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A SURVEY OF G.J. BUTLER’S RESEARCH
IN THE QUALITATIVE THEORY OF
ORDINARY DIFFERENTIAL EQUATIONS

L. H. ERBE

1. Introduction. In this paper we shall survey some of the main
results obtained by our late colleague and friend, Professor Geoffrey
James Butler. The outline is as follows. We shall review his work on
periodic solutions for nonlinear differential equations (§2), oscillation
and nonoscillation for second order linear and nonlinear equations (§3),
comparison theorems and oscillation for higher order linear equations
and systems (§4). In §5, we discuss some miscellaneous contributions
in chaotic behavior of mappings and fixed point theorems and packing
and covering problems.

2. Periodic solutions of second order nonlinear equations.
Consider the second order nonlinear differential equations

(2.1) 2" + f(x)h(z"?) + g(z) = up(t)
and
(2:2) 2" + f(z)h(z) + g(z) = 0,

where f, g, h and p are continuous with p periodic of period w and p is
a parameter. Extending earlier results of Heidel [A10] and Utz [A20],
Butler in [9] gave necessary and sufficient conditions for the existence
of infinitely many periodic solutions. Furthermore, he also obtained
sufficient conditions for the existence of periodic solutions of (2.2) with
arbitrarily large periods. These are summarized in

THEOREM 2.1. [9]. Let h be locally Lipschitz in a neighborhood of
zero. Then (2.2) has infinitely many periodic solutions if and only if
property (P) below holds:
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There exist a,b, a < b, such that
(P) G(a) = G(b) > G(z), =z € (a,b),

where G(z) = [ g(t) dt.

THEOREM 2.2. [9]. Assume that h is locally Lipschitz in a neighbor-
hood of zero, lim,_,, h(x) = +o00, and f(x) > 0 for all z. Assume fur-
ther that initial value problems for (2.2) are uniquely solvable and that
there exist a, 8,7,8, v < a < <§ such that G(a) = G(B) > G(x)
for z € (a,B) and g(y) = g(0) = 0. Then (2.2) has periodic solutions
with arbitrarily large period.

The results included in the previous two theorems improve previous
results by allowing a more general nonlinear damping term and also
remove the usual sign restriction on the “restoring force” term g(x).
The methods of proof are topological in nature and involve continuous
dependence of solutions on initial data along with some additional
considerations. Omne then obtains, via the results of Bernstein and
Halanay [A2], that the nonautonomous equation (2.1) has a periodic
solution of period w, for |p| sufficiently small.

In another paper Butler and Freedman [10] showed that condition
(P) is a necessary and sufficient condition for the existence (in the
Carathéodory sense) of a periodic solution of the equation

(2.3) " +g(z) =0,

assuming only that g(z) is locally integrable. These results were then
applied to the problem
(2.4) a" +g(z) + ph(z) =0

) z(0)=A4, 2'(0)=0

(with the assumption that g,h are continuous and (2.4) is locally
uniquely solvable). The region of the (u, A)-plane (1 > 0) was char-
acterized for which problem (2.4) admits nontrivial periodic solutions.
This region A, termed “admissible,” turns out to be an open set whose
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boundary may be quite complicated. These results were further ex-
tended in [20] to the equation

(2.5) 2 + f(uyw) =0,

and we refer to [20] for further details and to a discussion of certain
converse theorems.

In several other papers [17, 27], Butler, in extending work of Ja-
cobowitz [A12], obtained existence results for periodic solutions of the
equation

(2.6) 2"() + F(t,2(t)) = 0,

where f(t, ) is w-periodic in ¢ and f(¢,0) = 0 for all ¢. Jacobowitz had
applied the Poincaré-Birkhoff “twist” theorem to show that (2.6) has
infinitely many (nontrivial) periodic solutions. The form of the “twist”
theorem used was

THEOREM 2.3. [27]. Let A be a bounded topological annular region
of R? which includes its outer boundary Sy but not its inner boundary
So. Let T be a homeomorphism of the closure A of A in R? such that
T(So) = So, T preserves Lebesque measure, and T is a “twist” map
of A. Then T has a fired point in A. (Here, a “twist” map, loosely
speaking, is a map which “twists” Sy and S in opposite directions.)

