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WEIGHTED SPLINES AS OPTIMAL INTERPOLANTS

K. ŠALKAUSKAS AND L. BOS

ABSTRACT. We consider interpolation by C1 cubic splines
which minimize a weighted semi-norm. The weight function is
piecewise constant but on a subdivision potentially different
from that determined by the interpolation knots.

Introduction. Suppose that we are given a set of data (xi, fi),
1 ≤ i ≤ N , with x1 < x2 < · · · < xN . As is well known [1], among
all functions f which interpolate the data (i.e., f(xi) = fi, 1 ≤ i ≤ N)
and which have an absolutely continuous first derivative and square
integrable second derivative, the one for which

∫ xN

x1
(f (2)(x))2 dx is a

minimum, is the natural cubic interpolating spline. This function
is twice continuously differentiable on [x1, xN ] and is such that its
restrictions to each of the subintervals, [xi, xi+1], is a cubic polynomial.
The adjective “natural” indicates that it may be extended by straight
lines to a C2 function, on all of R, whose second derivative is in L2(R).
This condition is easily seen to be equivalent to having zero second
derivatives at the end points, x1 and xN . The use of the functional∫ xN

x1
(f (2)(x))2 dx is motivated by the fact that it is a linearization of

the bending energy of a thin elastic rod of uniform stiffness. Although
cubic splines have found widespread application, there are data sets for
which natural splines are not appropriate. Figure 1 below illustrates
one such example.

Because of this, the first author introduced in [4] the weighted cubic
spline, minimizing instead the weighted functional (or semi-norm)

|v|2 :=
∫ xN

x1

w(x)(v(2)(x))2 dx

in the hope of being able to choose a weighting for which the resulting
interpolant is not as unexpectedly oscillatory. To motivate our choice
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FIGURE 1. A natural cubic interpolating spline.

of weight function, consider a thin elastica, interpolating the data.
Its bending energy is given by

∫ xN

x1
EI{1 + [s′(x)]2}−5/2[s′′(x)]2 dx. A

description of this may be found in [3]. In the construction of natural
cubic spline interpolants, it is assumed that s′(x) is close to zero and
that EI = constant, which we may take to be unity. Suppose now
that the elastica is softened at the interior knots by replacing EI = 1
by EI = 1 − α

∑N−1
i=2 pε(x− xi), where pε(x) is a rectangular pulse of

width 2ε centered at the origin, of unit height and 0 < α < 1. A typical
such EI is plotted in Figure 2.

When α is close to 1, an interpolant of this sort will be essentially

0
1

FIGURE 2. A “softened” EI.
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0

FIGURE 3. A piecewise constant weight function convolved with a unit pulse.

piecewise linear, with its second derivative concentrated on the supports
of the translated pulses. Consequently, {1 + [s′(x)]2}−5/2 is very
nearly piecewise constant. A reasonable first approximation to {1 +
[s′(x)]2}−5/2 is the piecewise constant weight function w(x) given by

(1) w(x)|[xi,xi+1) := (1 +m2
i )

−5/2

where mi is the slope (fi+1 − fi)/(xi+1 − xi). A better approximation
is the convolution (1/2ε)pε ∗ w, which incorporates an approximation
to the transition between the linear segments and increases the “soft
zone” to 4ε. An example of such a weight function is given in Figure
3. The resulting interpolant would be expected to be not as angular.

In general, one may take w to be a positive function in L1(x1, xN ).
We state some basic existence properties of weighted splines. First, let
Σ denote the space of C1 piecewise cubics on [x1, xN ] with knots xi

and H2 the space of functions on [x1, xN ] with absolutely continuous
first derivative and square integrable second derivative.

Theorem 1. (a) There exists a unique v ∈ Σ of minimal semi-norm
interpolating the data.

(b) If w is piecewise constant on the partition π1 : x1 < · · · < xN ,
then there is a unique v ∈ H2 of minimal semi-norm interpolating the
data, and, moreover, v ∈ Σ.

The proof can be found in [4].

