z = G [n(z)] will have a periodic solution
if the equation

(H) Plx = Plg [Pl’l’L(le)] = P1g [n(le)]

has a periodic solution. The elimination of a P; was based on the
fact that the convolution operator G will commute with the Fourier
projection P,,n > 1.

We can now formulate our problem in abstract terms. After this,
we can precisely state our hypotheses within this abstract setting. Let
Wt2([0, 2], R™) be the usual Sobolev space of functions from [0, 27]
into R™, and let Z be the subspace of functions z(-) which satisfy the
boundary conditions z(0) = z(27), extended to R by 2m-periodicity.
We note the well-known fact that W12([0,27], R™) is the set of abso-
lutely continuous functions with derivatives in L2([0, 27], R™). We will
denote by X the Hilbert space of functions in L%(]0, 2], R™) extended
to R by 2m-periodicity.

For each z(-) € X the associated Fourier expansion
o0
z(t) = ag + Z(ake’kt + bre~ k),
1

converges in norm to z(-), and we can define the projection operator

. it —it nt _—int
P, : X —spanc{l,e, e, ..., e e "},

z(t) — ao + i(akeikt + bre ) = P, [z](t).
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Of course the actual period T' = 27 /w of the sought-after solution of (1)
is unknown. In order to use degree theory on the space X, we scale (1)
so as to fix the period at 27w, which will introduce the unknown actual
period as a parameter in the equation. If we define z(t) = 2(Tt/2x),
then z(-) is a T-periodic solution of (1) if and only if (-) is a 27-periodic
solution of

2) wi(t) — Az(t) € Flz](t), 0<t< oo,

where F denotes the Nemytskii operator, defined as all measurable
selections y(+) from {F[z(t)] | 0 < t < oo} which satisfy y(t) = y(t+2m)
for almost all ¢ € [0,27]. As usual, a solution of (2) is a function
x € Z which satisfies (2) a.e. for some w > 0. We will assume that
the operator [w% — A] : Z — X is invertible, i.e., we avoid resonance.
Then we can consider G , : X — Z, the inverse of the previous operator,

which can be explicitly written as follows:

2T

Gulylt) = | Go(t — s)y(s)ds,

(3)

1 A(tfs)/w, 0<s<t,
Gu(t—s) = —[[— /41 { € =7
w eA(27r+t—s)/w’ t<s<2m.

Now the problem of finding a solution of (2) can be rewritten as a fixed
point problem in the space X. In fact, set T, =i0G, 0 F : X — 2%,
where 7 is the natural imbedding of Z into X, and consider the equation

(4) 0€e(I-T,)l

It is clear that « € X solves (4) if and only if x € Z and solves (2).

We note below (Remark 1) that 7}, : X — 2% is an upper semicon-
tinuous, compact set-valued operator with closed convex values.

Our original inclusion (1) has now been replaced by an equivalent
family of equations (4). The new family is defined on the space X and
is parametrized by w. If we define

Xy =P X={Pu|zeX}), X'=(I-P)X, z.(t)=P.]t),
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z*(t) = (I — Pp)[z](¢) for z € X, then we can write a finite-dimensional
approximation

(5) On € (I* PnTw)[xn]v Tn € Xn, Onp= Pn[o]-

To compare this approximation with the exact problem, we separate
(4) into finite and infinite-dimensional parts by applying P, and I — P,
respectively:

(a) O, € P,(I-T,)[z,+ "],

(6) (b) O* € (I-P)I~T,)zn+z"].

We can then construct the homotopy

(a) On € (I - P,T,)[zn]
(6)) + MP,(I - T,,) - (I - P,T,,) P }al,
(b) O™ € (I = Pu)(I — AT,)[z],

for x = z, + 2*,0 < A < 1. Unfortunately, the algebraic system (5)
does not have isolated solutions because there are n complex m-vectors
ai,asg,...,an, one real n-vector ap and w € R as unknowns, and only
n - m complex equations and n real equations. This is not surprising,
since our system (1) is autonomous, and so if (ag, a1, ..., a,) satisfies
(5), for some w > 0, then also (ag,ai€e”,...,a,e™?) satisfies (5) for
arbitrary real 6. Therefore we have to fix the time origin; one way to
do this is to add to (5) the condition that a nonzero component a;,;, of
some a;,, 1 <ip < n, be real, i.e., arga;,;, = 0. This condition implies
the choice of a particular solution of (5).

