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ABSTRACT. The asymptotic and oscillatory behavior of
solutions of functional differential equations of the form

d

(b @)(0) + P00 + aOf @ls) =0, (" =5),

is discussed. Here q is allowed to change sign on [tg, c0).

1. Introduction. Consider the functional differential equations of
the type

(1L1) (a(Ov(e)el0) +0i(0) + a0 falaO) =0, (= 5).

where ¢,9,p,q : [to,0) = R, ¢, f : R — R are continuous, a(t) > 0,
q(t) > 0, and ¢ is not identically zero on any subinterval of [tg, c0).
Moreover, g(t) — oo as t — oo, ¥(x) > 0 for all z and zf(z) > 0 for
x # 0, and functions ¢, g,a and 1 are continuously differentiable.

In what follows, we consider only such solutions which are defined
for all ¢ > ty > 0. The oscillatory character is considered in the usual
sense; i.e., a continuous real-valued function z defined on [t;, c0), for
some t; > 0, is called oscillatory if its set of zeros is unbounded above,
otherwise it is called nonoscillatory.

In recent years there has been an increasing interest in the study of the
qualitative behavior of solutions of equations of type (1.1). Kulenovic
and Grammatikopoulos [13] obtained some results on the behavior of
the retarded strongly superlinear equation

(*) (a(t)2(t)) + a(8) f(z[a(®)]) = 0.
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1064 B. S. LALLI AND S. R. GRACE

Our main purpose is to study the asymptotic and oscillatory behavior
of Equation (1.1), where conditions on a,p and ¢ are different from
those which appeared in [5—8]. In §2, we present some criteria which
guarantee that every solution x of Equation (1.1) is either oscillatory or
else z(t) — 0 monotonically as t — oco. Oscillation criteria for Equation
(1.1) when it is strongly superlinear, i.e., when [, ¥(u)/f(u) < co, with
retarded or advanced arguments are established. We also present some
criteria which are applicable to linear equations as well as equations of
type (1.1) where f'(z)/¢¥(z) > k > 0 for x # 0. We include the case
when ¢ is of arbitrary sign on [tg,00) and establish results concerning
oscillation of the derivative of any solution of this equation. Examples
are inserted in the text to illustrate the relevance of the results. Some
of the results in this paper overlap with some which appeared in our

paper [5].

2. Main results. In our first result we allow the argument g(t) to
be retarded, advanced, or of advanced type.

THEOREM 2.1. Assume that §(t) > 0, p(t) > 0 fort >ty and

(2.1) F(@) > 0 for £0, ( d ) ,

T da
and let there exist p € C?[[ty, o), (0,00)] such that
(2.2)  p(t) <0, (p(t)p(t)) <0 and (a(t)p(t)) =0 fort > to.

If

(2.3) / " p(s)a(s) ds = oo

(2.4) /°° m /ts p(T)q(r) drds = oo,

then every solution x of Equation (1.1) is either oscillatory or z(t) — 0
monotonically as t — oo.
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PROOF. Let z(t) be a nonoscillatory solution of Equation (1.1).
Without loss of generality, we assume that z(t) # 0 for all ¢ > t.
Furthermore, we suppose that z(t) and z[g(t)] are positive for t > ¢y,
since the substitution v = —z transforms Equation (1.1) into an
equation of the same form subject to the assumptions of the theorem.
Now, we consider the following three cases for the behavior of #:

CASE 1. # is oscillatory. If &(¢1) = 0, then

(a(®)y(x(t)&(t) li=t, = —q(t2) f(2[g(t:)]) <O,

from which we can prove that #(¢) cannot have another zero after it
vanishes once. Thus, #(t) has a fixed sign for all sufficiently large ¢.

CASE 2. & > 0 on [t1,00) from some t; > tg. We define

_ a®)y((t)2@) e
w0 =) PO etz
Then, for every t > t1,
LN B _E@) s PE()E()
"(z[g(t)])z[g(t)]z(¢

Using conditions (2.1) and (2.2), we get
w(t) < —p(t)g(t) for t > t;.

Integrating the above inequality from ¢; to t obtains
t
/ p(s)a(s) ds < w(ts) — w(t) < wts) < oo,
t1

This contradicts condition (2.3).