The result obtained by Jacobowitz may be stated as

THEOREM 2.4. [A12]. Assume that f(t,x) satisfies the following:

(i) f is continuous, periodic in t with period w > 0, and initial value
problems for (2.6) are uniquely solvable;

(ii) zf (¢, z) > 0, for x # 0;

(iii) lim)y|—oo @ = oo uniformly in t;

(iv) f(t,z)/z is bounded on 0 < |z| < 1 uniformly in t.

Then (2.6) has infinitely many periodic solutions.
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Butler in [17, 27] was able to substantially improve this result and
extend it also to sublinear equations. One of these results which he
obtained was

THEOREM 2.5. [27]. Assume hypothesis (i) of Theorem 2.4 holds and,
further, that f satisfies

(i) zf(t,z) > 0 for |z| sufficiently large (independent of t), and
f(t,0)=0.

Assume further that there is a measurable set S of positive measure
such that either

(a)

{limgﬂ_}Oo t2) — oo fortes,

x

f(t,x)/z is bounded for 0 < |z| < 1 uniformly in ¢

or

(b) {limz_}o @ =o0, fortels,
ft,x)/x is bounded for |x| > 1 uniformly in t.

Then (2.6) has infinitely many periodic solutions of period w. Fur-
thermore, for each sufficiently large integer N there exists a periodic
solution of period w with precisely 2N zeros on [0,w).

To establish the proof of the above theorem involves two technical
problems. In the superlinear case ((a) above) there is a problem related
to extendability of solutions of (2.6) to [0,w] (in order to define the first
return maps associated with (2.6) written as a system). In the sublinear
case ((b)) one has the problem of uniqueness of solutions of initial value
problems. Special cases of the above result may be found in [14] where
Butler considered a generalized Emden-Fowler equation of the form

(2.7) " +q(t)|z|*sgnz =0, o> 1.

We refer to [14, 27] for further details of this and additional remarks.

3. Oscillation and nonoscillation for second order equations.
In this section we shall survey some of the most important results
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obtained by Butler in a series of papers relating to the oscillatory and
nonoscillatory behavior of the equation

(3.1) y'() +a®)f(y(t) =0, t=t,

where ¢ and f are continuous and f is monotone increasing with
yf(y) > 0,y # 0. Much of the original impetus for the study of (3.1)
arose from equation (2.7) of the previous section, in particular, for the
case that ¢(¢) > 0. A number of later authors, in extending results due
to Atkinson [A1] for (2.7), relaxed the nonnegativity assumption on
the coefficient function ¢(t). However, then there arises the problem
of extendability of solutions. In particular, it was shown by Burton
and Grimmer in [A3] that, if ¢(¢) takes on negative values and if f
satisfies a certain growth condition, there will always exist solutions of
(3.1) with a bounded maximal interval of existence. It is therefore of
importance to demonstrate the existence of a solution for all t > t3. In
[16], Butler established a general result on continuability of solutions
of (3.1). The following is a simpler version of the more general result.

THEOREM 3.1. [16]. Let f be locally Lipschitz with yf(y) >0, y #0
and lim|y|_, o f(y)/y = co. Let q be continuous with isolated zeros and
piecewise monotone on each bounded interval of [tg,00). Then (3.1)
has infinitely many continuable solutions. Moreover, if q oscillates,
then (3.1) has infinitely many oscillatory solutions.

In two other papers [18, 13] Butler extended some known results for
Hill’s equation to a nonlinear analogue, namely,

(3.2) y"(t) + (mp(t) — k)|y(t)|*sgny(t) =0,

where m, k are constants, & > 0 and p(t) is a nonconstant periodic
function of least period w with zero mean. As a consequence of a more
general result (somewhat complicated to state), the following results
were obtained:

THEOREM 3.2. [13]. Let k < 0,m # 0, and let p be a nonconstant
periodic function with zero mean. Then all solutions of (3.2) oscillate.
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THEOREM 3.3. [13]. Let a > 1,k > 0, and let p be as in Theorem
3.2. Then (3.2) has a nontrivial nonoscillatory solution.

If we denote by N, the set of functions ¢ = mp — k, for which (3.2)
has a nontrivial nonoscillatory solution, and

Ry ={(m,k) € R* :mp — k € N,},

then the following result is obtained [A14].

THEOREM 3.4. Let o > 1,p be a monconstant periodic function with
zero mean. Then R, is the positive k half-plane together with the origin.

Moore in [A14] had shown that R; is closed convex and, except for
the origin, is entirely contained in the positive k half-plane. Thus, for
a > 1,R, D R; and neither of N,, N; contains the other.

