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THE ONE-DIMENSIONAL DISPLACEMENT IN
AN ISOTHERMAL VISCOUS COMPRESSIBLE FLUID
WITH A NONMONOTONE EQUATION OF STATE

K. KUTTLER AND D. HICKS

The one-dimensional conservation laws of volume and momentum
[10] may be written as
v Ov ov —-0S
(1.1) —_— =, — =
ot Oz ot Oz
where V is a specific volume, v the velocity and S the stress. In this
paper it will be assumed that § = P + g where P is the pressure and
q is the part of the stress due to viscosity. It is also assumed that the
internal energy is constant. Thus, it seems reasonable that

(1.2) P=P(V), q= —a(V)%, a(V) >0,

where a(V) is a coefficient of viscosity. Define the displacement, U, by

(1.3) U(t,x):/o v(s,z)ds.

Thus U; = v, Uy = v, Uy = v, and

(1.4) Um(t,ac):/o vz(s,x)ds:/o Vi(s,2) ds = V(t,2) — Vi(a).

Substituting this into the second of the equations of (1.1) and allowing
for a body force yields the equation for U,

(1.5.1)  Uult,z) + (P(V(t,2)))s — (a(V(t,2) U (t, ) = g(¢, ),

where V(t,z) = Vo(z) + U,(t,z) and g comes from the body force.
Letting U; (x) = Uy (0, z) (1.3) yields the initial conditions

(1.5.2) U(0,z) =
1.5.3) U:(0,2) = (:v)
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To this, we add boundary conditions of the form
(154) U(ta ]-) = Oa P(V(t7 O)) - Oé(V(t, 0))th(t7 O) = ko(t),

or

PV (t,1)) — a(V(E,1)Un(t, 1) = ku(D),

(1.5.5) P(V(t,0)) — a(V(t,0))Us(t, 0) = ko(t),
where k; is assumed to be a C! function satisfying

(1.6) ki(t) > n > 0.

For a, we have in mind functions of the form a(V) = CV 1, i.e., the
Navier-Stokes viscosity, but the paper is developed for a much more
general class of functions. It can be shown [7] that if the initial specific
volume is Holder continuous with exponent 1/2, and if the body force,
g, is identically zero and the k; are positive constants, then if P is
nonincreasing, there exists a constant, C', which does not depend on
time such that

(1.7) [V (t,z) — V(t,y)| < Clz —y|'/?,

for all ¢t > 0 and V(¢,z) is bounded away from zero and infinity by
constants that are independent of time. This effectively precludes the
development of discontinuities in the specific volume. To avoid this
situation and allow for phase changes in the material which correspond
to discontinuities in the specific volume, we do not assume that P is
monotone and we consider weak solutions to (1.5) in which, U, and the
initial specific volume, Vj, are not required to be continuous.

The purpose of this paper is to present some existence and uniqueness
theorems for global weak solutions to problem (1.5). Such theorems
should form the basis for the study of a partial differential equation
but the theory of well posedness of equations like (1.5), especially when
limy o, (V) = 0 and when the initial data is quite rough is presently
not well developed [10]. The time dependent boundary conditions
(1.5.4) and (1.5.5) create special difficulties and there are very few
papers in the available literature that deal with them. Actually, it
may be more interesting to let k; depend on the velocity as well as ¢.
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This follows naturally from an assumption that whatever produces the
force acting on the ends of the material should have finite power. This
possibly more interesting and more realistic case will be considered
later.

Throughout the paper, Vy will be a measurable function with
(1.8) 0 < ap < Vo(z) < by < o0,

Uy € L?(0,1), and g € L%((0,T) x (0,1)). Throughout the paper C* is
the restriction to [0, 7] of functions in C*(—o00,00) and derivatives are
weak.

The approximate problem. It is an exercise in integration by
parts to verify that an appropriate variational formulation to the
problem (1.5) is

(2.1.1) - /T /1 Us(t, 2)n(t, ) da dt

/ / — b(t, )|t (t, ) da dt
o e

VUt (8, 2) 0, (¢, ) dae dt =
/0 /(; (g9(t,z) — b (t,z))(t, z) dz dt,

(2.1.2) U,U;, Uy, Uy are in L2((0,T) x (0,1)),

t
Um(t,w):/ Uzi(s, x) ds,
0

where b(t,z) = ko(t)(1 — z) + k1(¢t)z and (2.1) holds for all %
Cs°(0,T; E) for E a closed subspace of H'(0,1) containing C§°(0, 1
Here E will be either H'(0,1) to give (1.5.5) or E = {U € H'(0,1) :
U(1) = 0} to obtain (1.5.4). The initial condition is given by

€
).

(2.1.3) Ult,) = vo(t),  Uilt,) = or(t) ae,
(2.1.4) w € C(0,T;E), v eC(0,T;H),
(2.1.5) lim foy () = Urlm + [[oo(#)[|2 = 0,

where H = L%(0,1).
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This section will deal with problem (2.1) under the assumptions

(2.2.1) 0<d<a(V)<M, acontinuous,
2.2) P is bounded and globally Lipschitz.

