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SOME REMARKS ON THE LUSTERNIK-SCHNIRELMAN
METHOD FOR NON-DIFFERENTIABLE FUNCTIONALS
INVARIANT WITH RESPECT TO
A FINITE GROUP ACTION

W. KRAWCEWICZ AND W. MARZANTOWICZ

1. Introduction. A variational problem with symmetries may have
multiple solutions. The problem of finding the best possible estimate
on the number of orbits of critical points of an invariant functional was
studied by many authors, see for example, [10, 1, 2, 7-9, 12, 13, 20,
11, 22].

In our previous paper [14] we presented a general and explicit formula
for the number of critical points of a functional of class C!, invariant
with respect to a finite group action (cf. [14, Theorem (1.3)]). The
purpose of this paper is to extend this variational minimax method to
the class of locally Lipschitzian functionals.

Many nonlinear partial differential equations with discontinuous non-
linearities can be reduced to nondifferentiable variational problems.
The Lusternik-Schnirelman method, which is a very efficient tool in
finding multiple solutions to differentiable variational problems, was
recently applied to some nondifferentiable functionals: see [5, 16, 21,
23]. The generalized gradient of F. H. Clarke (cf. [6]) is used to extend
the concepts of critical point and the Palais-Smale condition.

We would like to emphasize that our lower-estimation on the number
of critical points of a locally Lipschitzian functional, invariant with
respect to a finite group action (Theorem 3), even in the case of C*-
functionals, is an improvement (compare [14] with [10] and [3]).

2. Locally Lipschitzian G-invariant functionals on Banach
manifolds. Let M be a Banach manifold of class C? on which a finite
group G acts by diffeomorphisms, i.e., M is a G-manifold. Suppose
that M is endowed with an invariant Finsler structure ||| : TM — R.
Such a manifold M will be called a Finsler G-manifold. It is known
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(cf. [14]) that any paracompact G-manifold M admits a structure of a
Finsler G-manifold, and, therefore, M is a G-metrizable space.

Let M be a Finsler G-manifold modelled on a Banach space E and
f+ M — R a G-invariant locally Lipschitzian function. We define,
following the definition of F. H. Clarke (cf. [6]), the generalized gradient
of f at x, denoted 0f(z) C T, M, as follows: First, we consider the case
where f : U — R, U C E is an open set. The generalized directional
derivative fO(x,v) of the function f at x € U is defined as

— 1
fo(z,v) = lim —[f(x +h+ ) — f(x+h)], z€U, veE.
h—0 A
A0
We have supposed that f is locally Lipschitzian on U; this means that,
for every x € U, there exists a neighborhood V,, C U of x and a constant
k; > 0 depending on V, such that

f(@1) = f(@2)| < kllzr — 22f| V1,22 € V.

The function v — f°(z,v) is a subadditive, positively homogeneous,
and, thus, convex, continuous function. Moreover, |f%(z,v)| < k.|/v|,
£ (z,u) = fO(z,v)| < ksllu—v]| and fO(z, —v) = (—f)°(z, v) (cf. [5,6]).
Let ¢ : U’ — U be a C'-diffeomorphism, where U’ C E. Then

(1) (f 0 9)°(z,v) = f'(¢(z), Dp(z)v).

Indeed, we have the inequality
|(f 09)°(z,0) = fp(2), Dp(z)v)]

— [Fm 1f(oe + b+ dw)) = F(plz+ )]
L0

— lim ~[f(p(@ + h) + ADo(@)v) — f(p(@ + h))]

h—0
L0

1
< k- lim —|p(z + h+ M) — p(z + h) — ADy(x)v)| = 0.
S

The generalized gradient of f at x, denoted 0f(z), is defined as

of(x) = {w € E* : (w,v) < f°(x,v) Yv € E}.
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It is well known that the generalized gradient 9f(z) is a nonempty
convex and w*-compact subset of E* such that, for each w € 9f(z),
lwl]| < k. If f,9 : U — R are two locally Lipschitzian functionals,
then 0(f +g)(z) C 0f(z) +0g(x) and d(\f)(x) = A\Of(z) for all A € R
(cf. [6] and [5]). Moreover, we have

(2) [Do(2)) 1" (0f (p(2))) = O(f o p) ().
Indeed, by (1),

O(fop) ={w e B": (w,v) < (f 0 p)’(x,v) Vv € E}
Z{wEE*=<w,v>§fo(()D())VUEE}
“lot) < fO(p(),v") Vo' € E}
Z{[(Dsa(w)) ] < ) < fOp(2),0") Yo' € E}

= [(De(@))~']"(0f (¢(x))).

