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PHASE FIELD MODELS AND
SHARP INTERFACE LIMITS:
SOME DIFFERENCES IN SUBTLE SITUATIONS

G. CAGINALP

1. Introduction. We discuss a system of equations which has
been investigated extensively [1-25]. In this article we compare this
approach with various macroscopic formulations obtained as modifica-
tions of Stefan problems and indicate critical situations in which the
two approaches differ. The crux of this approach involves an “order”
parameter, ¢, which is coupled to the temperature, u, but is not simply
dependent on it. Such a function ¢ can be expected to be a minimizer
of the free energy such as

L) FO)= [ da(@(T9P + 5 (8- %)~ 2u0)

if the material occupies a region €2 and is in equilibrium. This is a
consequence of a statistical mechanical analysis of a phase transition
[25]. If the system is not in equilibrium, or in a steady-state, the free
energy will no longer be a minimum, but will satisfy ¢, = —§F /d¢.
The microscopic parameters 7,& can be related to macroscopically
measurable quantities.

Coupled with a heat conservation equation which incorporates the
latent heat of fusion, one then has the system, for any symmetric
double-well potential G(¢) with minima at +1,

1
(1.3) Tér = 20 + %G'(@ +2u
subject to appropriate initial and boundary conditions, e.g.,
(1.4) u(0,2) = up(z), #(0,2) = ¢o(x), z e
(1.5) u(t, z) = ug(x), o(t,x) = do(z), x € Q.
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Further discussion of the physical derivation may be found in [1,8].

The interface in the problem (1.2), (1.3) is not defined by the
temperature directly as in the Stefan model (see Section 3) but consists
of the points

(1.6) L(t) = {z € Q: $(t,z) = 0}.

In fact, the macroscopic condition which relates the temperature,
velocity, curvature and surface tension at the interface can be derived
(see Section II) directly from (1.2), (1.3) since the appropriate physics
has already been incorporated into the free energy (1.1).

The questions of existence, uniqueness and regularity have been
considered [1] for (1.2)—(1.5). Suppose for simplicity that G(¢) = ¢—¢>
and a = 1. Using the standard metric

(17) d(P,Q)E{‘$1—$2|2+|t1—t2|}1/2
where P = (t1,71), Q = (t2,x2) in A = Q x [0, 7] on the Banach space
Co1a(A) with « € (0,1) one has

Theorem (Existence, uniqueness and regularity). Suppose that
c1,l, K, € and T are any set of positive constants subject to

(1.8) a <&/ <K.

If the initial and boundary data (1.4),(1.5) are in Catq, then there
exists a solution (u, ) to (1.2)—(1.5) in Coyo. Furthermore, one has
the bounds

0% ‘ ‘ 0%¢
1.9 N 7P <.
) werml<e o
where ¢ is a constant which depends on 1, K,Q, T, ug,us, ¢pg, ps and cy,
but not on & or T.

The significance of the bounds (1.9) is that, for small £, an interface
of thickness £ does not become appreciably sharper in time.

For the time independent problem several variational analyses have
been implemented. In particular some general results were presented
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in [1, p. 241] based on methods of [3]. Recently, the problem has also
been considered in terms of global minimizers and I' convergence [2].
These ideas have been further pursued in [27].

2. Relation at interface. A natural question which arises for
equations (1.2), (1.3) is the temperature at the interface I'.  The
boundary conditions (1.5) must be chosen so that ¢ makes a transition
and that it does so as an internal layer. Otherwise, I' may be the empty
set (e.g., for Neumann boundary conditions) or it may be within O(¢)
of the external boundary (e.g., if the temperature is too large or too
small). The geometry of 2 now also becomes relevant since the curve
I' will either be a closed curve or it will intersect with the external
boundary, 0€2. The latter case involves a physical understanding of
the interaction between each of the two phases and the container, in
addition to the physics of the interface which has been incorporated
into (1.1). Hence, one way of restricting the problem to one which is
within the bounds of the physical assumptions of the problem is to
consider an annular region. This is also a natural geometry for crystal
growth.

