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VECTOR-VALUED LOCAL MINIMIZERS OF
NONCONVEX VARIATIONAL PROBLEMS

PETER STERNBERG

In recent work with R.V. Kohn [7], a new and general method for
obtaining local minimizers of variational problems was established.
This technique uses the notion of I'-convergence of functionals, first
introduced by De Giorgi [1] in the 1960’s, and yields existence of local
minimizers to a ['-convergent sequence of problems, provided, roughly
speaking, that the limit problem possesses a local minimizer which is
isolated. In this paper, I apply the method to establish existence of
vector-valued local minimizers u. : ! — R? of the problem

(1) inf / W (u) + €2|Vu|® dz,
u€HY(Q) Jqo

for certain open, bounded sets 2 C R™ and ¢ sufficiently small. Here

|Vu|? = |Vup|? + |[Vug|?, 99 is taken to be Lipschitz-continuous, and

W is a nonnegative “double-well” potential vanishing at two points a
and b in R2.

In particular, such a minimizer will be a nonconstant solution of the
Euler-Lagrange equation (system):
(2) 26?Au=V,W(u) inQ,

with the “natural” Neumann condition

Opu=0 on 0.

Variational problems of form (1) arise in the so-called gradient theory
of phase transitions [5, 6], as well as in studies of pattern selection [8].
The form of nonconstant local minimizers of (1) was first conjectured
in [8].

A full definition of I'-convergence is given below in (6) and (7), but the
essential idea in this setting is to obtain the first term in an asymptotic
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expansion for the energy of a minimizer, u., of (1). In so doing, one
characterizes any limit of {u.} as being the solution of a new variational
problem—the I-limit of the original sequence of problems given by (1).
One can anticipate the structure of a nonconstant local minimizer of
(1)—it should stay close to a on part of  and close to b on the other
part, with a rapid transition layer bridging these two states. Indeed, the
construction of a test sequence having this structure leads to energies
of order O(e). Hence, we rescale (1) and define

3) Fu(u) { Jo 2W(u) +e|Vul?dz  if u € H(Q),
: 400 otherwise.

At the same time, we define a candidate for the I'-limit

(4)

Fo(u) = {2g(b)PerQ{x cu(z) =a} ifue BV(Q), u(z) € {a,b} ae.,
0 +00 otherwise.

Here BV (Q) denotes the space of functions of bounded variation in €,
and PergA = perimeter of A in @ = surface area of 0A N Q) for 0A
“nice” (see [4]). The function g is defined through

(5) o) = inf /¢ Dl (1) dt

—1)=a
7(1 =u

among curves vy which are Lipschitz-continuous.

The connection between I'-convergence and existence of local mini-
mizers is drawn in Theorem 2.1 of [7]. We restate it here for conve-
nience. Conditions (6) and (7) below constitute a working definition of
I'-convergence (with respect to the topology L(£2)).

Theorem 1. Suppose a sequence of functionals {F.} and a functional
Fy satisfy the following conditions:

(6) if ve — vo in L1(Q) as e — 0, then lim F.(v.) > Fy(vo);

(7) for any vo € LY(2) there is a family {p:}e>0 with p — vy in
LI(Q) and F(pe) — Fo(vo);

(8) any family {v:}cso such that F.(v.) < C < oo for alle > 0 is
compact in L'(Q);
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(9) there ewists an isolated L'-local minimizer uy of Fy; that is,
Fo(uo) < Fo(v) whenever 0 < ||ug — v||p1(q) < 6 for some 6 > 0.

Then there exists an €9 > 0 and a family {u.} for e < ¢ such that
ue is an L'-local minimizer of F., and u. — ug in L*(Q).

To establish the conditions of Theorem 1 for the functionals F, and
F defined by (3) and (4), we take W : R? — R to be a C, nonnegative
function, vanishing only at two points, a and b. Furthermore, assume

2
(10) the matrix %u%(;j) is positive definite at u = a, b;

(11) there exist positive constants ¢y, c2 and m, and a number p > 2
such that
clulP < W(u) < ealul? for |u| > m;
(12) V(r,0) d:efW(u + r(cos,sinf)) = r? + O(r?) for r sufficiently
small and u = a or b, where r and 6 are local polar coordinates.

