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ASYMPTOTIC CONDITIONS FOR THE SOLVABILITY
OF A FOURTH ORDER BOUNDARY VALUE PROBLEM
WITH PERIODIC BOUNDARY CONDITIONS

CHAITAN P. GUPTA

ABSTRACT. This paper concerns the existence of solutions
of the fourth order periodic boundary value problem

diu
 dat

u(0) — u(27) = u'(0) — u'(2m)
=u"(0) —u"(27) = u""(0) — "' (27) = 0,

under some nonuniform resonance and nonresonance condi-
tions on the asymptotic behavior of u~!g(z,u) for |u| — oo.

+ f(u(@)u'(z) + g(z,u(z)) = e(z), € [0,27),

1. Introduction. Fourth order boundary value problems arise in
the study of the equilibrium of an elastic beam under an external load
(e.g., see [1, 2, 5, 6, 16]), where the existence, uniqueness and iterative
methods to construct the solutions have been studied extensively.
The author studied in [7] the following fourth order boundary value
problems with periodic boundary conditions:

d*u ,

w+f(u)u +g(x,u) :e(m)7 T e [0,2’/T],
u(0) — u(27) = u'(0) — u'(27) = "’ (0) — u" (27)

=u"(0) —u"(27) =0

and
d*u ,
I +au' + g(z,u) =e(z), z€]0,2n],
u(0) — u(27) = u'(0) — u/(2m) = " (0) — u” (27)
_ uIII(O) - u///(2ﬂ_) =0,
(1.2)
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948 C. P. GUPTA

where f: R — R is continuous, ¢ :[0,27] x R — R satisfies
Caratheodory’s conditions, e € L'[0,27] and o € R. The purpose
of this paper is to study the analogue of (1.2) when a is replaced by
f(u), viz. the boundary value problem
d*u ,
_@+f(u)u +g(m,u):e(m), (S [0727T]7
u(0) — u(2r) = ¥/ (0) — v/ (27) = u"(0) — u”"(27)
— ull/(o) _ u///(2ﬂ_) — 0
(1.3)

under more general conditions on the asymptotic behavior of u=g(x,u)
relative to the two first eigenvalues 0 and 1 of the linear problem
*% + Au =0,
u(0) — u(2r) = v/(0) — v/ (27) = u"(0) — u”’(27)
=4""(0) —u""(27) = 0.
(1.4)

Instead of assuming, as in [7], that limsupu~'g(z,u) < 8 < 1,8 € R,
uniformly for a.e. z € [0,27], |u| — 00, we assume in this paper that
there exists a function I' : [0,27] — R with I' = T’y 4+ I'y 4+ ', where
Lo(z) < 1for a.e. z € [0, 2], with strict inequality on a subset of [0, 27]
of positive measure, I'; € L[0,27], T, € L*®[0,27] with ;|72 and
|IToo| L sufficiently small such that
(1.5) limsup u™tg(z,u) < I'(x)

|u|—o00
uniformly for a.e. z € [0, 27]. Accordingly, the expression lim SUP|y| o0
u~1g(x,u) can cross any number of eigenvalues n* of the linear problem
(1.4) as far as those crossing take place in subsets of [0, 2] of sufficiently
small measure.

The methods and results of this paper are motivated by the paper of
Gupta-Mawhin [8] (see also [12, 13]) for the second order boundary
value problem with periodic boundary conditions:

d*u , _ 5
(1.6) @""f(u)u +g(z,u) = e(z), = €]l0,2n].
u(0) — u(27) = u/(0) — u/(2w) = 0.
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We present in §2 some lemmas giving a priori inequalities that are
needed to apply degree-theoretic arguments to obtain existence of
solutions for the problem (1.3). In §3, nonresonance conditions for
the existence of solutions of (1.3) are studied and in §4 we study (1.3)
when it is at resonance. We study in §5 the boundary value problem
(1.2) when g satisfies asymptotic conditions (1.5) and obtain a theorem
which partially extends the theorem of §4. This requires a rather
different lemma, similar to the second order case [8], which makes use
of an inequality of E. Schmidt [15] for periodic absolutely-continuous
functions. The result of §5 is an improvement over the result of §4
when I'g =T', = 0 and f = «; but still is not as sharp as Theorem 2.4
of [7] when applied to the case of a constant I'. But then Theorem 3
of §5 allows u~'g(z,u) to cross infinitely many eigenvalues of (1.4).

