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EVOLUTIONARILY STABLE STRATEGIES
DEPENDING ON POPULATION DENSITY

R. CRESSMAN

ABSTRACT. The concept of evolutionarily stable strate-
gies is extended to include density dependence. Dynamical
stability is shown to follow for two-strategy games and for
symmetric payoff matrices. It is conjectured that stability
also results for general multi-strategy games.

1. The dynamical model. The theory of evolutionarily stable
strategies (ESS) has been used primarily to predict long-term out-
comes of selection models where an individual’s fitness depends on
the frequency of strategy-types in the population but not on the to-
tal population size (density). The purpose of this paper is to show that
suitably-modified ESS concepts remain relevant for stability of more
general dynamical models that include both frequency and density de-
pendence.

Suppose each individual in the population uses one of the pure
strategies S1,...,S,. Let IN; be the number of S;-users at time ¢ and
N = XN, be the density. Then

S:[sla"' 75n]7

where s; = N;/N is a probability vector whose component s; is the
frequency of S;-users in the population. We refer to S as the mean
strategy of the population and to (S, N) as the state of the population
at time t.

Assume that the fitness F;(S, N) of an S;-individual depends only
on the state (S, N), and, furthermore, that this fitness is linear in the
components of S. (This linearity can also be obtained by linearizing
the dynamics (1.2) about a point.) Then

(1.1) Fi(S,N) =Y Air(N)s,
k=1

where we call the n X n matrix A(N) the density-dependent payoff
matrix with entry A;x(N) thought of as the gain (or loss if A is
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negative) in fitness of an S;-user in a contest against an Sg-user.
F;(S,N) is then the gain in fitness of an S;-user in a random contest.

The continuous dynamical model results from the assumption that an
individual produces offspring using the same strategy at a rate equal
to its fitness. That is, N; = N; F;(S, N) or, by (1.1),

where e; is the unit coordinate vector with 1 in the i*® component and
e;A(N)S is the scalar formed by taking the matrix product with S
thought of as a column vector.

An elementary calculus exercise yields the equivalent dynamical sys-
tem

(13) N = NSA(N)S
’ Sl = si(ei — S)A(N)S

In case A(N) is independent of N, the frequency dynamics $; of (1.3)
is the standard density-independent ESS model studied by Taylor and
Jonker (1978) among many others [3]. There it is shown that an
ESS S* is a locally asymptotically stable equilibrium of the frequency
dynamics. But the density dynamics N of (1.3) would then follow an
exponential curve asymptotically with growth rate S*AS*, and so it is
not meaningful to ask for equilibria of (1.3).

What we are interested in for the rest of this paper is the system (3.1)
where there is bona fide dependence of A(N) on N. In particular, we
are interested in stability of equilibria of this system.

2. Definition of density dependent ESS. Suppose (S*, N*) is
an equilibrium of (1.3). Let A(N*) = A*. From (1.2) we see that A*S*
must have the i*" component zero for every s; # 0. Thus, S*A*S* =0
as can be seen directly from the density dynamics of (1.3). Consider the
density isocline through (S*, N*). This is actually a surface N = 9(S)
of dimension n — 1. In Figure 1 it is represented as a solid curve since
the mean strategy for a two-strategy model is one-dimensional and can
be specified by the first component of S between 0 and 1. The dashed
frequency isocline S = o (V) is generically one-dimensional with points
satisfying e; A(N)o(N) = e; A(N)o(N) for all nonzero s; and s;.
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FIGURE 1. Density (solid) and frequency (dashed) isoclines through
an equilibrium (S*, N*) in the two-strategy model.

DEFINITION . (S*, N*) is a DDESS if
(i) SA*S* < §*A*S* for all S;
(if) S*A(Y(S))S > SA(¢(S))S for all S sufficiently close (but not
equal) to S* for which equality holds in (i).
(iii) o(N)A(N)o(N) is a decreasing function of N near N*.

The first two conditions are called the frequency conditions while
the third is the density condition. If A(N) does not depend on N
(i.e., A(N) = A*), the frequency conditions are identical to the ESS
conditions [3]. In our situation, the right-hand side of the inequalities
in (i) and (ii) are both zero. For the two-strategy case, the above
definition is the same as that used in [2]. The following theorem is a
special case of a result proved in the same paper.

THEOREM . A DDESS is locally asymptotically stable under the
dynamics (1.3) for the two-strategy model.
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The converse of the above theorem is also true if we ignore the
possibility the nonlinear system (1.3) has a linearized eigenvalue with
zero real part. Thus, for two-strategy models, the biologically intuitive
conditions of a DDESS are equivalent to stability. Practical methods to
check these conditions and the connection with two-species population
dynamics are elaborated on in [2].

3. Multi-strategy density dependent ESS. Suppose (S*, N*)
is a multi-strategy (i.e., n > 2) DDESS and that A* is a symmetric
payoff matrix. The density condition becomes that the derivative of
o(N)A(N)o(N) with respect to N is negative at N*. But o(N*) = S*,
along with A*S* and S*A* both being zero, implies this derivative is
S*A'S* where A’ is the n X n matrix of derivatives of A(NN) evaluated
at N*. Thus, ¥(S) < N* for all S sufficiently close (but not equal)
to S*, and this, in turn, implies the second frequency condition is
S*A*S > SA*S.

To summarize, when A* is symmetric, (S*, N*) is a DDESS if and
only if S*A’S* < 0 and S* is a density independent ESS for A*. But
these are the exact conditions in [1] that are equivalent to stability.
That is,

THEOREM . Assume A* is symmetric. (S*, N*) is a DDESS for the
multi-strategy model if and only if it is a locally asymptotically stable
equilibrium of the dynamics (1.3).

Again, the DDESS completely answers the stability problem. Unfor-
tunately, the problem for general nonsymmetric A* remains open. It
is conjectured that the DDESS conditions remain sufficient for stabil-
ity, and, furthermore, if the dynamics (1.3) is altered to include mixed
strategy evolution as in [2], then the conditions are also necessary.
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