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THE EXISTENCE OF AN EQUILIBRIUM
FOR PERMANENT SYSTEMS

V. HUTSON

ABSTRACT. The criterion of permanence for biological
systems requires that there exist a compact attractor for the
interior of the positive cone X lying in int X. It is shown here
that for several models permanence implies the existence of
an equilibrium point in int X corresponding to a stationary
coexistence state.

1. Introduction. The criterion of permanence for biological systems
is a condition ensuring the long-term survival of all species. Sufficient
conditions for permanence have been given for a wide variety of models,
see, for example, [3, 4, 5, 7, 8, 10, 11, 12, 13]. To illustrate the
question to be tackled here, consider a model based on a system of
autonomous ordinary differential equations

(1) z; = z; fi (), i=1,...,n,

on the positive cone R, where z = (x1,...,7,) and conditions
ensuring the global existence and uniqueness of solutions in forward
time are imposed. The system (1) is said to be permanent if there
exist m, M € (0,00) such that, given any « € int R}, there is a t, such
that

m < z;(t) < M, 1=1,...,n,t > t,.

From a biological point of view, it is reasonable to expect that if
permanence holds, there will be a stationary coexistence state in
int R}. If such a state does exist, a natural necessary condition for
permanence follows. An analogous question may be asked for the
system of difference equations

(2) z; =z fi(z), i=1,...,n,

where z} denotes the value of x; at the next generation. As has been
noted, for example, in [8] and [10], the question for both these systems
has an affirmative answer. The methods of proof have often been
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based on rather deep results concerning the existence of fixed points of
abstract dynamical systems. Here it is shown that a very simple proof
may be supplied. In addition, analogous results are established for
systems of reaction-diffusion equations and of autonomous differential-
delay equations, where the phase spaces are not locally compact. The
proofs are based on a direct appeal to the asymptotic fixed point
theorems of Schauder and Horn and are extremely straightforward.

A few preliminary remarks may help to clarify the broad strategy
for those readers unfamiliar with this general area. Consider the
continuous map A : R} — R generated by (2), and suppose there
is a compact set M C int R} which is invariant in forward time and
which is reached by all orbits with initial values in int R?}. If M is
convex, a straight application of the Brouwer fixed point theorem yields
a fixed point in M. However, in the present context, it is difficult to
construct an M that is both convex and forward invariant, although
either condition on its own is easily fulfilled. Broadly, the use of an
asymptotic fixed point theorem weakens the requirement of forward
invariance and provides a way of avoiding this difficulty.

In the next section the dynamical system background is briefly
outlined, and the fixed point theorems stated. In §3 applications are
given to situations where the flow immediately smooths orbits, while in
84 it is shown that it is enough if orbits are only “eventually” smoothed.
In §5 the analogous question for set-valued maps is raised.

2. Dynamical systems. Let (X,d) be a metric space. So that
discrete and continuous dynamical systems may be treated in one
framework, D will denote either the nonnegative integers Z or the
nonnegative reals R, as appropriate. With the terminology of [2],
consider the semi-dynamical system (X,D,,7), and let y*(z) denote
the semi-orbit through z:

vt (z) ={y:y = n(x,t) for some t € D }.

For a subset U C X, v+ (U) is defined by taking unions. U is said to
be forward invariant if v*(U) C U and absorbing for V if it is forward
invariant and v (z) U # @ for all z € V. z is an equilibrium point if
m(z,t) =z (t > 0). A semi-orbit v*(z) = v, say, is said to be periodic
with period T if 7(y,T) =y for all y € 7.

The proof of the first of the following two standard results may be
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obtained by a minor modification of the proof of Lemma 2.1 of [11]
and is omitted. The second is given in [2, p. 81].

LEMMA 1. Let Y be a subspace of X, and let U, My be subsets of Y
such that y+(U), v"(Mo) C Y. Assume that My is open in'Y, and
that U, My are compact. Then, with M = v+ (M), the following hold.

(i) If v (x) N My # @ for all x € My, M is compact and forward
tnvariant.

(ii) If, in addition, y*(x) N My # @ for all x € U, there exists T
such that, given any x € U, w(x,t) € M for allt > T.