Let us now return to the case where f : M — R is a locally
Lipschitzian function on a Finsler G-manifold modelled on E. Suppose
that z € M and that (U, ¢) is a chart at z. We define

Of () = (T"¢) () (O(f 0 ©) (p())),

where T*p : T*U — T* M|y denotes the co-tangential map for ¢. By
(2), this definition doesn’t depend on the choice of local coordinates
(U, ). Let us recall that, for each g € G, there is a diffeomorphism
g : M — M defined by g(z) = g-2, « € M. The G-action
on T*M is defined as follows: if (z,w) € T*M, ie, w € T M,
then g - (z,w) = (g9z,w’), where w' = (Ty)g9 ')*w. Suppose that
f: M — R is a G-invariant functional, i.e., f(gz) = f(x) for every
g € G,z € M. Then, by (2),

g-0f(z) = (T*g~")(8f (x)) = (B(f 0 g)~")(gz) = 8f (9),
(3) g-0f(z) = 0f(gz).

This means that the generalized gradient 0f : M — T*M of the
invariant functional f is also invariant.
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The function A(z) = min{||w|| : w € Of(x)} is lower semi-continuous
(cf. [5]) and if f is invariant, then A is also invariant. A point x € M
is called a critical point of f if A(z) = 0, and, since there is always a
wp € Of (zg) such that ||wg|| = A(zp), this is equivalent to 0 € df(z).
The set of all critical points of f is denoted by K. We put

K.=KUf )
fe={zeM: f(z) <c},

where ¢ € R.

DEFINITION . A locally Lipschitzian function f : M — R satisfies
the Palais-Smale ((P.S.) for abbreviation) condition if any sequence
{z,} C M such that

(i) {f(zn)} is bounded;
(ii) A(zn) — 0 as n — oo,
possesses a convergent subsequence.
The following equivariant version of the Deformation Lemma can be

easily obtained by using standard constructions and the “averaging”
techniques (cf. [5, 11, 1]).

LEMMA 1. Let M be a complete Finsler G-manifold modelled on
a reflexive Banach space E and f : M — R a G-invariant, locally
Lipschitzian, functional satisfying the (P.S.) condition. Suppose that
ceR,e€>0 and U is an equivariant neighborhood of K.. Then there
ezxist € € (0,€) and n € C([0,1] x M, M) such that

(1°) n(0, z) = z for every x € M,

(2°) n(t,z) =z for all ¢t € [0,1], whenever f(z) € [c — €, ¢+ €;

(3°) n(t,-) is a G-homeomorphism of M onto M for each t € [0,1]
such that n(t,-)(M®) = M¥ for every subgroup H of G, where M =
{reM:z=hxVheH}

(4°) f(n(t,z)) < f(z) for allz € M and t € [0,1].
(50) n(17 fc+€\U) - fc—e-
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Suppose now that G is a compact Lie group and M is a G-manifold
of class C2. Let = be a symmetric point of M, i.e., z € M. There
is a natural linear representation of G on T, M given by g — Dg(z).
The action G is called linearizable at x if there is a diffeomorphism ¢
of an open set U of M, containing x and G-invariant, onto an open
equivariant set ¢(U) in T, M and a mapping z to the origin such that
the map

<pogo<p_1:<p(U)—>TzM

is the restriction to ¢(U) of the linear map Dg(z); i.e., ¢ linearizes the
action of G about z (cf. [18]]). Let us remark that, if (U, ) is a chart
at = such that U is equivariant and ¢(z) = 0, where ¢ : U — E and
E 2 T, M, by identifying E with T, M, we can define

o(y) =/G(Dg(y)-¢)(g*1y) dg, geU,

where dg is a normalized Haar measure on G. The map ¢ linearizes
the action of G about x. This implies that any action of a compact Lie
group G by diffeomorphisms on a Banach manifold M is linearizable
at symmetric points. Since E¢ is a closed linear subspace of E and ¢
maps U N MY onto ¢(U) NEY, M€ is a submanifold.

The following Principle of Symmetric Criticality is valid for G-
invariant locally Lipschitzian functional (see [18]):

Let x € M® and f : M — R be a locally Lipschitzian G-invariant
functional. Then x is a critical point of f if and only if x is a critical
point of f¢ := flye : MY — R.

