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TRANSCENDENTAL OPERATORS ON A BANACH SPACE

FRED RICHMAN

ABSTRACT. Let A be a bounded operator on a normed
linear space V. If p(A) # 0 for each nonzero polynomial
p of degree less than n, then there exists « € V such that
p(A)z # 0 for each nonzero polynomial p of degree less than
n. We give a proof of this theorem that is constructive in the
sense of Errett Bishop.

A classical theorem [4, 3.3.15] states that if the minimal polynomial
of a matrix M is equal to its characteristic polynomial p, then M is
similar to the companion matrix of p. Another way of saying this is
that, given a linear transformation A on an n-dimensional vector space

V, then

(1) if the transformations I, A, A2, ... A"~ are linearly indepen-
dent, then there exists x € V such that x, Az, A%z,... , A" 'z are lin-
early independent.

In fact, (1) holds whether or not n is the dimension of the space V; it
holds even when the dimension of V is infinite. The hypothesis of (1) is
equivalent to the condition that p(A) # 0 for any nonzero polynomial p
of degree less than n. The purpose of this note is to give a constructive
proof (in the sense of Bishop [1]) of (1) when A is a bounded operator
on a Banach space. We shall show that the set of vectors = that work
for (1) is open and dense, so that if all powers of A are independent,
that is, if A is transcendental, then the Baire category theorem [2, 3.9
Chapter 4] constructs a single « that works for all powers of A.

Except for this last appeal to the Baire category theorem, the com-
pleteness of the Banach space plays no role, so we state our results for a
normed linear space The field of scalars can be either the real numbers
or the complex numbers.

Although (1) holds in complete generality from a classical point of
view, there are serious barriers to a constructive proof. In fact, in [5] it
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is shown that (1) does not admit a constructive proof even for finitely
generated vector spaces over a discrete field (a field with decidable
equality), although the natural constructive contrapositive

(2) if for each x € V the vectors z, Ax, A%z, ... ,A" 1z are linearly
dependent, then the transformations I, A, A% ... A" ! are linearly
dependent.

holds in this case. It is important to remember here that a constructive
proof that vectors are linearly dependent requires that you construct
the coefficients of a dependence relation.

Classically we address (2) and assume that for each z € V there is a
monic polynomial p, of least degree such that p,(A4)z = 0. Given z and
y in V, we show that there is z in V such that p, is the least common
multiple of p, and p,; this follows, for instance, from the general theory
of finitely generated modules over a Euclidean ring [3, Theorem 4.5.1].
So if deg p, < n for all z, then there is x such that p,(A) = 0.

Constructively, we need not be able to compute the polynomials p,,
or the least common multiple of p, and p,, or the vector z. And
even if we could do all this, we would need to be able to decide whether
p(A) =0, or whether p,(A)y # 0 for some y € V, in order to complete
the proof of the contrapositive. Moreover, there would still remain the
problem of converting our knowledge that degp, < m cannot hold for
all z, into a construction of x such that degp, > n.

The reader should keep in mind the following facts about working in
a constructive context. You can get arbitrarily close rational approx-
imations to a given real number r, but you may not be able to tell
whether or not » = 0. A real number r is nonzero if you can find a
positive integer n such that |r| > 1/n. A vector in a normed linear
space is nonzero if its norm is nonzero. If the sum of two vectors in a
normed linear space is nonzero, then one or the other of the vectors is
nonzero (and you can tell which). The vectors vy,... ,v, are linearly
independent if each c¢; is small whenever 2?21 ¢;v; is small (rather than
the usual definition with ‘small’ replaced by ‘zero’).

Lemma 1. Let A be a bounded operator on a normed linear space
V, and suppose x € V is such that z, Az,... , A"z are linearly in-
dependent. Then there is a monic polynomial p, of degree n such
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that if p.(A)xz # 0, then q(A)z is bounded away from 0 as q ranges
over all monic polynomials of degree n.

Proof. Let H be the space spanned by z, Az,... , A" 'z. As H is
finite-dimensional, H is complete and located [2, 6.2 Chapter 4], that
is, we can compute the distance from any point v in V' to H, and we
can find points in h € H such that ||v— h|| approximates that distance.
By [2, 3.8 Chapter 4], for each v € V, we can find h € H such that
if v # h, then the distance from v to H is nonzero; if V' is an inner
product space, we can simply take h to be the projection of v onto
H, which has the virtue of avoiding appeal to the axiom of dependent
choices.