We note that, in addition to using the classical spaces C]0,27],
C*[0,27], L*[0,27] and L>°[0,27] of continuous, k-times continuously
differentiable, measurable real-valued functions, with k-th powers of
the absolute values Lebesgue integrable or measurable functions that
are essentially bounded on [0,2n], we shall use the Sobolev-spaces
HF[0,27], k = 2,3, or 4, defined by
H*0,27] = {u: [0,27] - R | u\9  absolutely continuous on [0, 2],

j=0,1,....k—1, u® e L?0,2x]},

with the inner product defined by

k

(u, ) e :Z%/o Wu(j)(m)v(j)(w) dx

j=1

+ <% /027r u(z) dw) <% /:W v(x) dw)

and the corresponding norm by | - |5+. We also define, for the sake of
convenience, the norm in L*[0, 27] by

g = (% / ’ |u<w>kdw)

We also use the Sobolev-space W*'[0,27] defined by W*1[0,2n] =

1
k
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{u :[0,27] = R/u,u,u”,u"" absolutely continuous on [0,27]} with
norm
4 2 )
ufppon = Z/ w0 (1)) dt.
i=0"0

2. A priori inequalities. For u € L'[0,27], let us write

1 27

(2.1) u= w(z)dz, u(z)=u(z) -7,

2 Jo

so that [ @(x) dz = 0. Let H2[0,27] = {u € H2[0,27][u = 0}.

LEMMA 1. Let T' € L'[0,27] be such that, for a.e. z € [0, 27],
(2.2) [(z) <1,

with the strict inequality holding on a subset of [0,27] of positive
measure. Then there exists a § = 6(I') > 0 such that, for all @ €
H?[0,27] with @(0) — a(27) = @/(0) — @' (27) = 0,

1

(2.3) Br (@) = %/0 w[(a"(x))2 —T(z)@?(x)] dz > 6|i|%-e.

Proor. Using (2.2) and Wirtinger’s inequality [3], we see that, for
all @ € H2[0, 27 with 4(0) — @(27) = @' (0) — @ (27) = 0,

(2.4) Br(i) > 5- / (@(2))? - (@) de > 0,
and, moreover,
(2.5) Br(@) =0

if and only if

(2.6) u(z) = Asin(z + 0),
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for some A, 0 € R. But then, by (2.5), (2.6), we get

0 = Br(@) = 2i/0 "1l = T(2)]d2(z) da

T
A2 27

=9 /. [1 —T(z)]sin®(z + 0) dz,

so that by our assumption (2.2) on I" we have A = 0 and hence @ = 0.

Let us next assume that the conchgsion of the lemma is false. Then
there exists a sequence {iy,}, i, € H?[0,2x] for every n = 1,2,3,...
such that

Br(a,) -0 as n— oo,

(2.7) |tn|gz =1, forevery n=1,2,....

It now follows from (2.7) and the compact imbedding H?[0,27] C—
C[0, 27 that there exists a @ € H2[0, 27 such that

i, — @ weakly in H?[0,27],
(2.8) iy, — @ in  CY0,27).

Now (2.8) implies that @(0) — @(27) = @'(0) — @/(2r) = 0 and
|@| g2 < liminf, o |Gn|g2. Hence we get that
(2.9) 0 < Br(@) < liminf B (@) = 0.

It now follows, from (2.9) and the first part of this proof, that @ = 0.
Also (2.7)—(2.9) imply that

2m 27

T rw)ie) de = i/o "l (@)]? de,

2 Jo 2T

so that @, — @ in H?[0,27] and |@|g> = 1. We have thus arrived at a
contradiction.

Hence the lemma is true. O
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LEMMA 2. Let' = I'g+I'1+ s where Lo, € L*>[0,27],I'1 € L0, 27]
and Ty € L'[0,27] is such that Ty(z) < 1 for a.e. x € [0,2n] with
strict inequality holding on a subset of [0,2n] of positive measure. Let
8(To) > 0 be as given by Lemma 1. Then, for every @& € H?[0,2x] with
(0) — a(2m) = @ (0) — @ (27) = 0,

2
~ i ~
(2.10) Br(a) > [6(T) — ?|F1|L1 — |Too| oo ]| 32-

ProoF. We have

Br(@) =5 [ (" (@)? - To(a)iP(@)] do

L (@) (e) do — /0 "I (@) (z) da.

