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MATRIX SUMMABILITY OF CLASSES
OF GEOMETRIC SEQUENCES

SUGUNA SELVARAJ

ABSTRACT. Recently Fricke and Fridy [2] introduced the
set G of complex number sequences that are dominated by a
convergent geometric sequence. In this paper we define a set
G, for any fixed t satisfying 0 < t < 1, as the set of all the
sequences which are dominated by a constant multiple of any
sequence {s"} with s < t. We study the matrices which map
the set G; into another similar set G, as well as mapping
into the set G. The characterizations of such matrices are
established in terms of their rows and columns. Also, several
classes of well-known summability methods are investigated
as mappings on G or into Gy.

1. Introduction. If u is a complex number sequence and A = [ap, k]
is an infinite matrix, then Aw is the sequence whose n-th term is given
by

(Au), = Z Al U -
k=0

The matrix A is called an X — Y matrix if Au is in the set Y whenever
uwis in X. Also, if

Z(Au)n = Z Uk
n=0 k=0

for each w in X, then we say that A is a sum-preserving matrix
over X. In [2] Fricke and Fridy introduced the set G as the set
of complex number sequences that are dominated by a convergent
geometric sequence, and they gave characterizations of G—[ and G—G
matrices. In the present study we consider the set G; for any fixed
t satisfying 0 < ¢ < 1 as the set of complex number sequences of
geometrical domination of order less than ¢, i.e.,

Gt ={u:u, =O0(") for some r € (0,t)}.
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Thus, we have

G=J G

0<t<1

Macphail [7, Theorem 2| established the necessary and sufficient con-
ditions for the matrix A in order that it should be a G; — [ matrix or
a sum-preserving G — [ matrix. These results are listed below:

Theorem 1.1. The matriz A is a Gy — | matriz if and only if

(1) Z\ank|:Mk<oo, fork=0,1,2,...,
n=0
and
1
(2) limksup M,i/k < 7

Theorem 1.2. The Gy — | matriz A is sum-preserving over Gy if
and only if

(3) dam=1,  fork=0,1,2,....
n=0

In Section 2 we investigate Gy — G, Gy — G,, and G — G; matrices,
where 0 < ¢, w < 1. Then we prove results concerning the preservation
of the sums of the sequences in G;. The third section examines Gy — [,
G — G, Gy — Gy, and G — G; mapping properties of the classical
summability methods of Euler-Knopp, Taylor, the extended forms of
these methods, classes of Norlund, Abel, and Borel matrices.

2. Matrix mappings of G, into various other sets. It will be
useful to have an alternative form of the definition of G;.

The following proposition, which is easily proved, gives such a char-
acterization.



MATRIX SUMMABILITY 721

Proposition 2.1. A sequence u is in Gy if and only if

|1/Ic

(4) lim sup |uy, <t
k

In order to prove a characterization of Gy — G matrices, we need the
following preliminary result.

Lemma 2.1. If A is a Gy — G matriz, then there is a number
r € (0,1) and a positive number sequence {B} such that for all n and
k} |ank| S /Bkrn-

Proof. The basis sequences are in Gy, and therefore for each k, there
is an ry € (0, 1) such that

(5) lank| < g for sufficiently large n.

Now suppose the conclusion of the lemma is false. This implies that
there is no r € (0,1) such that

lim sup |ank|1/” <r, for all k.

Then limsup, 7, = 1 and for any s € (0, 1), there exists an arbitrarily
large k such that

(6) lim sup |anp /™ > s.

We now choose sequences {s;},{k(7)}, and {n(i)} as follows: Let
s1 € (1/2,1) and choose k(1) and n(1) so that

n(1l
an (1), k)| > sy

After selecting s,, k(p) and n(p) for all p < 4, we choose s;, k(i) and

n(3) as follows: Choose s; € (s;_1,1) satisfying s; > r; for j < k(i —1).
Next we choose k() > k(i — 1) so that

(7) lim sup ‘an,k(i)‘l/n > 8
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and

NE e\ R
(8) Z) |an(i—1),k] (§> < 1 <§> |@n(i—1),k(i—1) |-

k>k(i

This is possible because (7) follows from (6) and the hypothesis that
G} is in the domain of A implies that for each n, the power series
> re ankz® has radius of convergence at least t. Next choose n(i) >
n(i — 1) satisfying

(9) wli) < th@D+1(1 ——t)s?(“

where p = max;<; 7(j) < 8; and |ap () k()| > s?(i), using (7).