For v = A"z, we get h = cox + 1Az + -+ + cpo_1 A" 'z in H, and
we can let p,(X) = X" —c,1 X" 1 — . — 1 X — cp. O

We will need the following, rather trivial, result.

Lemma 2. If A is a nonzero operator on a normed linear space V,
then {x : Az # 0} is dense in V.

Proof. Suppose Ay # 0 and z is an arbitrary element of V. Then
either Az # 0 or A(z+y) # 0. As we can take y as small as we please,
we can find z arbitrarily close to z such that Az # 0. O

The division algorithm works for polynomials with coefficients in an
arbitrary ring, if the divisor is monic. We need to observe the exact
form of the quotient when the divisor is X — r.

Lemma 3. Let p(X) = pp X" + ppna X" L+ + p1 X + po, and
write p(X) = (X — r)q(X) + p(r) by the division algorithm. Then

(X)) =pu X" 4 (rpn + Pa—1) X" 2 + (rPpn + rpp—1 + pn—2) X" °
ot (" + " PP - D1)-

Proof. Compute. i
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By the norm ||p|| of a polynomial p we mean the supremum of the
absolute values of its coeflicients.

If f is a monic polynomial with complex coefficients and f(z¢) is
small, then zy is near a root of f; indeed, it is easy to see that if
f(X) = TIi-,(X — a;), then for each § > |f(zo)| there exists ¢ such
that |zg — a;|™ < 9. As f(X) = ¢(X)(X — z0) + f(z20), this is a special
case of the more general fact that the set of roots of f is a continuous
function of f in the following sense.

Lemma 4. Let M and n be positive integers. Then there exists C
such that if f(X) =[], (X —a;) and g(X) = [\, (X —b;) are monic
polynomials with complex coefficients, whose roots are bounded by M,
and ||f —g|| < 6, then there is a permutation o of {1,... ,n} such that,
forallie{l,... ,n},

lai — byy| < C(6/™ +6)

Proof. We may assume that M > 1. As |g(a1)| = |f(a1) — g(a1)| <
nM™§, there is j so that |a; — b;| < n'/"M§Y/™. Write f(X) =
(X —a1)fo(X) and g(X) = (X — b;)g0(X), and consider

(X = b;)(fo(X) = go(X)) = (a1 = bj) fo(X) + f(X) — g(X).
We see that the norm of the right hand side is bounded by a constant
(depending only on M and n) times §'/™ 4+ §. So Lemma 3 says that
| fo(X) — go(X)|| < K(6%/™ + §) for some constant K, which we may
take to be greater than 1. By induction on n we can find a permutation
o of {1,...,n} such that o(1) = j and, for i # 1,
la; — by(i)| < Co((K8Y™ + K&)Y =D 4 K (6" + §))
< CoK((8™ 4 6)/ (D 4§17 4 6)
< 4C K (Y™ +9),

where the last inequality comes from considering the two cases § <1
and § > 1 and using continuity. Set C' = sup(4CoK,nM). i

For a sharper bound in Lemma 4, and a longer proof, see [6, Appendix
A]. Tt might be worthwhile to point out that, from a constructive point



TRANSCENDENTAL OPERATORS 701

of view, Lemma 4 says something even when f = g. In that case we
cannot necessarily find a permutation o such that a; = b, ;) for all 7.
Indeed, consider (X —z)(X —y) = (X —zAy)(X —zVy). fz =z Ay,
then z < y, while if x = x Vy, then y < z. But it is well known that we
cannot, in general, decide which of z < y and y < z holds (you must
decide on the basis of some arbitrarily good rational approximations
to z and y, and no matter how accurate these are, you might not have
enough information to decide).

Our last lemma is a classical triviality but is needed because we
cannot necessarily decide whether or not a given real number is zero.

Lemma 5. Let x1,...,2, be elements of a metric space (X,d).
Then for any r > 0, and positive integer N, we can find € > 0 and a
partition of {1,... ,n}, such that

(1) e<r,
(2) d(zs,2;) <eifi and j are in the same element of the partition,

(3) d(zx;,z;) > Ne ifi and j are in different elements of the partition.

Proof. Let S be a finite subset of {1,...,n}? such that if (i,5) € S,
then d(z;,z;) # 0. We may think of S as the set of pairs (7,j) such
that d(z;,z;) is known to be nonzero—initially we can take S to be
empty. We may assume that N > 2.