We take this fact into account by defining the appropriate operators
as follows. For any A € [0,1], let V) : Ry x X,, x X* — R x 2X» x 2X°
be the operator defined by Vi = (Vi, V), where

VE:R.x X, xX*5RxX, and VP:R, x X, x X* = X*
are given by

Viw, Zn, %] = (arg aiyj, (w, zn), (I — Pu1y,)[zy]
+ )‘{Pn(I - Tw) - (I - PnTw)Pn}[mn + m*]),
VRw, zn, 2*] = (I = P,)(I = AT,) [z + z*].
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Clearly, {V,\}, for A € [0,1], is a family (homotopy) of compact vector
fields with closed convex values (i.e., a family of compact, closed
convex-valued, upper semicontinuous perturbations of the identity),
see Remark 1 below. To see this it suffices to add and subtract the
identity on Ry x X from V, for any A € [0,1]. In the sequel we will
denote by (H,) the equations

(Hy) (a) O e V{w,zn,z"], (b) O € VPw,zn, 2]

We make the following assumptions. Here, ||z||2 and ||z||ec denote
respectively the L%([0, 27], R™) and the sup norm.

(A1) F: R™ — 2R in (1) is upper semi-continuous and satisfies

sup |y|=|F(z)| <alz]+B  forsome a >0, and S >0.
yeEF ()

In addition, 0 € F(0) and F(z) is a nonempty convex, compact set
for all x € R™.

(A2) Let A, C Ry x X,, be the open set satisfying the following
assumptions.

(hy) For all (w,z,) € Ay, there exists r; = r1(w, x,) > 0 such that

1/2
[ Z |éw(zk)|2] | sup sup  ||(I = Po)yll2 < r1,

k[>n |z*||l2<r1 YEF [znt+z*]

where G, (ik) is the Fourier transform of the matrix G, (t) evaluated
at ik, k==x(n+1),x(n+2),....

(hg) For all (w,z,) € Ay, we have ||(I — P,T,,)[znlll2 < o(w,zy),
where

n 1/2
0<o(w,z,) = [ Z Gw(zk)|2] sup ||PoF [2n+2*] = PoF [24]|]2
|k|=0 [lo*||2<r1

and equality holds on the boundary of A,,.

The term |G, (ik)|? is the sum of the squares of the entries, and the
last “norm” on the right is defined by the usual convention:

sup{||z — znl|l2 |2 € PuF [zn + 2¥], 2n € P [24]}.
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Note that (I — P,T,,)[xy] is set-valued. Its norm is defined by the same
convention. Let 2, be the connected component of A, containing
the solution (@, Z,) of the harmonic balance equation (5) for which
arg a;,j, (@, Z,) = 0. Assume that

(A3) (i) I —e*4/% is invertible whenever w is such that (w,z,) € Q,
for some x,;

(ii) (w,0) & Q, for any w € R,. Moreover, the function (w,z,) —
@igjo (W, Tn) has real part different from zero in Q,. (This implies that
arg ai,;, (w, ©,) is a continuous function in ,,.)

(iii) deg(Vg', Qn,0) is well-defined and different from zero.

THEOREM. Under Assumptions (A1), (A2), (A3), the inclusion (4)
will have a solution (w,z), where ¢ = z, + z*,(w,z,) € Q, and
||Z*H2 < 7"1((4},.1'”).

REMARK 1. The conditions on F' in (A1) ensure that the Nemytskii
operator F maps X into 2% and is closed convex valued and bounded
(i.e., the image of a bounded set is a bounded set) ([9]). Moreover, the
imbedding i of Z into X is compact (i.e., it sends bounded sets into
relatively compact sets). Therefore the operator T,,[z] =i0 G, o F [z]
is a closed convex valued upper semi-continuous, compact operator.
Hence T, in the space X will meet the conditions for using the
Schauder fixed point theorem (see Dugundji-Granas [6]) and Leray-
Schauder degree theory for the set-valued compact vector field V) for
any A € [0,1] (see Cellina-Lasota [5]). In the sequel we will omit
the imbedding map ¢ in the notation of T,,, keeping in mind that, for
any ¢ € X,T,[z] C X is a set of absolutely continuous, 2w-periodic
functions with derivatives in X.