_% 0 2

Using, now, the fact that H2[0,27] C C*[0,27] and the well-known
inequalities (see, e.g., [14])

filze < |@]z2 < lilme, iz < —=|@]z2 < =il
2 2 2, o S —= 2 S —= 2
L? > L? > H L \/g L \/g H
for @ € H?[0,2n] with @(0) — @(27) = @ (0) — @ (27) = 0, as well as
Lemma 1, we get that
Br(a) > 8(To)|a@l3: — |1l |7 — [Too|poo |72

2
s -
> [5(F0) - ?‘Fl‘Ll - |F00‘L°°]|u|%{2' o

REMARK 1. The best value for §(0) is easily seen to be 1/2,
so that Br, (@) > (1 — Zy[p)|al%, for all @ € H2[0,2r] with
@(0) — @(2m) = @' (0) — @ (27) = 0.

LEMMA 3. Let v € L*0,27],I' = Ty + 'y + s be as in Lemma 2,
d(To) be given by Lemma 1. Then, for all measurable functions p(z)
on [0,2m] such that ¥ < p,p(z) < T'(z) a.e. on [0,27], all continuous
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functions f : R — R and all w € W40, 27] with u(0) — u(27) =
u'(0) — v/ (27) = u”(0) — " (27) = v (0) — u"'(27) = 0, yields

l 2w

(2.11) o | B a(@)][~a®) () + f(u(@)d' (z) + p(2)u(z)] de
2.11 0

2
L T .
>75- w + [(5(F0) — ?|F1|L1 - |Foo|L°°] |“|?{2

PROOF. For u € W40, 2] with
u(0) —u(2m) = u'(0) —u'(27) = w"(0) — " (2m) = v (0) — " (27) = 0,
we have, on integrating by parts and using Lemma 2, that

1 27

o/, [@ — a(2)][~u" () + f(u(2)d (@) + p(z)u(z)] do

2 0

3. Asymptotic conditions for nonresonance. Let f : R =+ R
be continuous and let g : [0,27] x R — R be a function satisfying
Caratheodory’s conditions, viz.:

(i) for each v € R, the function z € [0,27] — g(z,u) € R is
measurable on [0, 27];

(ii) for a.e. z € [0,2x], the function u € R — g(z,u) € R is
continuous on R; and

(iii) for each r > 0, there exists a function a,.(x) € L'[0, 27| such that
lg(z,u)| < a,(x) for a.e. z € [0,27] and all u € R with |u| < 7.

THEOREM 1. Let v € L'0,27] with ¥ > 0 be given. Also let
' =Ty +T;+ T with Ty € LY0,27],To € L*®[0,2n],T¢ measurable
on [0,27],To(z) < 1 with strict inequality holding on a subset of [0, 2]
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of positive measure, and %Z\Fl\Ll + |Toolre < 8(To), where 6(Ty) is
given by Lemma 1. Assume that the inequalities

(3.1) v(z) < llu‘n inf u tg(z,u) < limsupu 'g(z,u) < I'(z),
hold uniformly for a.e. x € [0, 27].

Then, for every given e(z) € L*[0,2x], the boundary value problem
(3.2) '
—ul™) (@) + f(u(z))u' (z) + g(x, u(z)) = e(z), @ € [0,2n],
u(0) — u(27) = v/(0) — v(27) = " (0) — u"(27) =« (0) — «""(27) =0

has at least one solution.

PROOF. Let n = 1/2min{¥, §(To)—7n2/3|T1|p1 —|Too|r= } > 0. Then,
by (3.1), we can find an r > 0 such that, for a.e. € [0,27] and every
u € R with |u| > r,

(33) ¥(@) —n < ug(z,u) <T(2) + 0.

Next, define ¥ : [0,27] x R — R by

utg(z,u), if ul >,
. rig(z,r), ifo<u<r,
V(@ u) = ) .
—r~tg(z,—r), if —r<u<0,
I'(z), if u=0.