Now for any j < i, we have

tROF1(1 —¢)

S g ool

|ani) k()| < [Tre)

Thus,
k(4) k(i)+1
t t
(10) ;g;an@LkU)|<§> < (Ziﬂggﬁanuxkuﬂ-

Now consider the sequence = given by

T = ()™, ifk=k() fori=1,2,...,
0, otherwise.

It is obvious that z € G;. If Az were in G we would have |(Az),| < Hv"
for v € (0,1) and we could choose an R > 1 such that v < 1/R < 1
which implies that >°°7 , |(Az),|R™ < oo, whence lim,,[|(Az),|R"] =
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0. But we shall show that this last limit is not true. Consider

o0 NG
[(Az)n(i)| = | D angi) k() <§>
j=1

£\ @ £\ )
> [|an(i),k(i)| (5) - Z |an i), k()] (5)

j<i

¢ k(5)
- Z |an(i),k(j)| (5) ]

j>i

£\ O k()41
> [|an(i),k(i)|t (5) - Wmn(i),k(i)\

t [t k(3)
_Z 5 ‘an(i),k(i)|a

using (10) and (8)

k(i)
n(i) ( t
> S; <2> %

Since lim;s; = 1 and R > 1, there exists a number N such that
siR>L > 1 fori> N. Thus for i > N,

k(i)+1
. . t
‘(A:L‘)n(i)‘Rn(z) > (Rsi)"(l) <§>

— k(i)+1 .
>L 2 , using (9)

k(i)
_teet
2 2

> 1, for sufficiently large 3.

Hence, Az is not in G, so A is not a Gy — G matrix. O

Theorem 2.1. The matriz A is a Gy — G matriz if and only if for

any € > 0, there exists a constant B = B(e) and an r € (0,1), such
that

1 k
|ank| < Br™ <Z + 6> , for all n and k.
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Proof. Assume A satisfies the given property. Let u € Gy, say |ug| <
Ms*, where s € (0,t). Choosing € such that 0 < & < (1/s) — (1/t), we

have .
- 1
(Au),| <> Br" (; + a) Ms*
k=0
BM
= —r1",
1—s(3+e)
where r € (0,1). Hence, Au € G.

Conversely, assume A is a Gy — G matrix. By Lemma 2.1, there exists
an s € (0,1) and a sequence {8} satisfying

(11) lank| < Brs™, for all n and k.
We may assume that 1 < 8 < Bg41 for all k. Also, for each n,
1
(12) lim sup |ank\1/k < 7
k

Suppose A does not satisfy the property asserted in the theorem. Then
there exists an € > 0 such that for every r € (0,1) and for every B > 0,
there exist n = n(B,r) and k = k(B, r) satisfying

1 k
|ank| > Br™ (E + E) .
Now we choose a sequence {r;} as follows:

. 1+s 147
2 2
Thus, r; € (s,1) for all ¢ and r; increases to 1. For each of these 7s,
we get n(7) and k(7) such that

n@) (1 k()
() k()| > 73 n +e .

1 and 1y = for i > 1.

We assert that lim; n(i) = oo and lim; k(¢) = oo. For, if not, there
would be a subsequence {i,,} of {i} such that either n(i,,) = c or

k(imm) = d for all m. Then either
d

k(im)
1
|ac7k(im)\ > Tim (z + 8> or |an(im),d
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which would contradict (12) or (11).

Now let u = 2t/(2 + et); then {u*} € G;. Select {i,} as follows:
i1 = 1 and for m > 1, choose i, 1 > iy, satisfying

oo

Z | iy " < 570
k=k(im+1)

and

> 2(1 + dmt1) Br(in) -

2 4 2¢¢ ] met)
[ 2+et ]

This selection is possible because

2+ 2¢t
2+¢€t

>1 and k(im+1) > ’im+1.

Now consider the sequence z given by
. _{uk, if k=k(iy), form=1,2,...,
k 0, otherwise.

It is obvious that z € Gy, but we shall show that Az is not in G.
Consider

|(Ax)n(zm)| = Zan(im),k(i_j)uk(i'j)
j=1
2 ‘a"(im%k(im)mk(im) - Z |an(im)7k(ij)‘uk(ij)
j<m
= D i) i [
ji>m
n(im) 1 k(im) ' o '
> m |:<Z + €> u] — Z Bk(ij)sn(zm)u (i5) _ Sn(“”)
j<m
k(im)
n(im) | [ 26t +2
7 Tim ( 2+et = MBh(ir) ~ 1

> (21 4 i) Br(in_y) — (1 + 1)Brin_o)]
> ri"(im),

m
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because ,, > m and 1 < (B for all k. Since lim,, r;, =1, Az is not in
G [2, Proposition 1]. Hence, A is not a G; — G matrix. O

If 0 < t, w < 1, then it is clear that G,, is a proper subset of Gy if
and only if w < t. Now we investigate those matrices which, while still
preserving geometrical domination, map one G} set into another G,
set.