REMARK 2. The assumption (A3)(i) is not essential, since any given
system can be “pole-shifted” to an equivalent system satisfying (A3)(i).
To see this, note that the eigenvalues of €2™4/“ — I are (e2™/« — 1),
where X is an eigenvalue of A. Thus (A3)(i) will hold if Re A # 0 for all
eigenvalues of A. This can always be achieved by using the equivalent
system &(t) — (A — ol)[z](t) € F[z](t) + alz(t). For some real o
this system will satisfy (A3)(i) and our hypotheses on F will not be
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affected. The other hypotheses must be verified in the new system. In
fact, in most real-world situations, one has Re Ay, < 0 for all \.

REMARK 3. Assumption(A3)(ii) guarantees that the trivial solution
is excluded when we apply a fixed point theorem or degree theory and
that arga;,;, is a continuous function in Q,. Let Q = {(w,z,,z*) €
Ry x Xo x X*|(w,zn) € Qu,llz*|l2 < mi(w, @)} If 0 € VA(0Q)
for any A € [0,1) (i.e., the homotopy (H,) is admissible in 2), then
assumption (A3)(iii) and the homotopy invariance property of the
topological degree guarantee that

deg(Vi, Q2,0) = deg(Vy*,2,,0) #£0

for any A €[0,1).

On the other hand, the equation 0 € Vi is not equivalent to the
equation

(0,0,0) € (arg aiyjo, Pn(I — Ty [n + ¥, (I — P,)(I — T,)[zr, + x¥]),
nor is this equivalent to
(0,0) € (arg asyjy, (I — T,)[@n + 2*]).
In fact, given any non-singleton set A C X, we have the proper
inclusions {0} C A — A and A C P,A + (I — P,)A. Therefore we

have to make the following observations. Let Ay € [0,1) and consider
the following sets:

S ={(w,zp,z*) € Q: (w,Tn, ) is a solution of
Zn € NP Tylzn + 27+ (1 — pu)(PrT,[20] — Mo PrTu[zn)]),
z* € (I — Pp)T,[xn + 27, for some € [0,1]}
and

S ={(w,zn,2*) € Q: (W, T, z¥) is a solution of
2 € INTule] + (1 p) CoPaTule] + No(I — Po)Tule]);
T =z, +a", for some  p € [0,1]}.
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It is easy to see that S and S’ are contained in 2 whenever )\ € [0,1)
(i.e., the previous homotopies are admissible); thus, we have

deg(®y,,,0) = deg(V,,,0) #0

for any Ao € [0,1), where @5, : @ — R x X is given, for any
Ao € [0,1), by @, (w, z) = (arg aiyj,, —AoTw[z]). Hence the conclusion
of the Theorem will follow from the solution property of the topological
degree.

REMARK 4. Assumption (A2)(h;) is the “low-pass filter” assumption
(Bergen et al. [2]), i.e., it implies that the linear part of the system
as represented by G, attenuates high frequencies. To explain this in
simple terms, we consider the scalar convolution operator

G: () [ "ot — ) f(x) ds,

with g given in X, f € X, ¢t € [0,2n]. If f(t) ~ fo + D20 (fre™ +
f—re ¥, then

z(t) = Gf1(t) ~ §(0) fo+ ) _ a(ik) fre™ +g(—ik) f_re™], t € [0,2n],

where §(-) is the Fourier transform of g(-), §(ik) = (37) OQWe*iktg(t)dt.
)

Thus the high-frequency part of z(-), (I — P,)[z], can be estimated by

I = Pl < 3 13GR)- 15 < { 3 1R} Nl

[k|>n [k|>n

The connection with (A2)(h;) is now clear.

REMARK 5. Assumption (A2)(hy) ensures that our homotopy is
an admissible homotopy. Intuitively, it requires the distortion of the
low-frequency harmonics |[(I — P,T,)[zn]|le = ||2n — PnTwlzalll2 to
be small in comparison with o(w,z,), where o(w,z,) is the prod-
uct of two terms, the term Yy |G(ikw)|?, which measures the low-
frequency response of the linear part of the system, and the term
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SUP||z+||p<ry ||[PnF [Tn + 3] — PoF [z4]|]2, which measures the growth
of P,F on the ball B(z,,r).

REMARK 6. The region §2,, in the scalar case, can often be deter-
mined by graphical and numerical techniques (Bergen et al. [2]). In
general, it can be determined by the fact that equality holds in A2(hy)
for (w,x,) € 0.