The piecewise constant choice of weight function mentioned above
has proven to be quite successful. In [4] the exponent −3 was used but



708 K. ŠALKAUSKAS AND L. BOS

FIGURE 4. Weighted spline with weight function given by (1).

there seems to be very little difference between the two. With these
weights, the weighted functional seems to be a closer approximation
to the bending energy of a thin elastic rod of nonuniform stiffness.
The figures illustrate the behavior. Figure 1 is again the graph of the
natural cubic spline which interpolates the indicated data. Figure 4 is
the graph of the weighted spline which interpolates the same data using
the weights given by (1) evidently a much better interpolant. Note,
however, the sharp bends in the graph and the resulting impression of
angularity. This seems to be a characteristic of weighted splines using
weights (1). In Figure 5 some of the angularity has been removed by
using the slightly “smoother” weight function obtained by convolving
the piecewise constant weight function with a unit pulse as mentioned
above. Here ε = .005. Note, however, in this example the minimization
was done in the smaller space Σ. The defining equations may be found
in [4]. At present, we have only empirical and heuristic evidence for
the effectiveness of this smoothing procedure.

In this work we present a more general procedure for influencing
the shape of a weighted spline and for adding some flexibility and
“roundness” to the weighted spline if desired. Specifically, we consider
the use of weight functions which are still piecewise constant, but are
so on a partition which may differ from that determined by the data



WEIGHTED SPLINES 709

FIGURE 5. Weighted spline with convolved weight function.

points. We show that the interpolants which minimize the resulting
weighted semi-norm are still C1 piecewise cubics, but with knots at
the data points and also at the discontinuities of the weight function.
We give continuity conditions which characterize this cubic spline, and,
finally, we give some examples of its use.

Weighted splines. Let X := {v ∈ C1(R) : Dv is absolutely
continuous and D2v ∈ L2(R)}. We use operator notation for the
derivative. Introduce the weighted semi-inner product

(u, v)w :=
∫
R

wD2uD2v,

where w satisfies

(a) w(t) > 0, t ∈ R,

(b) w is continuous from the right and piecewise constant on a
partition π2 : τ1 < τ2 < · · · < τM , satisfying x1 ≤ τ1 and τM ≤ xN .

Note that τ ’s are not constrained in any way by the data points except
for the first and last. Associated with this semi-inner product is, of
course, the semi-norm

|v|2w := (v, v)w.
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This makes X into a semi-Hilbert space. Our main result may now be
stated.

Theorem 2. There exists a unique s ∈ X of minimal semi-norm
interpolating the data. Furthermore,

(a) s is a C1 piecewise cubic on R with knots π1 ∪ π2,

(b) wD2s has zero jump at each knot and D2s(t) = 0 for t outside
(x1, xN ),

(c) wD3s has zero jump at each τi not an xj.

(Here we say that f has zero jump at a point ξ if limx→ξ+ f(x) =
limx→ξ− f(x).)

Proof. Suppose for the moment that such an s(x), as described by
(a), (b) and (c), exists. We first show that it is then indeed the unique
minimizer in X. Let f ∈ X be any other interpolant of the same data
and consider

∫
R

(D2s(x) −D2f(x))D2s(x)w(x) dx.

As s(x) is piecewise cubic (on the refined partition), D2s(x)w(x) is
piecewise linear. By hypothesis (b), it is also continuous and therefore
absolutely continuous and we may integrate by parts to obtain

∫
R

(Ds(x) −Df(x))D(D2s(x)w(x)) dx.

Now, as D2s(x) is zero outside (x1, xN ), this is actually

∫ xN

x1

(Ds(x) −Df(x))D(D2s(x)w(x)) dx,

which we may write as

N−1∑
i=1

∫ xi+1

xi

(Ds(x) −Df(x))D(D2s(x)w(x)) dx.
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But, by (c), on each subinterval [xi, xi+1], D(D2s(x)w(x))=D3s(x)w(x)
and is continuous, i.e., constant, and we obtain

N−1∑
i=1

{D3s(x)w(x)|[xi,xi+1)}
∫ xi+1

xi

(Ds(x) −Df(x)) dx.