There exist constants a;,b; with 0 < a; < 1 < b; such that

PV)—n<0 ifV >by,

2.2.3
@23 W) — (ol + alloe) >0 iV < ay,

where 7 is the constant of (1.6). Also,

(2.2.4) Ui € H,g € L*((0,T) x (0,1)).

Theorem 1. If (2.2) holds, there ezxists a unique solution to (2.1).

This theorem is proved in [8]. In fact, it is not necessary to have
k; € C'. Tt suffices to take k; bounded and measurable.

Lemma 1. Define
14
(2.3) W(t,z,V) = — /1 [P(s) — b(t, z)] ds.

Then there exists a constant J independent of t and = such that

(2.4) W(t,z,V) > —J.

Proof. OW/0V = —P(V) + b(t,z). The result follows from (2.2.3)
because OW/OV > 0if V > by and OW/0V < 0if V < qa;.

Corollary 1. Let {P,,} be a collection of functions satisfying (2.2.3)
and let Wy, (t,z,V) be given by (2.3) with P, in place of P. Also
assume P, (V) = P(V) for all V € [a1,b1]. Then Wy, (t,z,V) > —J
where J is independent of m,t, x.
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Lemma 2. Let q,q; both be in L*((0,T) x (0,1)). Then there exists
a measurable set, D, with m(D) = 0 such that for x ¢ D, t — q(t, ) is
equal to a continuous function a.e. t and if q(0,x) is the value of this
continuous function att =0,

(2.5) q(t,z) = q(0,z) + /Ot qi(s,z)ds a.e. t.

It is convenient to describe an abstract formulation of problem (2.1).
To do this, identify H and H', so that EC H=H' C E'. ForU € E
and t € [0,7], let Q(U) and N(t, ) be operators mapping F to E’ given
by

(2.6.1) (QUw,v) = (a(V)wg, vz m,
2 (N(t,U),v) = —(P(V) = b(t,"), va) r,

where V = U, + Vp. Let V = L?(0,T; F) so V' = L*(0,T; E') [4]. For
UeV,let QUU) and N be operators mapping V to V' defined by

(2.7.1) (QUW)(t) = QU(t))W(t),
2.7.2 NW () = N(t, W(t)).

Also, for h € L'(0,T;E'), h' may be defined as an E’ valued
distribution according to the rule

T
(28) W) == [ (o
0
for all ¢ € C§°(0,T). The following theorem is known [8].

Theorem 2. Suppose U is the solution of (2.1) and let v(¢t) = U(t,-).
Then

(2.9.1) v'(t) = Ui(t,") ae.,
(2.9.2) v ey, v,v' €V,
(2.9.3) v + Nv+ Qv = f,



688 K. KUTTLER AND D. HICKS

In fact, Theorem 1 was proved [6,8] by taking a measurable repre-
sentative of the solution of (2.9.3), (2.9.4).

Lemma 3. Let v solve (2.9) and let Lo = ||ko|loo + ||k1]]cos
Ly = [|kglloo + [[K1]lco- Then

(2.10) o' ()5 < CF
where
(2.11)
02 =" (UL + 1112 0.zm) + 2 / W (0,2, Vo(e) do + 27

2 3
0 -

26

+4Lo||VollL1 (0,1

. <2TL
+ min 5

L? +2TL1||V0||L1(0,1))

Proof. Multiply (2.9.3) by v' and take fot of both sides. This yields

(2.12)
t 1 t 1

|v'(t)\§,+2/ / 6|V;(s,x)\2dmds—2/ / by(s,2)V (s, 2) do ds <
0 0 0 0

1 t
242 [ W(0,2,Vo(e) do | flloran + [ 10/(6)Fy do+ Ul
0 0

Now V(s,z) = Vo(x) + [, Ve(r,z) dr a.e. Substituting this into the
third term of (2.12), using Fubini’s theorem, (V (¢, z) = U,(t, z)+Vy(z))
and the definition of b(¢, z), it follows that the sum of the second and
third terms in (2.12) is bounded below by

73 —2T
max <—L§ — 2T L1 | Vol L1 (0,1)) ——

26 5 Lg_4LO|‘/0|L1(0,1)> .



ONE-DIMENSIONAL DISPLACEMENT 689

Gronwall’s inequality yields (2.10) and (2.11).

Corollary 2. For U the solution of (2.1),

(2.13) |Us(t, )3 < C?  ae. t.

From now on, assume
(2.14) ED{U € H'(0,1): U(1) = 0}.
Define
(2.15.1)
alt,) = [ Ue2) dz = B(V(10)

0
t t T
—/ ko(s)ds—l-nt—/ / 9(s,2)dzds,
0 o Jo

where

%
(2.15.2) B(V):/l a(s)ds.

Lemma 4. If U is the solution of (2.1),
(2.16) qi(t,z) =n— P(V(t,z)),

where the derivative is taken in the sense of distributions.