CASE 3. & < 0 on [t1,00) for t; > tg. Suppose that lim; ., z(t) = b,
b > 0. We claim that b = 0. To prove it, assume that b > 0 and define

u(t) = a(t)y(x(t)2(t)p(t), t = t1.
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Then, for ¢t > tq,
(2.6) a(t) = —p(t)q(t)f(x[g(t)]) — p(t)p(t)i(t) + alt)p(t) (x(t))i(t).

Hence, for all t > t;, we have
ult) = u(ty) = Flela)) [ pls)a(s)ds
+ [ Falsilseic) [ " p(r)a(r) dr ds

t

/ (a(s)p(s))i(s) ds + / (a(s)3(s)) (x(s) )i (s) ds.

t1 t1

By the Bonnet theorem, for any ¢ > t1, there exist &1, & € [t1,t] so
that

—/t (p(s)p(s))&(s) ds = —p(t1)p(t1)[x(&1) — x(t)] < p(ta)p(tr)(t1)

and

So, for every t > tq,

u(t) < M — £(b) / p(s)q(s) ds,

where M = u(ty) + p(t1)p(t1)z(t1) — a(h)[)(h)( Ow(tl) ¥(v) dv)-

By assumptions of the theorem, there exists a t2 > t1 such that

u(t) < _1®)

t
S / p(s)q(s) ds for t > t.
t1
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Thus,

! . OGR! s
. (@ (s))a(s) ds < = /t OrO) /t p(7)q(r) dr ds.

By condition (2.4),
z(t)
Y(v)dv — —o0 as t — o0,

z(t2)

a contradiction to the fact that x(¢) > 0 for ¢ > ¢y. Thus b = 0 and
z(t) — 0 monotonically as t — co. O

The following examples are illustrative.

EXAMPLE 1. Consider the differential equations

(2.7) (Bi) + 1+ a(0)f (elo(t)]) = O,
(2.8) (t(l ) ac) + T q(0)flg(0)]) = 0
and

t° 1
2. —— (1 +2a%)i i =
29 ([T ) + e+ a0l o
where ¢(t) is a continuous and nondecreasing function for t > to = 1
and lim; o g(t) = oo, ¢(t) = ¢g*(t)(1 +¢t73) and f(z) = |z|*sgnz,
a>0.

We take p(t) = 1. If

then all the conditions of Theorem 2.1 are satisfied, and, hence, every
solution z of equations (2.7)—(2.9) is either oscillatory or z(t) — 0
monotonically as t — co. Each of the Equations (2.7), (2.9) admits the
nonoscillatory solution z(t) = 1/t — 0 monotonically as t — co.
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REMARK 1. One is tempted to believe that if we replace condition
(2.4) by the stronger condition

i 1
(2.10) / a5)p(s) ds = oo,

then conditions (2.3) and (2.10) may ensure the oscillation of Equation
(1.1). In fact, this is not enough, since, if we take o > 1 and g(¢) = t in
equations (2.7)—(2.9) and let p(t) = 1/t2, the hypotheses of Theorem
2.1 and condition (2.10) are satisfied. Therefore, we need further
restrictions on the functions in Equation (1.1).

In the following theorem we study the oscillatory behavior of Equa-
tion (1.1) subject to the conditions

(2.11) P(x) > ¢ >0 for all z
and
Y (u) Y (w)
(2.12) , T du < oo and o) du < oo.

THEOREM 2.2. Let g(t) < t, g(t) > 0 for t > ty, conditions
(2.1), (2.11) and (2.12) hold and assume that there exists a function
p € C?[[ty, ), (0,00)] such that conditions (2.2),(2.3) and (2.10) hold.
Equation (1.1) is oscillatory.

PROOF. Let z(t) be a nonoscillatory solution of equation (1.1). as
in the proof of Theorem 2.1, three cases arise. The proof of Cases 1
and 2 are similar to the corresponding cases of Theorem 2.1. Hence,
we consider Case 3. By conditions (2.3) and (2.10) we conclude that
z(t) - 0 ast — oco. Let z(¢t) > 0 and z[g(t)] > 0 for ¢t > ¢ > ¢
and consider the function w defined earlier in the proof of Theorem 2.1
(Case 2). Then, for every t > 1,

o ~ B(t) s 1))
W(t) =— p(t)q(t) p(t)p(t)f(x[g(t)])+ (#)p(2) F(z[g(®)])
(2.13) d
7w(t)ﬁf(w[9(t)])
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Using conditions (2.1), (2.2) and the fact that g(t) < ¢ for ¢ > ¢, we
get

u(t) < u(t) ~ [ o)at)ds— [ oote) (LHDD )
+ [ oon G - | t“’( FEron (m[[ o)