Theorem 2.2. The matriz A maps Gy into G, if and only if for
any € > 0, there ezists a constant B = B(e) and an r € (0,w) such
that

1 k
|ank| < Br® (E + s) for all n and k.

To prove Theorem 2.2 we need only to repeat the proof of Lemma
2.1 and Theorem 2.1 with the obvious changes (namely, replacing 1 by
w). It is worthwhile to note that in Theorem 2.2, the value of w is
independent of the value of t. Consequently, this result is true when w
equals t. For convenience, we shall state the characterization of G; — G,
matrices.

Theorem 2.3. The matrix A maps Gy into itself if and only if for
any € > 0, there exists a constant B = B(e) and an r € (0,t) such that

k
1
|ank| < Br" (; + 5) for all n and k.

It now seems natural that we can get a similar result to characterize
G — G, matrices. We state below a theorem without proof, which can
be verified easily by slight modifications in the proof of the Lemma and
Theorem 4 in [2, 573-577].

Theorem 2.4. The matriz A is a G — Gy, matriz if and only if for
any € > 0, there exists a constant B = B(e) and an r € (0,w) such
that

k] < Br(1+¢)F for all n and k.
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In [5] Jacob derived similar characterizations of above matrix trans-
formations using the topological properties of the spaces Gy and G.

It is clear that a Gy — G matrix or a Gy — G, matrix is sum-preserving
over G, if and only if (3) holds (see [2, Theorem 2]).

3. Well-known summability mappings of G;. On the following
page in Tables 3.1 and 3.2 we have listed the necessary and sufficient
conditions for different classes of well-known matrices to be a G — [,
G-G,G —1,G— G, Gy — Gy, or a G — G, matrix. We give below
outlines of the proofs of these results.

Case of Euler matriz. Theorems 3 and 4 are easily proved using [2,
Theorem 6] and the fact that G; C G C [. In order to see Theorem 5,
let w € Gy andifr € [(1—w)/(1—t),1], then |(E,u),| < M[1—r(1-s)]"
implying that E,u € G,,. Conversely, it suffices to show that F, is not
a Gy — G, matrix when 7 € (0, (1 —w)/(1—¢)). If r lies in this interval,
then for a sequence v € Gy given by vy = p* where p > 0 satisfying
(r+w—1)/r < p <t, we have |(Ev)n| = [1 — 7 + rp]™ > w™. Thus
the sequence E,v is not in G,.

When G, gets mapped into itself, r cannot lie in the interval (0, 1),
for if 0 < r < 1, then as before we have (r +¢ —1)/r < t and
therefore repetition of the argument shows that E, is not a Gy — G,
matrix. This yields Theorem 6. Since the only Euler matrix E, that
maps G, into itself is the identity matrix and w < ¢ < 1 implies that
Gw C Gy C G, we get Theorems 7 and 8. In [3, p. 116] it is shown
that each column sum of the E, matrix converges absolutely to 1/r
provided that r € (0,1]. Thus in Theorems 3, 4, 5, and 6 the matrix
rE, is sum-preserving over Gj.
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TABLE 3.1.
T | Necessary | Euler Matrix Extended Taylor Matrix Extended
H | and (Lower triangular) | Euler Matrix (Upper triangular) Taylor Matrix
E | sufficient | Er[n,k] = (Lower triangular) | Tr[n, k] = (Upper triangular)
O | condition (Z)rk(lfr)"_k E(rn)[n, k] = (5)7“&_"(177')"'*'1 T(rn)n, k] =
R | to be a (z) rﬁ(lfrn)"fk where r is any real (z) r,’i*”(lfrn)"+1
BE where r, € (0,1) number where r, € (0,1)
. See [8, p. 53] See [1, p. 335] See [8, p. 57] See [6, p. 25]
1. G-—1 *re(0,1] Unknown r € [0,1] Always
2. G-G *re (0,1] liminfy 7 > 0 r € [0,1] Always
3. Gy —1 r € (0,1] Unknown rE [% - %, %-{—%] Always
4.| G, -G r € (0,1] liminfr,rn >0 | re[d—4&, S+ Always
5. | Gy — Gu
(w > t) re [%,1] liminfp rn > =5 | € [ﬁ,ﬁ%@] Always
6. | Gt — Gy r=1 limy rp =1 r € [0, 1L+t] Always
7. | Gt — Guw
(w < t) Never Never re [ﬁ, t(tl-l—Tww)] liminfyp 7y > t(tliu;)
8. G — Gy Never Never r=1 limprp =1
* These results are proved in [2].
TABLE 3.2.
T | Necessary | Norlund Matrix Abel Matrix Extended
H | and (Lower triangular) Ayln, k] = Borel Matrix
5
E | sufficient | Np[n, k] = 2ok V(1 — vp)* Bs[n, k| = %
O | condition | where p is a where v is a null | where § is any
R | to be a nonnegative sequence, | sequence in (0,1) | real number
E po>0,Pn=) " Pk
M
See [4, p. 86] See [2, p. 580]
*3. Gy — 1 pel vEl 6>0
4. Gy — G peG veEQG 6>1
5. | Gt — Guw p € Gy v € Gy 6>1,o0r
(w > t) 0=1&t<1l+hw
6. Gt — Gt p € Gy v € Gy 6>1
7.1 Gy — Gy Never v € Gy 6>1
(w >t)
8. | G—Gu Never v € Gy 6>1