Note that 4(z, u)u satisfies Caratheodory’s conditions and, from (3.3),

(3.4) V(@) —n <A(z,u) <T(z) +0,

for a.e. z € [0,27] and all w € R. Now, define h : [0,27] x R — R by
Wz, u) = g(z,u) - 5(z, u)u,

for z € [0, 27],u € R. We then see that

(3-5) |h(z,u)| < Sup l9(z, u) = ¥(2, w)u| < alz),
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for z € [0,27],u € R, where a(z) € L'[0,27] depends on ,[" and ..

Now, the equation in (3.2) is equivalent to the equation
—u™) (2) + f(u(@))u' (z) + 52, u(@))u(z) + bz, u(z)) = e(z),

to which we shall apply coincidence degree theory [4, 9] in a manner
similar to the one used in Theorem 1 of [12]. Let X = C*[0,2x],Z =
L'0,27],dom L = {u € W*1[0,27} | u(0) — u(27) = «/(0) — u/(27) =
u”(0) —u"(2w) = w"'(0) — u'’(27) = 0}, and

;domLC X = Z, u— —ul®),
X =27, u— f(
X —=Z, u—=3(
X = Z, u—h(,u(
X = Z, u—=3,0u() =T)u(-).

S R WS

It is easy to check that F, G, H and A are well-defined and L-compact
on bounded subsets of X and that L is a linear Fredholm mapping
of index zero (see Lemma 2.1 of [7]). We consider the homotopy
® :dom L x [0,1] — Z defined by

®(u,\) = Lu+ AFu+ (1 — \)Au+ A\Gu + AHu,

for u € dom L, \ € [0,1]. Now, in order to apply Theorem IV.5 of [9]
(see also [10, 11]), it suffices to show that the set of possible solutions
of the family of equations
(3.6)

—ul™ (2) + Af (u(@))u'(2) + [(1 = AT () + X (2, u(@))]u(z)

+ Ah(z,u(z)) — Ae(z) =0,
u(0) — u(27) = ¥/ (0) — o/ (27) — u”(0) — ' (27) = u""(0) — u""(27)

is a priori bounded in C'[0,27] independently of A € [0,1]. If u is
a solution of (3.6), then multiplying (3.6) by @ — @, integrating over
[0, 27] and using (3.4), (3.5) together with Lemma 3 with T', replaced



956 C. P. GUPTA

by I's + 1 and « by v — 7, obtains
: ﬂ[ﬂ — a(@)[{—u™ (2) + Af (u(@))u' (@) + [(1 = NI ()

:% ;

+ M (z, u(z))]u(z) + Ar(z, u(z)) — Ae(z)} dx

v

2
iy ~
(¥ — n)a® + [6(I'o) — §|111|L1 — Toolpe — n]lil%e

= (lafzr +[elpr)|w — @[Le~
1 _ 1 w2 -
57+ 5 [8(00) — T |1 — [Pl — Blul

> nfulfy — Blulze.

v

Hence |u|gz < (/n which implies that |u|cipp1) < C, where C is a
constant independent of A € [0,1], in view of the compact imbedding
H2[0,27] € C1[0, 27].

This completes the proof of the Theorem. O

4. Asymptotic conditions at resonance. Let f : R — R
be continuous and g : [0,27] x R — R be a function satisfying
Caratheodory’s conditions.

THEOREM 2. Let T' € L0, 27 be such that

(4.1) lim sup 9(z,v) < I'(z),

Ju|— o0 u
uniformly a.e. in x € [0,2n] and T' = Ty + T'; 4+ Iy, where Ty, €
L>[0,27],T'; € L'0,27] and Ty € L'[0,27] are such that To(x) < 1
for a.e. x € [0,2x], with strict inequality holding on a subset of [0,
of positive measure and |Too|r~ + (72/3)|T1|r < 6(To), where §
is given by Lemma 1.

Suppose, further, that there exist real numbers a,A,r and R with
a<Aandr <0< R such that

(4.2) g(z,u) > A
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for a.e. © € [0,27] and all u > R, and
(43) g(zu) < a

for a.e. z €[0,27] and all u < r.