In [18] analogous results were obtained for the sublinear case, 0 <
a < 1. These are summarized for both cases below:

THEOREM 3.4. [18]. Let q(t) = mp(t) — k have isolated zeros and be
sufficiently smooth to guarantee continuability (in case o > 1) or local
uniqueness of the zero solutions (if 0 < a < 1) on intervals I on which

q(t) > 0. Then, for all 0 < a # 1:

(i) all solutions of (3.2) oscillate if and only if (m, k) belongs to the
nonpositive k half-plane, excluding the origin;

(ii) all solutions of (3.2) are nonoscillatory if and only if k >
mmaxp(t) and m >0 or k > mminp(t) and m < 0;

(iii) for all other values of m and k (i.e., those for which q oscillates
and fow q < 0), there exist both oscillatory and nonoscillatory solutions.
Further, if a > 1, the nonoscillatory solutions tend asymptotically to
zero as t — o0, and, if 0 < a < 1, the nonoscillatory solutions are
unbounded.

With the above-cited results, the oscillatory /nonoscillatory behavior
of solutions of (3.2) was more or less completely characterized. Ad-
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ditional properties of the solutions of (3.2) were also investigated—we
refer to [13, 18] for further details.

In [26] Butler made important extensions of the well-known Wintner-
Hartman oscillation tests for linear oscillation to the more general
equation (3.1). We recall that, for the linear equation

(L) y' +q(t)y=0, te[T,00),

three of the more important tests for oscillation are

(Ay) /T°° q(s)ds = o0 (Fite [A8], Wintner [A25])

t—oo t

/Tt /T q(T)drds = +oo (Winter [A25])

t— o0

1 t s
—00 < liminf 7 / / g(m)drds (Hartman [A9])
T Jr

1 t s
< lim sup —/ / q(1)drds < .
tJrJr

t—o0

These tests were further refined and extended by Coles and Willett
[A4, A24], who considered weighted averages of the integral of ¢ of

the form t
A, (t,T) = J7 #(s) Ef; q(7) dr) ds.
J7w(s)ds

The main result obtained in [26] shows that, for a certain class F
of functions f, both the Wintner condition (Aj) and the Hartman
condition (Ag) are oscillation criteria for (3.1). (Waltman in [A23] had
earlier extended (A;) to (3.1)). This class includes all equations with
fly) = |y|“sgny, « > 0. The extension of more general averaging
techniques to (3.2) is not as complete as in the linear case. However,
refinements were obtained which dealt with the difficult case

(3-3) y"(t) + a()ly(t)|*sgny(t) =0,
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where ¢(t) = t*sint. It was shown that, for a > 1, (3.3) is oscillatory
if and only if vy > —1. For 0 < a < 1, Butler showed that (3.3) is
oscillatory if A > 1 or A = 0. The cases A < 0 and 0 < A < 1 were left
open. However, Butler conjectured that (3.3) is oscillatory if and only
if A\ > —a,0 < a < 1. In a later paper, Kwong and Wong [A13] showed
that (3.3) is oscillatory for A > —a and nonoscillatory if A < —«. The
case A = —a was settled by Onose in [A18], thus verifying completely
Butler’s conjecture.

To return to the more general equation (3.1), it was shown in [11]
that it is possible to obtain necessary and sufficient conditions for
the oscillation of (3.1) based on certain assumptions on the integral
th g(s)ds. The main result obtained in [11] is (We set g4 (t) =
max(g(t),0),g-(t) = max(—g(t),0) in the results below.)

THEOREM 3.6. Let f(y) and q(t) satisfy

(A) f(y) is absolutely continuous on any bounded set with yf(y) > 0
fory # 0, and the essential infimum of f'(y) over any closed set which
excludes zero is positive.

+oo ¢
(B) 41 TZ) < 00.

(C) There is a nontrivial compact interval I in which yf(y) > 0, for
y #0, and f'(y) exists at each point, is nonnegative and bounded.

(D) q(t) is locally integrable and [, q(s)ds = Q(t) ewists (possibly
infinite) with imr_, o ftT Q(s)ds > —oo for all t.

E) [ () Q%(0)do) ds < oo.

Then all extendable solutions of (3.1) oscillate if and only if

/too [Q(s) +/:o Q*(0) da] ds = oco.

It turns out that examples may be given to show that the assumptions
on f and ¢ in Theorem 3.6 may not be relaxed.