We proceed by induction on m = n? —n —#5S. Let € > 0 be less than
r and less than each d(z;,z;)/N for (i,j) € S. Either d(z;,z;) < ¢
whenever (i,7) ¢ S or there exists (¢,7) ¢ S such that d(z;,z;) > 0.
In the former case the desired partition is induced by the equivalence
relation ¢ = j if (4,j) ¢ S; in the latter case we can increase the size of
S, and we are done by induction. ]

It will be convenient to have a quantitative measure of linear indepen-
dence. Define the modulus of linear independence of a finite sequence
Z1,...,Zy of vectors in a normed linear space V' by

n
Zciaf:i : s |ci:1}.
i1 =1

w(T1,. .., Tn) = inf{
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Note that w is defined as being the infimum of a uniformly continuous
function on a totally bounded set and w is uniformly continuous on
bounded subsets of V™. Moreover, by linearity we have

n
n
Zcimi > w(z1,... ,Ty)suplel,
i=1 i=1
SO Z1,..., T, are linearly independent if and only if w(zy,... ,z,) > 0.

Theorem. Let A be a bounded operator on a normed linear space V.
IfI,A A% ..., A" are linearly independent operators on V., then

S, ={x eV :x Az, A%z, ... A"z are linearly independent}

is dense and open in V.

Proof. For each z € S,,_1 we let p, denote the (not necessarily
unique) polynomial of Lemma 1. We may assume, by induction, that
S,n_1 is dense and open in V. Note that if x € S,,_1, then Lemma
1 says that z € S, if and only if p,(A)z # 0. Because the modulus
of linear independence w(u, Au, A%u, ..., A"u) is bounded away from
zero in some neighborhood of any vector in S,,, we see that S, is open.

Let « be an arbitrary element of S,,_1, and let B be some ball around
x, contained in S,,_; so that w(u, Au, A%u, ... , A" 1u) is bounded away
from zero for u € B. As I,A, A% ..., A" are linearly independent,
pz(A) # 0, so Lemma 2 says that we can choose y in B so that
pz(A)y # 0. As py(A)y = (pz(A4) —py(A))y +py(A)y, either p, # p, or
py(A)y # 0. In the latter case y € S,,, so we may assume that p, # p,.

Factor p, and p, into monic linear factors over the complex numbers,
and let {g;}ics be the finite family of n-fold products of these 2n linear
factors. By Lemma 5 we can find € > 0 and a partition of I such that
3e < ||pz —pyl|, and if 7 and j are in the same element of the partition,
then ||g; — ¢;|| < &, while if ¢ and j are in different elements of the
partition, then ||g; — g;|| > 3e.

As w(u, Au, A%u,... , A" 'u) is bounded away from zero for u € B,
there exists § > 0 such that for each u € B and each polynomial p of
degree less than n, if ||[p(A)u|| < 26, then ||p|| < e. There exists C' such
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that if p is a polynomial of degree less than n, then C||p|| is a bound
on the operator p(A); in fact, we can take C = nCjy ! where Cy > 1 is
a bound on A.

Let p be the supremum of ||g;|| for ¢ € I, and let U be a finite set
of equally spaced elements of the interval connecting = to y so that if
u and v are adjacent elements of U, then ||lu —v|| < §/C(u + €). For
each v in U, use the division algorithm to write p,p, = gp, + r, where
r has degree less than n. We consider three cases.

(1) ps(A)py(A)u and p,(A)u are small,

(2) pe(A)py(A)u # 0,

(3) pu(A)u #0.
In case (2), as w is a convex combination of x and y, either p,(A)z # 0
or py(A)y # 0, so in either case (2) or case (3) we find a vector in
UnNS,, and we are done. Thus, we may assume that case (1) holds
for each u € U. As u € S,_1 and r has degree less than n, then r is
small. Apply Lemma 4 with f = p,p, and g = gp,; if r = f —g is
small enough, then the roots of p, are close to the roots of some g;,),
80 ||pu — qiw) || <&

If u and v are adjacent elements of U, then
(%) (Pu(A) = po(A))u = pu(A)u — py(A)v — pu(A)(u — v).

We may assume that ||p,(A)u|| and ||p,(A)v|| are less than §/2, as
otherwise one of them would be nonzero and we would be done. As p,
is within ¢ of (the real part of) g;(,), the operator p,(A) is bounded
by C(p + €), so the right hand side of (%) has norm less than 26, so
[P — pol| <e.

Thus, if v and v are adjacent elements of U, then i(u) and i(v) are
in the same element of the partition of I. But i(z) and i(y) cannot be
in the same element of the partition, a contradiction which shows that
we must have found u € U N S,,. a
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