The function g defined by (5) plays a crucial role in proving (6)—(8).
We summarize its properties in the following lemma, which is proved
later.

Lemma. For every u € R?, there exists a curve 7, : [-1,1] — R?
such that v(—1) = a, y(1) = u and

1
(13) o) = [ VW@
The function g is Lipschitz-continuous and satisfies

(14) [Vg(u)| = /W(u) fora.e. u.

There exists a smooth, increasing function 8 : (—oo0,00) — (=1,1) such
that the curve (1) dZEbe(,B(T)) satisfies

(15) 2(b) = [ T W) + P,

lim,,  ¢(7) = a, lim,;_, ((7) = b, with these limits being attained
at an exponential rate.
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We now prove

Theorem 2. The sequence {F.} T'-converges to Fy; that is, condi-
tions (6) and (7) hold.

Proof of (6): One need only consider vy of the form
a ifzeA
1 = ’
(16) vo(@) {b if 2 € B,

for two disjoint sets A and B with AU B = Q. Otherwise, v — vg in
LY(Q) implies F;(v.) — oo.

Now suppose v. — vy in L}(2), and define h.(z) = g(v.(z)). It
follows from the lemma that
(17) Vhe(@)] < /W (ve(2))|Vve ()]

Furthermore,

LY(Q) 0 xeA
h =
e — g(UO) {g(b) x € B.

Hence, from the Schwartz inequality and the lower-semicontinuity of
the BV -norm under L!-convergence ([4]), we have

lim F (ve) Zli_m2/ \/W(’UE)‘VUE‘d:L‘Zli_m2/ |Vh|dz
Q Q
>2 [ |Vg(vo)l
Q

= 2g(b) Perq{z : vo(z) = a}
= Fo(vo).

Proof of (7): One may assume vy € BV () and again take vy of the
form (16), for otherwise the trivial construction p. = vy for each ¢ will

suffice. Furthermore, we take r%'94 B to be smooth, since one
can always approximate a set of finite perimeter by a sequence of sets
having smooth boundary (4, 9]).

Now define the distance function d : Q@ — R by
d(z) —dist (z,I") ifz € A,
~ | dist (z,T) ifze B,
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where “dist” refers to Euclidean distance. Near I', d will be smooth
and satisfy

(18)  [Vd(z)| =1, lim H' Yz d(z) = s} = H'HT) = PergA,
s—

where H"~! denotes (n — 1)-dimensional Hausdorf measure.
Then define {p.} through

() ifde) < —vE,
pe(@) =4 ¢ (%2) ifd(@) < V2,
g(%) if d(z) > V/z.

The L'-convergence of p. to vp is an immediate consequence of (15).
Using (15), (18) and the co-area formula ([2]), we calculate

fim Felod) :mé {\d(z>\<¢s}W <C <@>> e <@>

“w L[ [ )@t =g

1/ve

= lim W)+ IR Ha : d(z) = er}dr
-1/

Sl

2
dzr

Is|<v/e
Combining this result with (6) yields (7). O

< 2g(b) <m max H" 'z :d(z) = s}> = Fy(vp)-

We now establish the compactness required in Theorem 1.

Proposition. For W satisfying hypotheses (10)—(12), condition (8)
holds.

Proof. Suppose F.(v.) < C for some family {vc}eso. Let ho(z) =
g(ve(x)). Then, as in the proof of (6),

/ |Vhe(z)|dz < C.
Q
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Furthermore, from the growth hypothesis (11), it follows that the v,
are uniformly bounded in LP, while the h. are uniformly bounded in
L'. Hence, we have

hellBV (2) =/ \hglder/ |Vhe| < C.
Q 0

Since bounded sequences in BV are compact in L' ([4]), one can
extract a subsequence h., converging in L' to a limit h, taking the
form

0 z €A,

hol=) {g(b) zeB,

for sets A and B with AU B = Q. The continuity of g and the fact
that g(u) = 0 only for v = a leads to the convergence in measure of
{u.;} (or a subsequence) to a on A. Then the uniform L? bound gives
L' convergence on this set. Switching b for a in the definition of g (5)
and repeating the argument above leads to L'-convergence of {ue;} to
b on a set B’ C B. It then easily follows that, in fact, B = B. O