* In the cases of these three classes of matrices, Theorems 1 and 2 are proved in [2].
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Case of extended Euler matriz. If liminf, r, = 0, then limsup,,

|E(ry,)[n,0]|'/™ = 1. Consequently, by Theorem 2.1, E(r,) is not a
G; — G matrix. If liminf, 7, > 0, for any u € G, it can be easily
shown that E(r,)u € G also. This yields Theorems 2 and 4. If
liminf, r, > (1 — w)/(1 — t), then for u € Gy, say |ux| < Ms* for
0 < s < t, we can find an r satisfying (1—w)/(1—s) < r < (1—w)/(1-¢)
and r < r, for large n. Thus E(r,)u € G,. Conversely, suppose
liminf,, 7, < (1 —w)/(1 —t). Then there exists an r so that r, < r <
(1 — w)/(1 —t) for infinitely many n. By a simple calculation, we get
(r + w—1)/r < t. Thus, for the sequence v € G; as in the proof of
Theorem 5 in the case of Euler matrix, we find that E(r,) is not a
G — G matrix. Thus, Theorem 5 is proved.

In order to see Theorem 6, suppose lim,r, = 1 and let u € G;.
For an ¢ satisfying 0 < e < t—s, 1 -7, < ¢ for n > N. So,
[(E(rp)u)n] < M(s+¢)™ for n > N. Conversely, if liminf, r, < 1,
we could repeat the proof of converse of Theorem 5 above with the
replacement of w by ¢, and we could prove that E(r,) is not a Gy — G
matrix.

In Theorem 7 it is enough to prove that E(r,) is not a Gy — Gy,
matrix when lim, r, = 1. If E(r,) were a G; — G, matrix, for an ¢
satisfying 0 < & < (n/w) — (1/t), where n € (w/t,1) we would get an
s € (0,w) (Theorem 2.2) such that for all n,

1 n
|E(rp)[n,n]| =r < Bs" <; + 5) .

But, by the choice of €, we have for n > N,

Tn n

> 1.
s(3+e) ~ w(i+e)

Case of Taylor matriz. When r = 0, T, is the identity matrix and
when r = 1, T,. is the zero matrix. If T,. is a G — | matrix (or a G¢ — [
matrix) using Theorem 1 in [2, p. 569] (or Theorem 1.1), we get for
k=1,2,...,limsup, M,i/k =|r|+ |1 —r| <1 (or 1/¢), which implies

that 7 € [0,1] (or 7 € [§— 5, 3+ 35])- Also, for u € G, direct calculation
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shows that T,.u € G, thus proving Theorems 1 and 2. For u € G, say
|ug| < Ms* where s € (0,t), we have

1—r| [s[1—7r[]"
Tow),| < M :
|(Tru)nl < 1—|rls |[1—|r|s

Considering three cases, namely, r € [1/2 — (1/2t),0), r € (0,1), and
r € (1,1/2 + (1/2¢t)] it is easy to see that T,u € G, thus proving
Theorems 3 and 4.