These issues are also naturally separated into the time-independent
(steady state or equilibrium) and the time-dependent problems. A
number of rigorous results have been obtained for the steady-state
situation. The first work of this type ([1, Sections 4-7], see also [4—6]),
involved a rigorous asymptotic expansion to all orders about a fixed
interface, I'. With surface tension, o, calculated from (1.1) as 2/3¢ and
change in entropy between phases as As = 4, the asymptotic expression

(2.1) Asu(z) = —or(z) + O(£2), zel

then follows as a necessary condition with k(z) defined as the sum
of principal curvatures. This confirms a classical result known as the
Gibbs-Thomson condition [22].

Note that in the time-independent case equation (1.2) reduces to
Awu = 0, so that u is determined entirely by the boundary conditions.
Equation (1.3) then becomes

(2.2) 0= 8289 + 5(6— *) + 2u
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subject to boundary conditions ¢ = ¢_ ~ —1 in the interior (solid) and
¢ = ¢+ ~ +1 in the exterior (liquid). The boundary conditions on u
are assumed to be O (§).

In order to establish the sufficiency of this condition one must prove
the existence of layered solutions to (2.2) subject to the boundary
conditions above. We note that constant boundary conditions for u
imply constant u, which must balance the sum of principal curvatures
term. In particular, in two dimensions constant temperature means
constant radius of curvature.

For constant temperatures, then, it is reasonable to look for internal
layers in spherically symmetric annular regions in R™. These questions
were investigated in two papers [18,20] using shooting methods, the
maximum principle and Green’s functions. In particular, it has been
proven that there exists a solution to (2.2) and that any solution must
have a transition layer at the radius, r, for which (2.1) is valid. This
means that, while there is no assertion of uniqueness, the solutions
must nevertheless be in a narrow band of width of order &.

The case of nonspherically symmetric geometries was subsequently
considered [12,13] in two-dimensional space. A preliminary problem
which was resolved is the following. Given a smooth function u(x),
defined in an annular region, does there exist a curve I' such that

(2.3) du(z) = —ok(z)

for all points = on I'? Under suitable conditions on ug, it was shown
that there does indeed exist such a curve. The existence was established
using sub- and super-solutions. Sub- and super-solutions to (2.2) with
internal layers were then constructed and the existence of a function ¢
with the appropriate transition layer (at I' satisfying (2.3)) was proven
[12,13].

3. Connections to sharp interface formulations. The phase
field approach differs most conspicuously from most other approaches
in that (i) the interface is not sharp, and (ii) conditions at the interface
are not prescribed explicitly. At a deeper level of physics, there are
significant differences in that the phase field model incorporates the
microscopic physics in an averaged sense. An important manifestation
of this is the appearance of intrinsic length and time scales such
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as correlation length, barrier or well-depth and relaxation time. In
particular, a~! is a measure of the well-depth in the double-well
potential and is an indication of the barrier which must be crossed
in the transition between phases. The interfacial thickness is of order
v/a€ while the surface tension is of order £/+/a.

Specifically, if G'(¢) = ¢ — ¢* in (1.2), (1.3), then the O(1) solution
to (1.3) is

r

(3.1) ¢o(r) = tanh N3

where r is the (normal) distance from the interface, the interfacial or
surface tension is

(3.2) o= +o(¢a”?)

Sl

2
3Va
and the temperature at the interface is

2 ¢
—gﬁ(ﬁc—i—av)

where « is defined by 7 = a¢?, and v is the normal velocity (toward
the liquid).

Using these relationships, one can obtain the formal result that the
limit of a sharp interface can be attained in different ways depending
on the scaling of £, o and a. The scaling of these as £ approaches
zero involves crucial assumptions about the nature of the molecular
interactions of the material. At the macroscopic level they are then
exhibited in (3.3) which determines the velocity of the interface based
on the curvature and temperature. Thus, with appropriate scaling,
one can understand the microscopic origin of various macroscopic
conditions. Most significantly, with a approaching zero, the interfacial
thickness can be allowed to vanish while the surface tension remains
O(1), leading to one of the (modified) Stefan problems in Figure 1. This
differs from the limit discussed in Section 2, in which the surface tension
and interfacial thickness are both O(). We note that these results
can also be attained in anisotropic situations. In two dimensions,
anisotropy may be incorporated into the model by modifying A¢ into
A¢ + €3¢, with the result [9]

(3.3) u

1%
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Tvo(6)

(3.4) Asu(r,0) = —[o(8) + " (0)]x — e209)

(3.5) €A(0) =€ + (&7 — €%) coso.