By the Bonnet theorem, for any ¢ > ¢, there exist &, & € [t1,t] such
that

L w(a()its) 1 “6) y(u)
. perete) P s = Cpteeten) [
1 CIC)
< Cp(tl)f’(tl) o(ts) F(u) d My
and
t Bla()ils) oo [T D)
| (@@ L s = atwien) [
o [V
< a(t1)p(t1) o) f(u)d M.
So, for every t > tq,
[ dGla(s)
<= [ pontas- [ w FE.
where M = w(t;) + My + Ms; hence, by condition (2.3), we derive
(2.14) —w(t) > C+ /t w(s) Cj{((;[[j((;))]])),

where C is a positive constant. So, for every t > t;,

af (elg (1)) Cafele)) L dfela(o)
(“’“) f(w[g(t)]))@*/hw(s) f(w[g(8)1)> = Flalg(®)
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and, hence, by integrating over [t,t], we obtain

L [ dGle)] L fala)
e {“/tl Tl | =™ Fale®)

Thus,

C Ll | CRGlom)
C*llw(s) felg)) = flalgl) Atz

and so (2.14) yields

for every t > tq,

i 1
P(2(t))2(t) < —Clm

where Cy = Cf(z[g(t1)]). Consequently,

x(t) t
¥(u) du < —Cl/ "

—————ds — —oo0 as t — 00,
x(t1) ¢, a(s)p(s)

a contradiction to the fact that z(¢) > 0 for t > ¢;. O

EXAMPLE 2. Consider the differential equations (2.7)—(2.9) with
qit) = tand 0 < a < 1. Welet p(t) = 1/t3, t > to > 0. It is
easy to check that each of these equations is oscillatory by Theorem
2.2.

The case when Equation (1.1) is of advanced type is covered in

THEOREM 2.3. let g(¢t) > t, g(t) > 0 for t > ty and conditions
(2.1), (2.11) and (2.13) hold. Suppose that there exists a function
p € C?[[ty, ), (0,00)] such that
(2.15)

p(t) <0, <w> <0 and (a(t)p(t)) >0 fort > to.
it
(2.16) [ Aot as = o
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and

e 1
(2.17) / aG)plg(s)] ds = oo,

then Equation (1.1) is oscillatory.

PROOF. (See [5]). O

In the following result we take p and ¢ of variable sign and g(t) = ¢
for all t > ty. It is convenient to make use of the notations

_ 1 1) ()
) =a0- g (- =) 25,

THEOREM 2.4. Assume that

(2.18) zf(z) >0 and f'(x) > k >0 for z #0, <' = %) ,

(2.19) 0<c<y(z)<ac.

Suppose that there exists a differentiable function p : [ty,00) — (0, 00)
such that

et 1
(2.20) / oo

Then each of the following conditions ensures the oscillation of con-
tinuable solutions of Equation (1.1):

® 42(s) > oo
M / s ds < . /p@maw—,

() vwzavwsommzm,/MM@M@wzm;

(1) vm>mﬂﬂzm;g5%/p@M$@=w
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PROOF. Let z(t) be a nonoscillatory solution of Equation (1.1).
Without loss of generality, we assume that z(t) # 0 for all ¢ > t.
Furthermore, we suppose that z(t) > 0 for ¢ > tg, since the substitution
u = —z transforms (1.1) into an equation of the same form subject to
the assumptions of the theorem. Now, we define

b))
w(t) = p(t) @) t > to.
Then, for every t > t,
(2.21)
0(t) =— —Zﬂ L w @w
w(t) - p(t)q(t) a(t) ’(,b(ﬂ,‘(t)) (t)+ p(t) (t)
_ ]- fl(m(t)) w2 (t)
aO)p() $(a(0))
o o L ) o )
=~ P0a0 + e - 5awm) [a(tm(t) O a0 (“}
_ L pPOe() | 50
PO+ e @ @) o
S FECTH N X0 ]
o) |\ altolt) O 0|
Using conditions (2.18) and (2.19), we have
(t) <~ p(OQ() + () A
(2.22) 1 (a®)i(t)\?
- Zaltplo)s (x(t>)< o )
Thus,
t o h(a(s))is)
w(t) < w(te) = [ p(5)Q(s)ds+ [ () ds
(2.23) 40 t /to (((9;(8)())
-2 [ (L) 4
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We consider the following cases:

CASE 1. Let (I) hold. It follows from the Schwarz inequality that

l%@cm2@>s

f(z(s))

L) (L (525 )
([ (525 o)

where K = (fto (v%(s)/a(s)p(s)) ds)'/? is finite. Thus (2.23) gives

mwsmm—1p®mwm

+ K(/t: a(s)p(s) (%) s) 1/2
)&

ok z@mgcm% @Y”“

f(z(s))

Clearly, the sum of the last two integrals in the right hand of the above
inequality remains bounded above as t — co. Thus, in view of (I),
a(t)p(t)y (x(t))2(t)

Jim w(t) = lim 7)) -

C1 to

Consequently, there exists a t; > ¢y such that
i(t) < 0 for t > t;.

This means that there exists a to > t; such that

(2.24)

where k1 = kc/cy.
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Case 2. If (II) holds, then, by the Bonnet theorem, for any ¢ > tg,
there exists a & € [to, ¢] so that

oo G e [ 2G5

B (&) M
‘7“0)/30@0 Flw) ™

< du

Scw(to)/ —— =M < oo.
o(to) f(®)

As in Case 1, there exists a t3 > t¢ so that (2.24) holds.

Case 3. Let (IIT) hold. Once again, by Bonnet’s theorem, for some
My >0, t > ty, we have

o lae)is)
/tﬂ(s) CO

and, as in Case 2 of Theorem 7 in [8], we obtain inequality (2.24).

S MI’Y(t)7

The rest of the proof is similar to that of Theorem 7 in [8] and, hence,
is omitted. O

EXAMPLE 3. Consider the differential equation
(2.25)
sint

(t(z(t)z(t)) + 5 x(t) + <% + sint> (z(t) +2*(t)) =0, t>0,

where ¥(z) = 1 + e 1®l or 2 — sinz. The hypotheses of Theorem
2.4(I) are satisfied with p(t) = 1, and, hence, every solution of (2.25) is
oscillatory. We note that some of the oscillation criteria in the literature
fail to apply to (2.25).

THEOREM 2.5. In addition to conditions (2.18) and (2.19), let

(2.26) /+0fcz)<ooand/0%<oo.

Suppose that there exists a differentiable function p : [ty,00) — (0, 00)
such that

(2.27) /00 p(s)Q*(s)ds = 0
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where
waw@—ﬁﬂgg—nm%%ﬁmw6%>}

Then every solution of (1.1) is oscillatory.

PROOF. Let z(t) be a nonoscillatory solution of equation (1.1). With-
out loss of generality, we suppose that z(t) > 0 for t > ¢;. Furthermore,
we consider the function w defined in the proof of Theorem 2.4. Then,
for every t > tp, we obtain

w(t) < — p(t)q(t)

1 ko p) A0,
5@(®) La®p®) (”+<a@ mww(“”> “ﬂ'

Completing the square and using condition (2.19), we have

w(t) < —p()Q*(t), t=to.

Thus,

VEORO _ o [ v ds
220) e P <0 [ @
where

C = a(to)p(to) f(z(to))

It follows from condition (2.27) that there exists a t; > g so that

/tl p(s)Q*(s)ds =0 and /t p(s)Q*(s)ds > 2|C| for t > t;.

to t1
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Thus, inequality (2.29) leads to

B t $)Q*(s) ds
@) = 290) a®e(d) /Hp( )Q*(s)d

AN
\
\{;
)
—
0
~—
Q
*
—
0
~—
U
»

which implies that

Consequently, G(z(t)) — —oo as t — oo, contradicting the fact that
G(z(t)) > 0.0

REMARKS. 1. The deviating argument g(t) is chosen to be either
retarded or advanced, and, hence, our results are applicable to ordinary,
retarded, as well as advanced, equations.

2. If y(z) =1 and p(t) = 0, then our results are related to Theorems
3 and 4 in [13].

3. Due to space limitations we have avoided comparison of our results
with those cited in the references.
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