Lemma 5. Let

C2 = 2(C1 +|[kollecT + 0T + |9l 22((0,1) x (0,1))
+ [Uilm + |B(ao)| +18(bo)| + |B(a1)| + |8(b1)])-

Then there exists a set of measure zero, D, such that for x ¢ D

(2.17)

(2.18) 1B(V(tx))| < % for allt €10,T].
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(Here V(t,z) = Vo(x) + Uz(t, z) with U the solution of (2.1).)
Proof. From Lemma 2 there exists a set of measure zero, D, such
that for « ¢ D,
(2.19.1)
q(t,z) = q(0,z) + /t[n — P(V(s,x))]ds a.e.t,
(2.19.2) i
00.0) = [ Vi) ds - B(V(o).

Fix z ¢ D and define
(2.20)  4(t,z) =q(0,2) + /Ot[n — P(V(s,z))]ds, alltel0,T].

It follows from Corollary 2 and (2.15) that for a.e. ,

(2.21.1)
. C
q(t, @) + BV (¢, z))| < C1+|lkollocT + 1T +|lg]] < 72
(2.21.2)
C
(0,2)] < 101+ |8ao)]| + 180)| < 2.
If G(t,x) > C5 for some t, then thanks to (2.21.2), there exists an

interval [a,a + €] such that §(a,z) = Cs but §(t,z) > Cs for all
t € (a,a+€). Thus

t

(2.22) q(t,z) =Cy + / [n—P(V(s,x))]ds.

a

It follows that in a subset of [a, a + €] having positive measure,
(2.23.1) n—P(V(t,x)) >0,

and (2.21.1) holds. This implies that in this subset of [a,a + €],

(2.23.2) B(V(t,x)) < —% < B(a1).
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Hence V(t,x) < ay and so from (2.2.3), n— P(V(¢,x)) < 0, contradict-
ing (2.23.1). It follows that §(¢t,xz) < C, for all t € [0,7]. A similar
argument shows G(¢,z) > —Cs for all t € [0,T]. Since |§(¢,z)| < C; for
all t € [0,7T], (2.21.1) implies

(2.24) IB(V(t,z))| < - e t.

Thanks to (2.1.2), (2.24) holds for all ¢ € [0, 7).

Reviewing (2.17) and (2.11), it is easily seen that |3(V (¢, z))]| is no
larger than
(2.25)
[|kolloo + C3 + min((C4Lo)"/? + CsLo6™'/%, (C6L1)"/* + C7Ly67'/?)

= M(LO)Lh(s) +C3 + ||k0HOOa

where C5 — C7 depend only on T, |Uy|g, Vo, J, g, and .

The exact problem. In this section existence and uniqueness to
problem (2.1) is obtained under the assumptions:

(3.1.1) a(V) >0, «is continuous on (0,00),

« is nonincreasing,

(3.1.3) /01 a(s) ds = oo,

(3.1.4) P is Lipschitz continuous on every finite
interval bounded away from 0

(3.1.5) PV)—n<0 ifV>b,
P(V) — (llkolloo + |lk1]|ec) >0 if V < ay.

For 3 defined in (2.15.2) and C5 — C7 given in (2.25), assume also that
there exists by > max(bg, b) with

(3.2) ||ko||oo + C3 + M (Lo, L1, a(b2)) < B(b2).

Clearly (3.2) holds if ky and k; are constants and lim,_, o, 8(b) = oo.
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For 0 < a < min (ag,a1) and b > max (bg, by) define

Q

(V) iV elab

(3.3.1) (V) =< a(d) ifvV>b
a(a) ifV<a
P(V) if Ve la,b

(3.3.2) Pyp(V) =4 P(b) ifV>b
P(a) itV <a.

Now (3.1.5) and (3.1.6) hold for all P,;. Let 3,5 be defined by (2.15.2)
with agp in place of . Because of (3.1.3) there exists a > 0 such that

(3.4) Bavy (@) < =Cs — M (Lo, L1, a(b2)) — [lKol |-

Let ag be such that (3.4) holds.

Let U be the unique solution to problem (2.1) with « and P replaced
with ay,p, and Py,p,, respectively. Then for V(t,z) = Vo(z) + U, (¢, z),
Lemma 5 implies that (2.25) holds with B,,s, in place of 5. Now (3.4)
and (3.2) imply that az < V(¢,2) < by a.e. Therefore, U is a solution
of problem (2.1). In summary, we have proved the following:

Theorem 3. Let Vy be a measurable function with ag < Vo(z) < by
and let Uy € L*(0,1), g € L*((0,T) x (0,1)), ko and ky are C', and
suppose o and P satisfy (3.1) and (3.2) with 0 < n < min(ko, ky). Let
E be a closed subspace of H*(0,1) satisfying (2.14). Then there exists
a unique solution to problem (2.1) having the property that the specific
volume, Vy(z) + Uy (t, x) is bounded away from 0 and co.

It seems worth noting that (3.1.2) was included mainly for conve-
nience. A simple modification of the above argument would give The-
orem 3 with (3.1.2) replaced with: There exists b > 0 such that « is
nonincreasing on (b,00) and a(b) = inf{a(V) : V € (0,b)}. There are
likely many other generalizations possible, but (3.1.1)—(3.1.3) includes
the Navier-Stokes type viscosity of the form a(V) = CV 1.
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