If uw € Gy, then considering the three intervals in which r can lie,
namely, [(t — w)/t(1 + w),0), (0,1), and (1, (¢t + w)/¢(1 + w)], it is
not difficult to get that limsup,, |(T,u),|"" < w. Hence, T is a
G — G matrix. In order to prove the converse of Theorem 5, suppose

< (t — w)/t(1 + w). Then we could choose a sequence v € G; given
by vi = pF where p > 0 and w/[1 — (1 +w)] < p < t. Thus T,v would
not be in G,,. Similarly, if we suppose that r > (t + w)/¢(1 + w), then
we could choose a sequence z € Gy given by 2z, = o* where o > 0 and
w/[r(l1+w)—1] < o < t, and T,z would not be in G,,.

It is easy to verify that the proof of Theorem 5 is valid in Theorem
6 by letting w = t. Theorem 7 can be proved in the same method as
used in Theorem 5. Also, since Uyp<;<1G¢ = G we can get Theorem 8

by considering
t—w t+w
M ! = {1
i1 [t(l —w)’ t(14 w)

Case of extended Taylor matriz. If |uy| < Ms*, then

(1, *t

So, if u € G, then T'(r,)u € G, and if u € Gy, then T(r,)u € G;. In
order to see Theorem 7, suppose liminf,, r, < (¢t — w)/¢(1 — w). Then
we find a number 7 such that 0 < r < (¢t —w)/t(1 —w) satisfying r,, < r
for infinitely many n. Now we can choose a sequence y € G; for which
T(rn)y ¢ Gw. The sufficiency of the condition can be obtained by
direct calculation. Since (t —w)/t(1 —w) increases to 1 as ¢ approaches
1, Theorem 7 implies Theorem 8.
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Case of Norlund matriz. Theorems 3 and 4 follow from the proof of
Theorem 5 in [2, p. 578]. If p € G, say |pn| < Br™ for some r € (0, w)
and if u € Gy, say |ux| < Ms* for some s € (0,t), then it is possible
to consider that r > s. Now using the fact that s/r < 1, we can easily
get that N,u € G, which implies the sufficiency of the condition in
Theorem 5. The necessity follows from the fact that if IV, is a Gy — G,
matrix then its first column is in G,,. In the case where w < ¢ if IV,
were a Gy — G, matrix, then for ¢ = (1/w) — (1/t), we would get, by
Theorem 2.2, that for each n,

e (Ge) = (3)

— <B - =B(—) .

P, — " (t + 8) w
Now r < w implies that p ¢ ['. Hence, N, would not be a G; — I
matrix, which would lead us to a contradiction.

Case of Abel matriz. The first two theorems can be obtained from [2,
Theorem 7] and the fact that if A, is a G; — [ or a G; — G matrix, then
the first column sequence is in ! or G. If v € G, say |v,| < Bs™ for
some s € (0,w), then |A4,[n, k]| < Bs™ for all n and k. Now Theorem
2.2 enables us to conclude that A, is a Gy — (G, matrix. Since no
relation between t and w is used here, it is clear that the result holds
for all three cases, namely, w > ¢, w =t and w < t.

Case of extended Borel matriz. We first notice that if z € G given
by |zk| < Ms*, then

|(Bsa)| < Me™ 71 = Melsn" .

Using Theorem 8 in [2, p. 580] we have that if § > 0, Bs is a Gy — [
matrix and if § > 1, Bys is a Gy — G matrix. If § < 0, then considering
yr = s® we have that (Bsy), tends to 1 as n — oo, and if § = 0,
then (Bsy),, is a constant sequence. Thus, Bsy ¢ I*. If § < 1, then
limsup,, |(Bsy).|"/" = 1. Thus, Bsy ¢ G. Hence, we get Theorems 3
and 4.

Let u € G;. If § > 1, then for large n we have

sl > Inp

>0
—s—1 ’
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where 0 < p < w < 1. Thus, for large n, we have |(Bsu),| < Mp™,
implying that Bsu € G,. If 6 = 1, then for the sequence z € Gy
given by z;, = p* where p > 0 and 1 +Int < p < t, the nth term of
the transformed sequence is (Bsz), = [e?~!|" > t". Thus, Bsz ¢ G;.
Thus, we have proved Theorems 6, 7, and 8.

In case w > tand 6 = 1, if ¢ > 1 + lnw, then we could choose z
as before to get Bsz ¢ G,,. Conversely, if t < 1+ lnw then for any
z € Gy, we have s < 1 +Inw and so e5~! < w. Thus, Bsz € Gy,
yielding Theorem 5.
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