+0(&%)

More detailed anisotropy has been considered via higher order equa-
tions [15] and will not be discussed here. We now formulate some sharp
interface problems and consider the similarities and differences between
these and the phase field equations. The classical Stefan problem can
be posed as the problem of finding a function « : [0,7] x £ — R and a
curve I'(t) such that

(3.6) u; = KAu in Qq,Qs
(3.7) lv, = K(Vug —Vug) -7 onTl
(3.8) u=0

here ; is the liquid region defined as the set of points for which u is
positive (analogously € is the solid region with u negative) while T'(¢)
is the set of points for which v = 0. These equations are subject to
appropriate initial (and exterior) boundary conditions for u. Thus, a
key assumption in the classical Stefan model is that the phase (which
we may call ¢g) is simply a function of u, i.e.,

+1, >0
(3:9) ¢S_{—l, u < 0.

In fact, with the definition (3.9), the equations (3.6), (3.7) may be
written in a weak form (Oleinik) as

l

From a physical point of view one of the main problems with the
classical Stefan model is that supercooling (the presence of liquid below
the freezing temperature) and superheating are excluded, contrary to
physical reality. Furthermore, the condition (3.8) is an approximation
which may be unrealistic for many substances, particularly if the
surface tension is large. An idea which has been implemented in
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an effort to remedy this problem is to replace condition (3.8) with
the equilibrium condition (2.3). The model [(3.6), (3.7), (2.3)] then
incorporates surface tension as a stabilizing effect [21] since a large
surface tension and large curvature of the interface are incompatible
unless the temperature is very large and negative.

A further refinement of this model is obtained by considering kinetic
undercooling at the interface so that (3.8) is replaced by

(3.11) Asu(t,z) = —ok(t,z) — crov(t, x), zel.

Thus, the model [(3.6), (3.7), (3.11)] can be expected to describe the
situation somewhat more accurately than the previous modification.
The existence of a velocity term in (3.11) has been known to metallur-
gists for many years [22], although there has been some question about
the power of v.

The phase field approach not only confirms this linear relationship,
but it makes possible the calculation of the constant c¢; based on
microscopic and measurable quantities. This result which was first
presented in [6], has subsequently been derived by a formal asymptotic
analysis [8].

It has been shown [9] that each of the Stefan and modified Stefan
problems [(3.6), (3.7), (3.8)], [(3.6), (3.7), (2.3)] and [(3.6), (3.7),
(3.11)] is a formal limit as & — 0 of the phase field equations [(1.2),
(1.3)] with the other parameters appropriately scaled. This situation is
summarized by Figure 1. Note that in the steady-state case there is no
distinction between equations (2.3) and (3.11). The steady-state results
have been established as rigorous theorems [12]. In the dynamical case,
some conjectures and ideas for possible theorems have been presented
in [7].

4. Absence of strong convergence in some cases. We consider
limiting cases (¢ — 0) with the parameters adjusted so that one expects
a particular Stefan or modified-Stefan problem in the limit. However,
we would like to examine some critical situations, where unlike those
presented in [7], one cannot expect the macroscopic situations to be
similar. As a result of several examples, we would like to attain the
following heuristic understanding:
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(i) In a “noncritical” situation, the macroscopic behavior of [(3.6),
(3.7), (3.11)] (for example) and [(1.2), (1.3)], appropriately scaled, are
very similar and the difference vanishes as £ — 0.

(ii) In some “critical” situations, e.g., unstable equilibrium, there
is a subtlety about the interface which is captured by the averaging
of molecular interactions in the phase field equations which is not
addressed by the macroscopic equations, e.g., [(3.6), (3.7), (3.11)].

In this paper we concentrate on (ii) (see [7] for (i)).