Then the periodic boundary value problem

_% + fu(@)d (@) + g(z, u(@)) = e(z), @< [0,2n),
u(0) — u(2m) = u/(0) — o/ (27) = u"(0) — " (27)
= UHI(O) - u'"(271-) —0

(4.4)
has at least one solution for each given e € L[0, 2] with
(4.5) a<e<A.
PROOF. Define g; : [0,27] x R — R by g1(z,u) = g(z,u) — (1/2)(a+
4)

and e; € L'0,27] by ei(z) = e(z) — (1/2)(a + A), so that, for a.e.
z € [0,27], and using (4.2), (4.3), (4.5),

1
(4.6) g1(z,u) > E(A— a) >0, if w>R,
1
(4.7) g1(z,u) < E(a —A)<0, if u<r,
1 _ 1
(4.8) i(a—A) se < §(A_ a).

Now, the equation in (4.4) is clearly equivalent to

d*u

(4.9) .

+ flu(@))u'(z) + g1 (z, u(z)) = ex(z).
Moreover, we have

limsupu™ gy (z,u) < T'(z),

Ju|—o0
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uniformly a.e. in z € [0,27] and, for |u| > max(R,—r) and a.e.
z € [0,27],u g1 (z,u) >0, so that I'(z) > 0 for a.e. = € [0,27].

Let, now, = 3[6(Fo) — (7%/3)|T1|z1 — [Poolres] > 0. Then there
exists an 71 > 0 such that, for a.e. € [0,27] and all v € R, |u| > rq,
we have

(4.10) 0<u'gi(z,u) <T(z)+n.

Proceeding as in the proof of Theorem 1 (of §3) we can write the
equation (4.9) in the equivalent form

_d'u
dzt

where 0 < J(z,u) < I(z) + n, |h(z,u)| < a(z), for a.e. z € [0,27],

all € R and some a € L'[0,27]. Once again, degree arguments will

ensure the existence of a solution for (4.4) if the set of all possible

solutions of the family of equations

(4.12)
d*u
dz?

(4.11) + f(u()v'(z) + (2, u(z))u(z) + bz, u(z)) = e1(z),

+ A f (@)’ (@) + [(1 = ) (T(z) +n) + M(, u(z))]u(z)
+ A(z,u(z)) = Xer(z), A €]0,1],

u(0) —u(27) = «'(0) —u'(27) = w”(0) — ' (27) = w"'(0) — "' (27) = 0,
is, a priori, bounded in C'[0,27] independently of A € [0,1]. If, now,
u(z) is a possible solution of (4.12) for some X € [0, 1], then integrating
the equation in (4.12) over [0, 27] after multiplying it by u — @, we get,
on using Lemma 3 with v = 0 and ', replaced by ', + 7,

1 [ d*u

0 [@ - ﬂ(ﬂﬂ)]{ = oz T A (u@)u'(z) + [(1 = A)(T(z) +n)

:% .

+ M (z, u(z))]u(z) + Mhr(z, u(z)) — )\el(x)} dx

w2 . _ .
> [500) — TP or — [Pl = nllafl — (oo + lex o)/ — e
> n|alhe — B(Ja] + |l u2),
for some constant 3, independent of A € [0, 1]. Hence,

(4.13) @l < (B/n)([@ + |alg2)-
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Next, we get, on integrating the equation in (4.12) over [0, 27],
(4.14)

(1)) / "(0(@) 4 nu(e) do o) / (01 (@ (@) — ex(2)] de = 0.

If, now, u(z) > R for all z € [0,2x] then (4.6), (4.8) imply that

(1-X)(T+n)R < 0, contradicting T'+7 > n > 0. Similarly, u(z) < r for
all € [0, 27] leads to a contradiction. So there must exist a 7 € [0, 27|
such that

r <u(r) < R.

It is then easy to see from u(z) = u(r) + [ v/(s) ds that
(4.15) [a] < max(R,—7) + 27|4| 2.
(4.13) and (4.15) now imply that
(@f2gs < (3/n)ilz + (8/n) - max(R, —r),
so that there exists a constant p, independent of A € [0, 1] such that
(4.16) |t/ g2 < p.