In order to apply Theorem 1, it remains to establish the existence
of an L'-local minimizer u, of F, (condition (9)). This cannot always
be done, but for certain nonconvex domains 2, such a wu, will exist.
The partition of Q associated with a function u, satisfying (9) has the
property that any modification by a set of small measure inevitably
increases the area of the interface d{u, = a} N d{u, = b}. Roughly
speaking, a class of domains for which such a partition exists includes
those sets € which possess a “neck.” For example, in [7], it is verified
that the two-dimensional region pictured in Figure 1 possesses such an
L'-local minimizer. Hence, for such an €2, one can apply Theorem 1 to
obtain nonconstant local minimmizers of (1) for all € sufficiently small.

We conclude with a proof of the lemma. Since much of the proof
involves only a slight modification of the argument found in Section 2,
part B of [9], we shall only sketch the main ideas.

Proof of (13): One would like to apply a direct method to obtain a
minimizing curve v, for (3), but a lack of compactness causes difficulty.
Instead, first perturb the integrand by § > 0 and find a minimizer v°
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Figure 1. A domain  for which F,, possesses an isolated local minimizer u,.

of the problem

1

[ VIG0) + ) 0] ar g ),
(1)=u

Such a curve will exist since g°(u) corresponds to distance in a
Riemannian metric which is conformal to the Euclidean metric on the
plane—a geodesic which minimizes the distance between two points
will always exist. If one can establish the compactness of the sequence
{#%}, then the desired curve 7, is obtained as a subsequential limit;
that is, it can be shown that

Compactness is achieved through an appeal to the Arzela-Ascoli
Theorem once a uniform bound on the Euclidean arclength of ~? is
established. Controlling the length of v° away from a or b is easy since
there /W (v%) will be bounded away from zero. To bound uniformly
the arclength near a, we parametrize v° by arclength and describe ~°
near a in local polar coordinates as (R°(s),®%(s)). Then introduce
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M°(s) defined through

(o) _ PO 95(5)‘ ‘_i
A(s)=R (S)R‘;(s) < = ds>'

A bound on the arclength of 4° near a will follow from a bound on \?,
since arclength is given by

ds® = dr? + r?de>.

One can derive a pair of differential inequalities satisfied by A\° using
the Euler-Lagrange equation for 4. They take the form

. — o1

(19) M < %Xs + a3 for \° restricted to {s:0 < \(s') <1
a2
for all s' € [0, s]},
(20)
30 —aR’ s ; Sl
> m)\ —ag for X\° restricted to {s: =1 < \°(s') <0
2

for all s’ € [0, 5]},

where a1, a2 and ag are positive constants depending on W, but not J.
It is here that (12) is used. This hypothesis is unessential but greatly
simplifies the analysis. Integrating (19) and (20) yields a uniform bound
on X, and so on the arclength of 4% near a. (A similar argument also
works near b if needed.) Compactness follows.

Proof of (14): See Lemma 11 of [9] for a proof in a similar setting.
Proof of (15): Define 8 as the solution of

W((8))
@B

Then ¢(7) d:ef'yb(B(T)) satisfies |[¢'| = /W((). Since the value of the

integral in (3) is invariant under reparametrization, we find

B = 8(0) =o0.

2900) =2 [ WEOIC @ dr= [~ Wen) +I¢'r)Par
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It follows that ¢ also solves the problem

inf / Wr(e) + 7 (@) dt,

—00)= a
7(00
and hence satisfies the equation 2¢"" = VW((). Differentiating this
equation and using (10), one sees that |¢’'| must decay to zero at an
exponential rate as 7 — £oo. This proves the second half of (15). O

Remarks (1). One could no doubt generalize the lemma to include
W : R™ — R for m > 2 using, for example, spherical coordinates to
prove (13) when m = 3. This would immediately lead to the existence
of local minimizers u® in R™, m > 2, since the proofs of (6)—(9) follow
from the lemma.

(2) After completing this work, the author learned of the recent
work of Fonseca and Tartar [3] who establish I'-convergence without
requiring the existence of a geodesic.
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