However, as

∫ xi+1

xi

(Ds(x) −Df(x)) dx = 0 (by interpolation),

we see that
∫
R

(D2s(x) −D2f(x))D2s(x)w(x) dx = 0,

which we may express as

(2) (s− f, s)w = 0,

in terms of the semi-inner product of X. Therefore,

|f |2w = |(f − s) + s|2w = |f − s|2w + |s|2w ≥ |s|2w,

and we see that s is optimal. In fact, |f |2w = |s|2w only when |f−s|w = 0.
But then f − s must be a linear. This linear is in fact zero as f − s is
zero at at least the two point: x1 and xN ; s(x) is thus unique.

We now show that such an s(x) exists. Suppose that t1 < t2 <
· · · < tn with t1 = x1 and tn = xN are the knots of π1 ∪ π2. The
determination of any piecewise cubic on this partition is equivalent to
finding the four coefficients of each of the cubics on [ti, ti+1]. Outside
of [x1, xN ] it is extended uniquely by straight lines. The partition gives
n − 1 subintervals and hence we must determine 4(n − 1) coefficients.
The condition (a) gives us two continuity conditions at each of the n−2
interior knots for a total of 2(n−2). Condition (b) gives one continuity
condition at each of the n−2 interior knots and two end conditions for
a total of n. Condition (c) gives one continuity condition at each of the
n − N noninterpolated knots and then there are also N interpolation



712 K. ŠALKAUSKAS AND L. BOS

conditions which together yield n conditions. Thus, the total number
of conditions on our piecewise cubic is

2(n− 2) + n+ n = 4n− 4 = 4(n− 1),

exactly the number of coefficients to be found. As each condition is
linear in the unknowns, we have, in effect, a 4(n− 1) square system of
linear equations to solve. For such systems, existence is equivalent to
uniqueness and by our previous work, we are done.

The orthogonality conditions (2) can be exploited to yield a smaller
set of equations for determining the spline s. Since we have shown
(Theorem 2) that s is a C1 piecewise cubic with knots ti, i = 1, 2, . . . , n,
it has a unique representation on [x1, xN ] in terms of the Hermitian
basis {ϕi}n

1 ∪ {ψi}n
1 defined by

ϕi(x) =

⎧⎨
⎩

−2(x− ti−1)2(x− ti − hi−1/2)/h3
i−1, x ∈ [ti−1, ti),

2(x− ti + hi/2)(x− ti+1)2/h3
i , x ∈ [ti, ti+1),

0, otherwise,

and

ψi(x) =

⎧⎨
⎩

(x− ti−1)2(x− ti)/h2
i−1, x ∈ [ti−1, ti),

(x− ti)(x− ti+1)2/h2
i , x ∈ [ti, ti+1),

0, otherwise.

Here hi := ti+1 − ti, and t0 < t1, tn+1 > tn are fixed but arbitrary.
This familiar basis satisfies the cardinality conditions

ϕi(tj) = δij , Dϕi(tj) = 0, ψi(tj) = 0, Dψi(tj) = δij .

We may now write

(3) s(x) =
n∑

i=1

s(ti)ϕi(x) +
n∑

i=1

Ds(ti)ψi(x).

The values of s(ti) are known when ti = xj ; then s(ti) = fj , by
interpolation. The remaining n − N values of s(ti) and n values
of Ds(ti) can be found by making use of (2), which says that s is
orthogonal to every interpolant of zero (at the xi’s). The functions in
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{ψi}n
1 are such interpolants, hence s satisfies the n equations (s, ψi)w =

0, i = 1, . . . , n. These semi-inner products, when computed for s in
the form (3), yield a set of equations identical in form to those derived
in [4], which in turn are just like the tridiagonal system arising in the
construction of ordinary cubic splines. Thus, if we denote

wi = w(x)|[ti,ti+1), Ds(ti) = mi,

λi = wi−1hi/(wi−1hi + wihi−1), μi = 1 − λi, i = 2, . . . , n− 1,

the equations are

2m1 +m2 = −3[f1 − s(t2)]/h1,

λimi−1 + 2mi + μimi+1 = 3λi[s(ti) − s(ti−1)]/hi−1

+3μi[s(ti+1) − s(ti)]/hi, i = 2, . . . , n− 1,
mn−1 + 2mn = 3[fN − s(tn−1)]/hn−1.