Finally (4.15) and (4.16) imply that there is a constant C, independent
of A € [0,1] such that
|u|H2 < Ca
which implies that |u|c: < Cf, for some constant Cy, independent of
A€ [0,1].
This completes the proof of Theorem 2. O

REMARK 2. If we take f(u) = a,a € R and I'(z) = 8 < 1 (i.e,
I'y = 8,I'1 =T'sx = 0) in Theorem 2 above, we get Theorem 2.4 of [7]
as a corollary to Theorem 2.

5. An inequality for a linear fourth order operator with
periodic boundary conditions. We obtain a partial extension of
Theorem 2 of §4 when f is a constant function and I'y =I'., = 0. We
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need the following lemma which gives an inequality for a linear fourth
order operator with periodic boundary conditions.

LEMMA 4. Let a € R,e € L0,27],T € L'[0,27] with T > 0. Then
every possible solution u(x) of the problem

d*u
dat
u(0) — u(2r) = ¥/ (0) — v/ (27) = u"(0) — u”’(27)

_ uIII(O) . um(27r) -0,

+ od(2) + p(x)u(e) = e(x), = €[0,2n],

(5.1)

with p € L'[0, 27] such that

(5.2) p<T, 0<p(),
for a.e. x € [0,27], satisfies the inequality
(5.3)
w2\ | d*u 2 d*u =
(1—11—‘)‘@—0’(/ I S 2|€‘L1 @—au’ L1+F|’U,‘L°°|€|L1 +3|6|%1

PROOF. Let p € L'[0,27] be as above and u(z) be a solution of
(5.1). Then, on multiplying the equation in (5.1) by wu(z)/(27) and
integrating over [0, 27|, we get

(5.4)

1 27 1 27

=5 ; e(z)u(z) dz.

27
(" (2))? + o / p(a)u? () de

o 0 2m

Since, now, p < I, we have, by using Schwarz’s inequality,
(5.5)

(% / 7 p(@yutz) dm>2 < (% / 7 (@) d:c> (% / T o dw)
< f(% / 7 pan(e) dx>,



ASYMPTOTIC CONDITIONS 961
and hence, using the equation in (5.1),

(5.6) (%/0 i e(x)+37ﬁf_au' dm> SF<%/O " (@) (x) dx).

We next apply an inequality of E. Schmidt [15] (see also [8]) to ' —ai
to get

]_ 27 1 2T a2 27
— [u"" — o] dz = o / (u")? dx + o a? dx
0 0
21 [ ’
< — | — dr | .
4 27r 0

Now, we get from (5.4), (5.6) and (5.7) that

2

— a1 [ d*u 1 [ a? [
T _ ! d " 2d / ~2d
<—2ﬂ/0 e(z) + T —au w) +—27r/0 (") de + 5~ | wda

d*u

!
— —au
dxt

2
1 [ w2 (1 [ |d%
<= 2qe+ T = [ |2Y - aw|d
S p(z)u®dz + 1 (27r/0 gpi T ov|de
I 1 [ 72| d*u 12
=5 ; (u") dm—l—% | e(w)u(w)dm—i—f‘@—au .
Hence,
72 | d*u /2 =1 d*u /2
~ s e T e + g e,
1 2T 1 2T 2 2T
< = (u")? dz — —/ (u")? da — a_/ a? dx
1 2m
+ o /. e(z)u(z) dz

< el - Ju|pe,
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in view of Wirtinger’s inequality |u”|rz < |u'"|g2. Finally, then

72\ |d*u ,
(1 T) s o

2

Ll

2 w2 d*u
Lt 4 ldz*
4

+du
e+ — —au
dzt

‘d4u 'y
=|-——au' +e—e
dz?

d*u ,
e+ — —au

<
- dz?t

2
+2|€‘L1
Ll

n2_du ,
4 ldz?

9 2
+ |6‘L1 -

Lt

S 2‘€|L1

d*u ,
— —au
dz*

L+ Tlels - ulz +3lefha,

hence the lemma. O

THEOREM 3. Let « € R be given and g : [0,27r] x R — R be a
function satisfying Caratheodory’s conditions. Assume that there exists
a T € L'[0,27] such that

limsup utg(z,u) < T'(x)

|u|—o00
uniformly a.e. on [0,2n] and that T < 4/72. Suppose, further, that
there exist real numbers a, A,r, R with a < A andr < 0 < R such that,
for a.e. x € [0,27],g(z,u) > A when u > R and g(z,u) < a when
u < r. Then the periodic boundary value problem

d*u

g au' + g(z,u(z)) = e(z), =z €]0,2n],
u(0) — u(27) = u'(0) — o' (2m) = " (0) — u" (27)
— u/’/(o) o u///(2ﬂ_) — 0
(5.8)

has at least one solution for each given e € L'[0,2x] with a <& < A.