A further result on the existence of nonoscillatory solutions without

(A), (B) is
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THEOREM 3.7. [11]. Let f(y) and q(t) satisfy conditions (C), (D)

and (E). Then
/too [Q(s) + /:o Q2(0) da] ds < oo

implies that there is a nontrivial, nonoscillatory solution of (3.1).

Examples of functions ¢(t) for which one can determine the corre-
sponding oscillation properties of (3.1) may be given, as in [11]:

(1) Let g(7) = (ucosvt)/t + (1 + sinvt)/t?, u,v nonzero constants.
Suppose that |p/v| > 1. Then Q(t) oscillates but, since [~ Q(s)ds =
00, all extendable solutions of (3.1) oscillate.

(2) Let q(t) = (ucosvt)/(t(logt)!/?+), where u,v are nonzero and
e > —1/2. It may be shown on the basis of Theorems 3.6 and 3.7 that
all solutions oscillate if ¢ > 0 and that there exists a nonoscillatory
solution if € < 0.

In [22], Butler considered the question of extending certain linear
second order comparison theorems to the pair of equations

(3-4) (Rz")' +pf(x) =

(3.5) (re')" + qf (x) =

The following result includes the well-known Hille-Wintner comparison
theorem [A11, A25] (also considered by Taam [A19]).

THEOREM 38 Let r,R,p,q be continuous on (tg,00) such that
= [ p(s)ds,Q(t) = [~ q(s)ds exists and such that 0 < r(t) <
( ) |P(¢)] § Q( ),t € [to,00). Assume that f satisfies

(a) f is continuously differentiable, x f(x) > 0 for allz # 0, f'(z) > 0
for all © # 0 and either

(b) f' is nondecreasing on [0,00) and is nonincreasing on (—oo,0] or
(¢) liminf|, o f'(2) > 0 and fioo dz) < 0.

Then, if equation (3.4) is oscillatory, so also is (3.5).
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Butler and the present author also considered the extension of oscilla-
tion criteria of Olech-Opial-Wazewski type in [52]. These are based on
the asymptotic density of the set where fg q ds is sufficiently positive.
It was shown in [A17] that the linear equation

(L) y' +a(t)y(t) =0
is oscillatory if

t

lim approx/ q(s) ds = +o0.
t—oo 0

For the nonlinear equation (3.3) (and its generalization (3.2)), one

can obtain a sharp result which generalizes the Olech-Opial-Wazewski

theorem. For simplicity, we state the result only for (3.3). We define

the density function pg(t) of a set S C [0, +00) by

p{S 00,3,

N | =

ps(t) =

where p denotes Lebesgue measure. We then have [52].

THEOREM 3.9. Equation (3.3) is oscillatory if there exists a set
S C [0,400) such that

limsupt | ps(t) <a — 1>2 +
1m su — = o0
t~>oop ps a+1

and

To indicate sharpness, it was further shown that if S is any closed
subset of [0, +00) such that lim;_, o, sup ps(t) < ((a—1)/(a+1))?, a #
1, then there exists a continuous function ¢(t) with

and such that (3.3) has a nonoscillatory solution.
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Additional results and details bearing on the oscillation problem may
be found in the papers cited in this section.

4. Comparison theorems and systems oscillation. Higher
order comparison theorems and oscillation properties of systems of
equations were studied in a number of papers, jointly with the present
author. In [32, 33] Butler and the present author considered the
equations

(4.1) Loy +p(z)y =0
and
(4.2) Loy +q(z)y =0,

where p, ¢ are continuous on an interval I C R and L,, is an n-th order
linear disconjugate differential operator on I (that is, the only solution
of L,y = 0 with n zeros on I counting multiplicities is y = 0). It is
well known that L, can be written in factored form as

Lny = pn(pn-1,---, (pr(poy)")’,--.),

where p; > 0,p; € C"~(I). The quasi-derivatives L;y are defined by
Loy = poy, Liy = pi(L;—1y)’,i = 1,...,n. Elias, in a number of papers
[A5, A6, AT], and Nehari, in [A15, A16], studied the oscillatory
character of L,y + p(z)y = 0 via a careful analysis of the distribution
of zeros of the quasi-derivatives. In [32, 33] comparison theorems
of generalized Hille-Wintner type for (4.1), (4.2) were obtained. If
T ={i1,.--yix}, T ={jir---,Jn_k} are two arbitrary sets of indices
from the set {0,1,...,n =1} with0 <43 <ip < - <ip <n—-1,0<
J1 < j2 < -+ < n—1, one considers boundary conditions of the form