LEMMA 2. Suppose that M C X is compact and forward invariant.
Assume that there is a sequence {T},} C Ry, with lim, o, T, =0, and
a sequence {yn} of periodic orbits with periods Ty, respectively, in M.
Then M contains an equilibrium point.

The two asymptotic fixed point theorems to be used are as follows.
For a proof of the first see [14, p. 725]. The second is a weak version
of a theorem of Horn [9] which is sufficient for the present purpose. B
denotes a Banach space. An operator A : U C B — B is said to be
completely continuous if it is continuous and maps bounded sets into
relatively compact sets.

THEOREM 3. (Schauder). Let U C B be nonempty bounded, open
and convezr, and suppose that A : B — B is completely continuous.
Assume that, for some fized prime p > 2, AU C U for k = p, p+ 1.
Then A has a fixed point in U.

THEOREM 4. (Horn). Let Uy C Uy C Uz C B be convez with Uy and
Uy compact, and Uy open in Uy. Let A : U — B be continuous, and
assume that A*U, C U, for k € ZT. Suppose also that there exists an
integer m > 0 such that A¥U, C Uy for k > m. Then A has a fized
point in Uy.
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3. Applications of the Schauder Theorem. It will first be shown
how the existence of an interior equilibrium may be established for the
system of differential equations (1) and difference equations (2). For a
discussion of permanence in these cases, see, for example, [8, 11] and
[5, 7, 10] respectively. The situation for systems of reaction-diffusion
equations is then considered.

THEOREM 5. Suppose that permanence holds for the system of
difference equations (2) or the system of differential equations (1).
Then, in each case, respectively, there exists an equilibrium point in
int R .

PROOF. Consider first the difference equation case, and let A denote
the associated operator. Let My be the n-dimensional cube

{z:m<z; <Mfori=1,... ,n}.

By Lemma 1(i), M = (M) is compact and contained in int R. It
is also absorbing for int R"}. Clearly M may be enclosed in an open
cube U, say, with U C int R}. By Lemma 1(ii), there is a ko € Z7
such that A¥U c M for k > ky. The result follows from Theorem 3 on
choosing any prime p > k.

For the differential equation case (1), choose any ¢ > 0 and define A
by setting Az = m(x,t). A very similar argument yields a fixed point
of A (which gives, of course, a periodic orbit of period ¢). As this holds
for every t > 0, the result follows from Lemma 2. O

The key feature of the above proof is that m(x,t) is completely
continuous for each ¢ > 0. If this condition holds, the proof will extend
readily to situations in which the phase space is not locally compact.
It is well known, see [6], for example, that this condition holds for a
wide range of systems of reaction-diffusion equations on an appropriate
Banach space. Hence, if permanence can be proved, the existence of a
(stationary) equilibrium state will follow. This is a trivial observation if
the equations themselves are spatially independent, as it follows directly
from the ordinary differential equation result above, but is much less
obvious if the space variable enters into the equations. In fact, so far as
the author is aware, permanence has only been considered for systems
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of reaction-diffusion equations in the spatially independent case, see
[13]. We shall not, therefore, further pursue this point here but shall
turn to a case where the above condition on 7 is not satisfied for all
t>0.

4. Applications of Horn’s Theorem to differential-delay
systems. In [3] permanence has been established for a class of
differential-delay systems which occur in applications, and it will be
shown that, analogously, an interior equilibrium point exists. However,
it appears that the method of the previous section is not applicable.
To illustrate the difficulty, consider, for example, the system

(0 = i) i+ [ " k(s — Dfi(a(s)) ds|

—T

for i = 1,...,n, where 7 is a positive finite number. Let B be the
Banach space C([—7,0],R") with the sup norm || - ||, and take the
phase space X to be the positive cone of B with the usual ordering.
It is clear that, under reasonable conditions on the k; and f;, orbits
lying in a ball in X will, after time 7, lie in a ball in C*([—7,0],R%).
It follows that the associated flow 7 (-, t) is compact for ¢ > 7, but not
necessarily for all ¢ > 0. To get around this problem, Horn’s asymptotic
fixed point theorem will be used.