It should be remembered here that x1 = t1, xN = tn, and s(ti)
is an unknown if ti is not an xj . It will be convenient to define
I := {i|1 ≤ i ≤ n and ti �= xj , 1 ≤ j ≤ N}, and note that I consists of
n−N distinct indices. When the unknowns s(ti), i ∈ I, are transposed
to the left-hand side, there results a sparse, linear, n× (2n−N) system
consisting of tri-diagonal bands. We obtain n −N more equations by
noting that if i ∈ I, then ϕi is also an interpolant of zero. There are
thus n−N equations (s, ϕi)w = 0. The resulting system is also sparse
and consist of tri-diagonal bands. The equations in this system are

−wi−1mi−1/h
2
i−1 +mi(wi/h

2
i − wi−1/h

2
i−1) + wimi+1/h

2
i

−2wi−1s(ti−1)/h3
i−1 + 2s(ti)[wi−1/h

3
i−1 + wi/h

3
i ] − 2wis(ti+1)/h3

i = 0,
i ∈ I.

We now show that the above equations have a solution.

Proposition 3. The coefficient matrix of the equations (s, ψi)w = 0,
1 ≤ i ≤ n and (s, ϕi)w = 0, i ∈ I, is nonsingular.

Proof. We will show that the homogeneous system has a unique
solution. The “right-hand side” is certainly zero if f1, . . . , fN vanish.
Let f1, . . . , fN be a data set for which the system is homogeneous.
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FIGURE 6. One noninterpolated knot mid-way between the two left-
most data points.

Suppose that s1 and s2 are splines interpolating this data, whose
parameters are obtained from distinct solutions of the system. Let
z := s1 − s2. This is an interpolant of zero and can be written in
the form z =

∑n
i=1 αiψi +

∑
i∈I βiϕi. Since s1 and s2 satisfy the

orthogonality conditions, so does z, i.e., z is orthogonal to the span of
{ψi}n

1 ∪ {ϕi}i∈I and hence to itself. It follows that z = 0 and s1 = s2.

An alternative way of generating a banded system is to use the B-
spline basis described by Foley [2], with modifications stemming from
the fact that there are potentially more knots than data points, and
thus the third derivative condition of Theorem 2 has to be invoked.

To illustrate the effect of allowing refined partitions for the weight
function, consider the same data set as in Figures 1, 4 and 5. In Figure
6 we have taken the weights of Figure 4 and added a knot half way
between the two left-most interpolation points. Clearly, the resulting
spline turns more gently at the second data point. Figure 7 shows the
additional improvement obtained by adding a knot between the second
and third data points from the right. In these examples we have chosen
the weights and additional knots so as to add some roundness to the
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FIGURE 7. Second noninterpolated knot mid-way between the 8th and
9th data points.

FIGURE 8. Interpolant of absolute value, weights given by (1).
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FIGURE 9. Interpolant of absolute value, two noninterpolated knots.

curves. By Theorem 2(b), the jump in the second derivative at a knot
is determined by the ratio of the weights on either side of the knot.
Thus, the desired effect is accomplished by selecting the weights so as
to reduce the ratios of consecutive weights.

In general, the choice of weights and τ ’s may influence the shape in
other ways. Figure 8 shows the weighted spline with weights given by
(1) interpolating the absolute-value function at the indicated points.
In Figure 9 we have added τ1 and τ2 symmetrically about the origin,
with a weight of 0.001 assigned on [τ1, τ2), and the other weights as
before. This tends to concentrate the curvature on (τ1, τ2).
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4. K. Šalkauskas, C1 splines for interpolation of rapidly varying data, Rocky
Mountain J. Mathematics 14 (1984), 239 250.

Department of Mathematics and Statistics, University of Calgary, Cal-

gary, Alberta, Canada T2N 1N4