REMARK 7. The determination of the solution (@,Z,) to V§* = 0
and the verification of (A3)(iii) is a finite-dimensional “algebraic”
problem. If z,(t) ~ ag + Zﬁe‘:l are*t, the a;’s unknown, then
in many cases we can explicitly compute the Fourier expansion of
GuFlzn] ~ co+ Z‘kplckeikt, i.e., we can explicitly determine
ck(w,ao,al,a,l,...,an,a_,n), keeping in mind that cp is set-valued.
Then V' = 0 reduces to

Oeaj_cj(wva[):al:'--:an:afn), jzo,il,...,ﬂﬂ%

with the condition that arga;,;, (&, Z,) = 0.

REMARK 8. We note that o(w,z,) > 0 for all (w,z,) € Q, by
assumption (A2)(hsz). Indeed, if there existed (@, Z,) € Q, such that
o(@,&,) = 0, then it would follow that, for any z* € B(0,71) where
r = r1(®, &), we have ||P{F [&, + «*] — F [£,]}||2 = 0. This implies
that P,Ty[zn + 2*] = P, T3[Z,]) = Z € X, for any z* € B(0,r1). Two
cases arise. First, suppose that (@,%,) is a solution of the harmonic
balance equation of order n, with arg a;,;, = 0,2, € P,T,[z,]. In this
case, &, = Z, and if we consider the equation z* € (I — P,)T5[Z + z*],
by A3(iv), there exists a solution z* € B(0,r1). Therefore, z = Z + z*
is a 27 /w-periodic solution of (1). On the other hand, if (&, Z,) is not a
solution of z, € P,T,[zy,], arg a;,j, = 0, then there is no 27 /&-periodic
solution z of (1) with P,z = &,.

PROOF of THEOREM. We will prove the existence by a two-stage
argument. First, for each (w,z,) € 2, and each 0 < X\ < 1 we will show
that we can apply the Schauder fixed point theorem for set-valued maps
in the ball B(0,71) to get a solution z}(w,z,) of Hx(b). Thus Hy(a)
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becomes an equation in w and x,, when we replace «* by z3 (w, z,). We
will then show that the original system (4) has a solution by showing
that H) represents an admissible homotopy in Q (see Remark 3).

We turn to the first stage. It is clear that, for a given (w,z,) in
Q,,,Hx(b) represents a fixed-point problem z* € M)[z*] for the map
My : z* = XNI — P,)T,|z* + x,) on (I — P,)X. If ||z*||]2 < 71, then
(recalling that, for a multifunction H{[z], ||H[2]|| = sup,cp . |lyl]):

IMA[z]l2 = []AT = Po)Tu[2" + znlll2 < |G (I = Po)F [27 + 2]l

1/2
< { > Iéw(ik)lz} sup sup ||(Z = Pn)[y]ll2

|k|>n [lz*||2<T1 YEF [x*+zn]

<r

by (A2)(h;) and Remark 4, so M) : B(0,r;) — 25) in (I — P,)X.
Now the Schauder fixed-point theorem for multivalued maps is valid
for any upper semi-continuous, compact multifunction with convex
compact values (Dugundji-Granas [6, p. 96]). Assumption (A1) implies
that M, is such a map for any A € [0,1] (Lasry-Robert [9, p. 60]).
Therefore, there exists a fixed point 3} (w, z,,) of the map M), for each
(w,xn) € Ry, 0 <AL 1L

As already noted, the same considerations as above show that the
map Vy : (w,z) — Vi[(w,z)] is a compact convex valued vector field
defined in @ C Ry x X for any A € [0,1], where Q is the open set
defined in Remark 3. Hence the topological degree is defined (see [5,
11]). If we can show that, for 0 < A < 1, we have 0 ¢ V)\[(w, )] for
(w,x) € 02, then it will follow from the homotopy invariance property
that 0 # deg(V§*, Qn,0,) = deg(Vi, Q,0) for any A € [0,1). Therefore,
by Remark 3, there will exist a nontrivial 27 /w-periodic solution of
(1) in O with arga;,j, = 0. Assume to the contrary that there exists
(W, &y, x*) € Q such that 0 € V)|w, z,, 2*] for some X € [0,1), where
z* stands for 3 (w, ;). Then, in particular, we would have selections
Yn € Flzy,] and y, 7§ € F[z] such that at least one of the following
inequalities holds as equality:

(1) @) lzn = PaGoynlle < olw,zn), (b)) [lz¥|l2 < 7ifw, zn)

and for which

(83) On = (xn - Png wyn) + )\[(xn - Png wy) - (wn - Png wyn)]v
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(8b) 0" = (I — Py)(z — A\G ,Y).
Equations (8a)—(8b) imply that