(4.3) Liy(a)=0, €T, Liy(s)=0, jeJ,

where a,s € I. For a € I one defines (with respect to (4.1), cf.
[32]) the i-th (right) extremal point 6;(Z,J ;a) to be the i-th value of
s € IN(a,400) for which (4.1) has a nontrivial solution satisfying the
boundary conditions (4.3). IfZ = {0,1,...,k-1}, J ={0,1,...,n—
k—1} we denote these conjugate-type boundary conditions by (Z ., J ;).
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Similarly, if Z = {0,1,...,k—1}, J ={k,...,n—1}, these focal-type
boundary conditions are denoted by (Z ¢, ¢). Furthermore, we say
that (4.1) is (Z, J )-disconjugate on [ in case 6;(Z, J ; a) does not exist
in (a,00) NI for any a € I. If p is of one sign on I, then a necessary
condition for the existence of 6;(Z,J ;a) is that (—1)""*p(z) < 0.
One also needs to restrict attention to the class A of admissible pairs
of boundary conditions: (Z,J) € A if and only if, for any integer
[,1 <1< n-—1, at least [ terms of the sequence iy,...%k,J1 ..., in_k
are less than [. A partial order may be introduced on the set A and,
it turns out, that one has the following results [32].

LEMMA 4.1.
(i) Let (Z,T )€ A. Then (Z.,T.) < (Z,T).

(ii) Let (Z,TJ) € A withT = {0,1,...,k —1}. Then (Z,J) <
(L5 T 1)-

One may then show that the first conjugate point 6,(Z,J ;a) is a
nonincreasing function with respect to the partial order on A. That is,
if (Z,7) < (Z,J), then 6,(Z,J;a) < 6,(Z,J ;a). On the basis of
these and other considerations, one may then establish some generalized
comparison theorems for (Z,.J )-disconjugacy. As an example one has

THEOREM 4.2. Let (Z,J) € A with T NJ = ¢ and assume
i1 =0, Jjnkr=n—1. If(4.2) is (Z,J)-disconjugate on (a,b) and
(=) *p(z) < 0,(=1)""*q(x) <0 on I and

b |q(t)| dt * Ip(t)| dt
(4.4) /E 0 (t) pn(t) Z/z po(t)pn(t)’

then (4.1) is also (Z,J )-disconjugate on (a,b).

This result extends in another way the linear Hille-Wintner compar-
ison theorems referred to in Theorem 3.8. In the paper [33] the strict
sign assumptions on the coefficients p, g were relaxed by considering a
different approach based on nonlinear integral Riccati systems corre-
sponding to the focal-type boundary conditions. This system technique
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was motivated by a technique introduced by Nehari [A15]. We refer
to [33] for additional details along these lines.

Butler and the present author, in a series of papers [37, 40, 43, 46],
studied the oscillation and comparison theory for second order systems.
There are two natural types of extension of the classical theory for
second order linear equations. The first of these (and the more studied)
is in the context of B*-algebras and uses the notion of positive operators
in that setting. The second type of extension is in the Banach lattice
context and utilizes the positivity induced by the lattice structure. In
[40, 43, 46], oscillation theorems of the first type for the second order
system

(4.5) (ROY'Y + Q)Y =

were obtained which generalized scalar oscillation criteria. Here R, Q,Y
are n x n real continuous matrix functions with R(¢), Q(¢) symmetric
and R(t) positive definite for ¢ € [a, +00). The associated vector system
is

(4.6) (R(t)y)" + Q(t)y =

where y = col (y1,...,yn) is an n-vector. A solution Y (¢) of the matrix
equation is nontrivial if detY (¢) # 0 for at least one ¢t € [a,00). A
solution of (4.5) is prepared if Y*RY' — Y*RY = 0 on [a,0), and
equation (4.5) is said to be oscillatory in case the determinant of one
(and hence every) prepared solution vanishes on [b, +00) for each b > a.
(This is equivalent to oscillation, i.e., the existence of conjugate points
for each b > a, of the vector equation.) The results of [46, 54] involved
extending well-known integral criteria (such as the Fite-Wintner test
referred to in §2) and criteria based on averaging ideas and variational
techniques. If one introduces the (extended real-valued) function L,
defined on the class of n X n continuous real symmetric matrices given
by

L(G) —hmlnf—/ /trQ ) ds dt,

one may then obtain the following results which are analogues of scalar
criteria (We let the real eigenvalues \;(A) of a symmetric matrix be
A(A) 2 Ao(4) = -+ > Au(A).).
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THEOREM 4.3. Assume L(Q) > —oo. Then (4.5) is oscillatory in
case any of the following holds:

(i) im7—, o0 SUP 7 faT A1 (fat Q(s) ds) dt = +o0,
(i) limp_, o approxsup A\; (faT Q(s) ds) = 400,

(iii) lim7 o, approxinf A\; (faT Q(s) ds) = —o0.
THEOREM 4.4. Assume L(Q) = —oco. Then (4.5) is oscillatory if

T
lim approx sup A, (/ Q(s) ds) > —00.