Indeed, since the action of G is linearizable at z, it is sufficient to show
the Principle of Symmetric Criticality (P.S.C. for abbreviation) for a
special case where f : U — R, U C E, is a locally Lipschitzian G-
invariant function, = 0 and E is a linear representation of G. Let
A : E — E be the averaging operator over GG, defined by

Av = 7 ﬁ:/g-vdg, v € E.
G
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A is a continuous projection on E¢. Since the function f°(0,-) is a
continuous convex function,

f%A@sLﬂ@yw@=wameg
=/ﬂ@mzﬂmw
G

Let us remark that (f¢)°(0,v) < f°(0,v) for v € E¢ and A*E* =
(E*)¢ = (E%)*. Thus
0f%(0) = {w € (E")% : (w,v) < (f9)°(0,v) YveE}
C {w € (ENY : (w,v) < f°(0,0) Vv e EC}
={w € A*E* : (w,v) = (w, Av) < £°(0, Av)
< f°(0,v) Vv € E}
C A*0f(0).

Therefore, if 0 € 0f%(0), then 0 € A*9f(0), and, since A*(9f(0)) C
0f(0), this implies that 0 € 0f(0) and the (P.S.C.) is satisfied.

3. Multiplicity result for nondifferentiable functionals. The
following lemma was proved in [14].

LEMMA 2. Let G be a finite group acting freely on a metric space A.
Assume that S is a G-invariant subset of A, of dimension n, which is
also an n-dimensional cohomological sphere over Z or Z,, where p is a
prime number dividing |G|. Then

cat (A/G) > n+1,

where cat denotes the Lusternik-Schnirelman category.

Let G be a finite group and X a G-space. By &(X) we denote
a complete list of representatives of all conjugacy classes of isotropy
subgroups H = G, for some ¢ € X\ X%, where X¢ = {s € X : gz =
z Vg € G}. The set £(X) is ordered by the following relation (cf. [4]):

Hy < Hy <= Jyecg "Hiy D Ho,
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where Hy, Hy € £(X). By p(X) we denote the set of all minimal
elements H in £(X) such that the Weyl group W(H) = N(H)/H is
nontrivial, and, by uo(X), we denote the set of those minimal elements
H in ¢(X) for which W(H) = {e}.

We consider a complete Finsler G-manifold M of class C2. In what
follows we put p := p(M), o := po(M). Suppose that S C M\ M is a
G-invariant subset G-homeomorphic to a sphere S(V') of an orthogonal
finite-dimensional representation V' of G. We put

vo(S, M) = > dim V7 + [uo(S) N ol

Hep
G G
v(S,M)= > |—H||dimVH + %'
Hep Hepo(S)Nuo

Now we can state our Main Result.

THEOREM 3. Let G be a finite group, M a complete Finsler G-
manifold of class C?, modelled on a reflexive Banach space, and f :
M — R a G-invariant locally Lipschitzian, bounded below, functional
satisfying the (P.S.) condition. Suppose that

(i) there is a G-invariant subset S C M\MS such that S is G-
homeomorphic to a sphere S(V) of a finite dimensional orthogonal
representation V of G;

(ii) there is a number r € R such that

f(s) <r < f(p)

for all s € S and p € MC.

Then f has at least vo(S, M) distinct critical orbits in f., i.e., f has
at least v(S, M) critical points in f,.

PROOF. We put A = {z € M : f(xz) < r} and consider the function
f=aof:A— R, where a(t) =t — 1/(t — r). Let us remark that
f is locally Lipschitzian, bounded below, satisfies the (P.S.) condition
and has exactly the same critical points as the restriction f|4. Suppose
that H € g and VH # {0}. Then W(H) = N(H)/H # {e} acts freely
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on AH = ¢. Let €® denote the class of closed W (H)-sets contained in
A" We define

v :={Y € ! : cat (Y/W(H), A”/W(H)) > j}

for j=1,...,dim V%,

Since S# ¢ Af is a cohomological sphere of dimension dim V¥ —
1, by Lemma 2, cat(A¥/W(H)) > dimV*, all classes v;, j =
,dim VH =: ng are nonempty and v; D 72 D -+ D Yn,. We
put
¢j = inf sup fH(z), 1<j<ng.
Yevjzey
Using the Deformation Lemma, Lemma 1, one can show in the standard
way that all numbers c;, 1 < j < ng, are critical values of fH and that
fH has at least cat (A® /W (H)) > dim V¥ distinct critical orbits in the
set A1), Let A1) = G-A" = U eqgAH. Since A /N(H) = A1) /G,
this means that f has at least dim V¥ distinct critical orbits in the set
A - Since AH) and AH2) are disjoint for Hy, Ho € p, we have at
least > p -, dim VH distinct critical orbits of f.

If we suppose that H € pg N po(S), i.e., S # ¢ and W(H) = {e},
then we can state only the existence of at least one critical point of
fH in AM; thus, f has at least one critical orbit in A(). This shows
that the function f , and, consequently, f, has at least vo(S, M) distinct
critical orbits. O
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