OZ Hmn_PngwynHQ_>\|‘Pngw(y_yn)”27
0> [[z*][2 = AT = Pn)G w72,

respectively. From these inequalities we obtain

(a) 0 Z Hxn - Pngwyn||2 - )\O’(UJ,In),

®) (b) 0> fla*]l2 — Ara(w, ),

where the estimates on the right-hand side of (9a) and (9b) are obtained
by the usual Fourier expansion techniques, i.e.,

PG w(y — yn)ll2

IN

" 1/2
[Z Iéw(ik)Q] 1y = ynll2,
|k|=0

H(I_Pn)gwg”2

IN

1/2
> |Gw(ik>|2] 1712,

|k >n+1

and, by using (A2)(hz) and (A2)(h;), respectively. But A € [0,1);
hence, from (9a)—-(9b), we obtain

0> ||In — PG wyn||2 - U(UJ,I”), 0> ||x*||2 - Tl(waxn)'

Therefore, neither (7a) nor (7b) can reach equality, contradicting the
fact that (w,z,,z*) € 00 for some A € [0,1).

3. How Theorem is applied. The harmonic balance technique
applied to a specific problem will, in general, require a considerable
amount of numerical approximation and computation. There is an
excellent discussion, complete with flow chart, in Mees [13]. It is
not our intention to present a completely worked-out example since
the computational literature is extensive, rather we present the set-
up of a specific artificially created problem to illustrate the use of a
multifunction to simplify the treatment of a discontinuity, and to show
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the connection between our hypotheses and the usual assumptions used
to intuitively justify the method.

The procedure for applying our theorem is as follows:
(1) Set up and solve the harmonic balance equations.

(2) Check that the local degree of the solution(s) (wo,z%) obtained
in (1) is nonzero. This is just the computation of the determinant of a
Jacobian.

(3) (a) Bound 5, |G, (ik)[? from above for w restricted to an
(unknown) interval (a,b) containing wp; then

(b) estimate sup ||(I — Pn)yll2,y € F[zn + z*],||z*|| < 71, from
above for fixed (but arbitrary) z,, and r; unspecified. Combine the
estimates in (a), (b) to check A2(h;). This will, in general, give an
inequality constraint ri(z1,w) > p(|z1],a,b) for some function p. We
tentatively choose r; = p.

(4) (a) Bound Zﬁc\:o |G, (ik)|? below for w € (a,b), and then

(b) bound sup|,« (<, [|PAF [5 + 2*] — PLF [24]]]2 below for z,,
fixed but arbitrary. It is easy to obtain a bound by making a specific
choice of x*, but we need a “tight” bound, which, in general, requires
extensive computation. Combine (a) and (b) to get a tight lower bound
on o(Tp,w), call it opum, then require |[(I — P,T,,)[zs]||2 < onum- This
will (one hopes) define an open set 2, after some trial and error with
(a,b), such that ||(I — P,T,)[zx]ll2 = onum on 0€,.

To illustrate the procedure outlined above, we consider the discon-
tinuous differential equation

j+ 16y =2 when ¢ >0,
J+2y+ 17y = -2 when gy < 0.

We convert this to the differential inclusion

(10)  2(t) — Az(t) € F(t, ), z:m A:[_106 _11}
0 {9 +2}, y >0,
F‘[F(z)}v FO(t,2) =< {~y—9-2}, §<0,
[—y—2,2] y=0.



1094 J.W. MACKI, P. NISTRI AND P. ZECCA

Of course, if y < —4, we must write [2, —y — 2] rather than as written.
The choice of A was not made arbitrarily. The idea is to keep the
coefficients of y and ¢ in F®) as small as possible, in order to assist in
the estimate described in 3(b) above.

This inclusion has trajectories in the phase plane which are circles in
the upper half plane and spirals in the lower half plane. In addition,
y(t) = k € [-2/15,1/8] is a solution of the inclusion (but not of the
original equation). Note that (10) has the unique (up to a time shift)
nonconstant periodic solution.

() = (0.6493) cos 4t + 1/8, —m/4<t<0,
1 (0.9194)e t cos(4t — .2449) — 2/17, 0 <t < m/4,

with frequency wy = 4.