T—oo

The proofs of Theorems 4.4 and 4.5 are based on Riccati techniques.
The following result is most easily proved via variational ideas.

THEOREM 4.5. Suppose that lim;_,.. sup A\ (f; Q(s) ds) = +o00.
Then (4.5) is oscillatory if either

(A) A1(Q(t)) is bounded above on [a,o0)
or

(B) M\n(Q(2)) is bounded below on [a, o0).

This Theorem generalizes a result of Moore [A14] for the scalar case,
and the following result may be considered as an extension of a result
of Olech et al. [A17] for the scalar case.

THEOREM 4.6. Suppose that, for each integer m > a, there exists a
positive number €, and, for each positive integer k, there exists a unit
vector o, € R™ such that the set

Smk:{th:w;k </tQ(s)ds>mmek:}

has measure at least €,,. Then (4.5) is oscillatory.
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In [37] some further extensions of the classical Hille-Wintner theorem
were obtained in the Banach lattice context. We cite one result as an
example of what may be obtained. We let B denote a Banach lattice
with order continuous norm and let £ (B) denote the Banach algebra of
bounded linear operators T': B — B. Let B, denote the positive cone
and £ 4 (B) the corresponding positive cone in £ (B), and we consider
the second order operator-valued differential equations

(4.7) Y'+Q1)Y =0
and
(4.8) Y +Q.(t)Y =0,

where Q, Q1 : [a1+00) — L (B) are continuous in the uniform topology.
We then have [37]

THEOREM 4.7. Let B be a Banach lattice with order continuous norm,
suppose the limits

_T11—I>Iéo/Q ds, Pyt —Tlgréo/Ql
exist (in the uniform operator topology of L (B)), and, further,
(i) P(t), Pi(t), P(t)—Pi(t)eL(B), tela,o00).
If there exists a nonoscillatory solution Y (t) of (4.7) such that
(i) Zt) =Y' ()Y Ht) € L4(B), tE€a,+0),
then (4.8) has a nonoscillatory solution on [a,+00).
In particular, Theorem 4.7 applies to I,,L,,1 < p < 00,¢y and any

reflexive Banach lattice. Additional details and results may be found
n [37].

5. Concluding remarks. Although Butler’s original training was
in convexity (packing and covering—see [4, 6]) his interests were very
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wide-ranging. In addition to his contributions in the areas outlined in
the previous sections, he made substantial progress in other areas, as
one may ascertain from his publication list. His work in mathematical
biology is being reviewed separately so we shall briefly mention some
additional results from other areas. In [24] Butler studied the problem
of the convergence of successive approximations in a Banach space and
showed, loosely speaking, that if E denotes a Banach space, I a closed
interval of the real line, and if f : I x E — E is continuous, then
“almost all” initial value problems

(5.1) y(t) = fty®), y(r)=mn,

are uniquely solvable by successive approximations. (That is, f,7,n
are allowed to vary.) This extended a result of Vidossich [A21] to the
infinite dimensional case.

In [21] Butler studied the 1-set contractions and strict set contrac-
tions of a bounded closed convex subset C' of a Banach space X (gener-
alizations of nonexpansive mappings and contractions of C') and showed
that “almost all” 1-set contractions have a fixed point. This extended
a result of Vidossich [A22] for nonexpansive mappings.

In [19], Butler and Pianigiani investigated some properties of periodic
points and chaotic functions in the unit interval. It was shown that
the set of chaotic self-maps of the unit interval contains an open
dense subset of the space of all continuous self-maps of the unit
interval. Additional aspects of chaotic behavior of such maps were
also considered.

In summary, it is hoped that this review of a portion of Butler’s work
will serve to demonstrate his wide-ranging interests and his untiring
commitment to mathematics. His premature death is felt keenly by all
those who knew him.
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