PrROOF. We first define g; and e; as in the proof of Theorem 2 (§4)
so that the equation in (5.8) can be written as

d*u

(5.9) T dt

+au' + g1(z,u(z)) = e1(x),
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with ¢;(z,u) > 0 when v > R and gi(z,u) < 0 when u < r for
ae. z € [0,2n] and limsupy, ., u 'g1(z,u) < T(z) uniformly for

a.e. ¢ € [0,27]. Consequently, for a.e. z € [0,27], I'(z) > 0. Let
n = (1/2)[4/m* —T] > 0 so that T +n < 4/72, and let 7; > 0 be such
that

(5.10) 0<u'gi(z,u) <T(z)+n

for a.e. € [0,27],|u| > r1. Proceeding as in the proof of Theorem 1
(83) we can write (5.9) in the form

4

%+ o + 7, u(x)u(z) + h(z, u(z) = e (2),

11 -
(5.11) dzt

where 0 < J(z,u) < I'(z) + 7, |h(z,uw)| < B(z) for a.e. € [0,27] and
all w € R and some 3 € L[0,27]. The same degree arguments will
imply the existence of a solution for (5.8) if the set of possible solutions
of the family of equations

o () + (1= N (L) + 1) + A(2, u())Ju(z)

(5.12) dat
= —Ah(z,u(x)) + Aex(z),
u(0) —u(27) = ' (0) —u/(27) = " (0) — ' (27) = w"'(0) — "' (27) = 0,

is, a priori, bounded in C[0,27] independently of A € [0,1]. Let u(z)
be a solution of (5.12) for some A € [0,1]. Since, now,

0<(1=XA)((z)+n)+M(z,u(z) <T(x)+n
for a.e. z € [0,27]. With T + 7 < 4/72, and since
lex = h(u())ler < leafpr + (Bl

it follows from Lemma 4 that

(5.13) )

2 d*u
oo S 2exlzr +1Blea)| 55 = au’

+ (@ +n)(lexler +1B]L1)ul L=
+3(lexfzr +1B]L1)*

Lt
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Also, we see as in the proof of Theorem 2 (§4) that there exists a
7 € [0, 2] such that

(5.14) r<u(r) <R.

Next, we use Lemma 2.1 of [7] to deduce the existence of constants
0 = 61() > 0,62 = d2(a) > 0 such that

- d*a - d*u
(5.15) | < 61 i at| =6 = au’ o
d*a d*u
I ~r 1
(5-16) |U |L°° < do p i at'| = d2 v au I

for every u € C®[0, 2] with u/” absolutely continuous and satisfying the

periodic boundary conditions in (5.12). Using, next, (5.15) in (5.13),
we get

T2 = d*u 2
1- T AR
5.17 — d*u
BIN < (leals + 18122 + 61 (F + )] o — o]

+ (@ +n)(lerlpr + Blea) [al + 3(lex| e +18]22)*

Also, it follows from (5.14), (5.16) that

< max(—r, R) + 2m|u| =

ju(z)] =

u(T) + /Tz u'(s) ds

4

d
< max(—r,R) + 2%62‘d—; — au/

Ll
so that

_ d*u r
(5.18) |z| < max(—r, R) + 271'52‘@ —au

28

Finally, it follows from (5.15), (5.17), (5.18) that there exists a constant
p, independent of A € [0,1], such that

ulpe < p.
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This completes the proof of Theorem 3. O

REMARK 3. In the case when 'y =I',, = 0 and f = « in Theorem 2,
we see that Theorem 3 improves the condition on I' from T < 3/(27?)
into T < 4/7%, (Note that §(0) = 1/2 in Lemma 1). In this sense,
Theorem 3 is an extension of Theorem 2. However, if I' is a constant,

then Theorem 3 is not as sharp as Theorem 2.
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