We assume a solution to the normalization (2) of the system (10) of
the form

wlt) = [z{); (t)} _ [01] it [a] i [al cos(t+g01)} |

zy ! (t) C2 C2 ay cos(t + ¢2)

where ¢; denotes the complex conjugate of ¢;, and a; = 2|¢;|, ;i =
argc;. Because F[z](t) is only set-valued for ¢ in a set of measure
zero (a situation which always occurs with only finitely many jump
discontinuities), there is essentially only one Nemytskii selection, whose
Fourier coefficients are easily computed:

1 2T —p2

fri= {f%)} A e “FP [2](t) dt
1

2 —P2

_ 3, (1, 4
VR 2 " mleal )

The equation of harmonic balance for n =1 is

w [a]ers 3] [ ] sescal ]

2 Ca

tr

and this is clearly equivalent to [c1,¢1]™ = G, (i)[0, f1(2)] , where

superscript “tr” denotes the transpose. By definition, G, (ik) =
fozw e~ *sG,(s) ds, where G, is given just below (3),
(i) = —[A — k]! = 1
v N (16 — k2w?) + ikw

14 tkw 1
—16 thw |’
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Then the equation of harmonic balance becomes

(12) al___ Y 1
C2 (16 — w?) +iw |w |’
Thus ¢y = iwe; and
97 9 (3w 4 _
(13 (T ) +i(5 —me)la =0

This yields the solution, unique up to a rotation of ¢; and cs,
(14) 04924, & =0.1724, = —iwcd.

As already noted, the rotational symmetry is no surprise, since the
original system is autonomous (¢ is determined only up to an additive
constant, thus e*** is determined only up to a phase angle).

We require that the degree of the mapping defined by (13) be nonzero
at the solution (14). The equation for ¢; can be written in the form

(15) (les], ) = (3—“’+ 4

2 ’/T|Cl|

> , 0 =argc.

The topological degree in A3(iii) can be now evaluated as the Jacobian
of system (15) with respect to (|ci|,6) with w = wp, at the point
|e1] 22 0.1724. Tt is easy to check that the Jacobian is different from 0.
(Note that we do not need to compute the degree for the mapping in
co because the identity co = iwcy eliminates c¢o from the mapping.)

In order to keep things simple, we restrict w to (3.9, 5), using our
approximate and true frequencies as a guide (a luxury not available in
real world applications).

We note that |G, (ik)|? can be taken as the sum of the squares of the
moduli of the entries of the second column, since F[z] = [0, F®[z]]*.
Thus, for (A2)(hy),

> |G (ik)[* < 0.18406.
k| >2

The remaining term in (A2)(h;) can be estimated as follows: for
y € Flov +a*], [[(I = Poyllz < [zl + [Je*]]z +2v2r < [lza[l2 +



1096 J.W. MACKI, P. NISTRI AND P. ZECCA

2v2m + 1y for ||z*|]a < ri. At first glance, it might appear that
(I — P,) annihilates the z; term that appears in the definition of
F@)[z], but this is not necessarily the case since the selection y(t)
might jump among the formulas defining F(?)[z; 4+ 2*](t), depending
on the sign of [x?) + 2*@](t). Assumption (A2)(h;) now reduces to
1.13 4+ (.226)]|z1]|]2 < 71 for (w,z1) € ©241,3.9 <w < 5.

We now turn to (A2)(hy) and the final step 4 of our program. To
estimate o(w,z;) from below, we first note that

1 1/2
{ > |G‘w(ik)|2} >0.306 for 3.9<w<5.
|k|=0

We next turn to the term

(13) sup H-Plj:[xl + I*] - Plf[wl]Hg

[lz=|[2<r:

Given z1(t),z*(t), the difference y(t) — 2(¢), for y(t) € Flz; + z*](t)
and z(t) € F [z1](t), will be of the form [0,w]*, where w(t) is defined
a.e. as

(14)

=" (1) for 2 (t) + 2" (t) >0
and x§2)(t) >0,

xgl)(t)+2w§2)(t)+w*(2)(t)+4 for 7 >0 and 7 <0,

) - 22D ()~ D () —2* D ()4 for ? <0 and 7 >0,

2*D(t) — 2* (1) for 7 <0 and ” <0,

At this stage extensive calculations (best done by computer) are
required as one tries to discover a reasonable region {2y for which
(13) has a “tight” lower bound. This requires the production of
a computer code which will calculate the first term of the Fourier
expansion F [x1 + z*], using (14), for a selection of functions x; near
the solution of the harmonic balance equation, with ||z*|| < r1,r1 =
1.134(.226)||z1||- The idea is to search among possible functions z; for
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a large value of this coefficient, since that will increase the computed
supremum in (13).
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