For concreteness, suppose we consider [(3.6), (3.7), (3.11)]. If we are
given a sphere whose curvature is kg and a temperature u such that

(41) Au=0 in Ql,ﬂz

(4.2) lv, =K(Vus —Vur) - =0 onTl
o

(4.3) u=—,_ko on r

then (w,I') will not change with time. Suppose further that uw =
constant, with constant Dirichlet boundary conditions. If the system is
perturbed in either direction, e.g., the temperature is slightly lowered
momentarily, then one has

(44) u < —Aislﬁ'/o = UgQ.

Condition (3.11) asserts that the velocity must become positive in
order to compensate. But a positive velocity means growth of the
sphere and consequently an even smaller curvature. Hence, even the
original temperature is too low and the system continues to freeze until
it is entirely solid. The analogous instability occurs in the opposite
direction, i.e., melting, if the temperature is raised momentarily. Note
that we assume that the heat diffusion is rapid enough compared to the
duration of the perturbation. We consider now some initial conditions
for which the phase field equations cannot be expected to converge
strongly to the sharp interface models. A most dramatic example of
this is the neighborhood of the unstable equilibrium point discussed
above. This is defined precisely as follows for, say, a bounded two-
dimensional region Q.
1. Choose positive constants ug, Ry such that
ago 1

4, _ oo 1
(4.5) W=
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2. For the sharp interface problem [(3.6), (3.7), (2.3)] or [(3.6), (3.7),
(3.11)] choose the initial temperature to be ug and the interface of the
solid sphere to be Ry.

3. For the phase field equations, we scale £, a and a so that they
formally approach [(3.6), (3.7), (2.3)]. The surface tension then is
exactly the value o¢ in (4.5) (before and after the limit is attained).
We now choose the initial temperature to be uy while the initial phase
function is

T—Ro

at —5‘1], g > 0.

(4.6) ¢o(r) = tanh [

Note that we may also take ¢o(r) to be a function which crosses at
exactly r = Rp in a way that (i) [ ¢7 is the same as in (4.6) and
(ii) the derivative is not symmetric about Ry, but is larger for r < Ry.
In this case, both the location of the interface and the surface tension
are exactly the same as in the sharp interface case.

Given these initial conditions, we consider the behavior of the in-
terface in the two cases. For the sharp interface situation the solid
sphere remains unchanged. The phase field, interface, on the other

hand, increases in size for all values of £&. Whether or not it is stable
0-0  0( |

MODIFIED STEFAN MODEL

PHASE FIELD MODEL WITH
SKEWED INTERFACE STRUCTURE

FIGURE 2. Sphere in unstable equilibrium.
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AT MARGINAL STABILITY

PHASE FIELD FOR TWO
DIFFERENT APPROACHES
OR SLIGHTLY DIFFERING
INITIAL CONDITIONS

FIGURE 3. Perturbed planar front.

depends on the magnitude of the other parameters. The situation is
then summarized in Figure 2.

Next, we consider a 2 — d planar interface which is perturbed by a
sine wave which has maximum curvature kg corresponding to marginal
stability for the plane wave with surface tension o in the model [(3.6),
(3.7), (3.11)]. The precise conditions for this have been considered
in [30]. For the phase field model we then scale {,a and « so that
the surface tension oy is approached first from above and second from
below, in the manner of Section 3. Although both converge formally to
[(3.6), (3.7), (3.11)], it is heuristically clear that the limit from below
will be unstable while the limit from above will be stable for any nonzero
value of £, as illustrated in Figure 3. The comments after (4.6) apply
here as well.
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The common feature of these two situations is that the physical
problem is at an unstable equilibrium point. In the first example it
is with respect to the symmetry of the sphere. In the second it is with
respect to the full symmetry of 2—d. In both examples the finer details
of the interface become very significant as a result of the critical nature
of the problem.

In critical situations such as these, the modified Stefan problems
are not completely adequate in describing the physics of the interface
since they only deal with macroscopic length scales. The second order
phase field equations are one step closer to the microscopics and can
distinguish between two O(¢) situations. In still more subtle situations,
e.g., two sets of initial conditions which differ in O(£2), these equations
would not necessarily be able to make the distinction at an unstable
equilibrium point, for example. Such subtlety could only be depicted
by the next level of physical understanding.
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