Let S be the subset of X consisting of those « with z;(0) = 0 for some
i, where x; is the i-th component of z. Let B(r) be the intersection
of the open ball, with center the origin and radius r, with X, and let
Lip (L) be the set of functions in X satisfying a Lipschitz condition
with constant L.

Some boundedness conditions on solutions are clearly needed. In
view of the above discussion, the following represent, then, a typical
set of conditions on a system of differential-delay equations for which
permanence holds.

(i) Ultimate uniform boundedness with bound b. There exists b such
that, given a > 0, there is a t, such that w(z,t) € B(b) if z € B(a)
and t > t,.

(ii) Uniform boundedness. Given 3 > 0, there exists C'(3) such that
m(z,t) € B(C(B)) if x € B(B) and t > 0.
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(iii) Permanence. There exists m > 0 such that, for any = € int X,
there is a t, such that [r(z,t)];(0) > m for ¢ > ¢, and all 4, where this
denotes the value of the i-th component at 0.

(iv) Given a > 0, there exists L(a) such that if z € B(a + 1) N
Lip (L(«)), then 7(z,t) € Lip (L(a)) for ¢t > 0.

THEOREM 6. Under conditions (i)—(iv), the delay system has an
equilibrium state consisting of a constant solution in int R} .

PROOF. By (ii) there exists ¢ such that if |lul| < b+ 1, then
|w(z,8)|| < e (¢ >0). In (iv) take & = b+ 1 and put L = L(b+ 1).
Define My, Us C X as follows:

Us ={z:||z|| < ¢, z € Lip(L)},
My ={z:|jz|| <b+1,2;(0) >m/2 for all i} N Us.

Clearly U, is compact and convex, M is open in U, and M, (its
closure in Uz) is compact. By (i), if z € My, 7(z,t) € Uz (¢t > 0),
and by (i), (iii) and (iv), there is a t, such that w(z,t,) € My. By
Lemma 1, v (M) is compact and does not intersect S. Thus, there
is an my € (0, m) such that if € My, then [r(z,¢)];(0) > m(¢t > 0).
Put

Up ={z: ||z|]| <b, 2;(0) >my for all i} N Uy,

Up =A{z:||z|| <b+1, z;(0) > my/2 for all i} N Us.

U is open in U, and its closure Uy in Us is compact. Thus, from
Lemma 1, there is a T} such that if z € Uy, then 7(z,t) € M, for some
t < Tj. It follows from the definition of m; that [7(z,t)];(0) > m1/2
for t > Ty. By (i) there is a T, such that if z € Uy, ||7(z,t)]| < b+ 1
for t > Ty. Therefore, w(z,t) € Uy for t > T :=T) + Ts.

Take now any fixed t > 0 and put A = 7(-,¢). Clearly, A*U; C U,
for all k and, for kt > T, A*U; C Uy. From Theorem 4, A has a fixed

point in Uy. Since t is arbitrary, the assertion of the theorem follows
from Lemma 2. O

5. Differential inclusions. In view of the difficulty of specifying
the model precisely in biological applications, it is natural to inquire
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whether the permanence question can be tackled for a system of
differential inclusions [1],

i‘iEFi(m), 1=1,...,n,

where the F; are set valued maps. A preliminary discussion of this
problem has been given in [12], using a set valued dynamical system,
and conditions established for permanence. In outline, the technique
is to define 7 as a map of X x R into the set of nonempty subsets of
X. The usual semigroup property is required of 7, and it is assumed
that 7 is upper semicontinuous and compact valued. The system is
said to be permanent if there exists m, M € (0,00) such that, given
x € int R7}, there is a t, such that 7(z,t) C M where My is the cube
{z:m<z;<Mfori=1,...,n}

It seems likely that, by analogy with the cases treated previously,
permanence will imply the existence of an equilibrium in int R"}, that
is, a point = such that « € m(x,t) for ¢ > 0. Such a result would follow
if a theorem for set valued maps analogous to the Asymptotic Schauder
Fixed Point Theorem 3 existed. However, it is unknown to the author
whether or not this is the case, and the question of the existence of an
equilibrium state appears still open.

Acknowledgment. The author is grateful to Ted Burton and Klaus
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