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SOME NONCOMPACT HYPERSPACES WITH
THE ALMOST FIXED POINT PROPERTY

SAM B. NADLER, JR.

ABSTRACT. It is shown that for certain types of subsets Z
of arc-like continua, the space of all nonempty subcontinua of
Z has the almost fixed point property. Our results generalize
the well-known theorem that the space of all nonempty sub-
continua of an arc-like continuum has the fixed point property.
An example is given to show that our results do not extend
to circle-like continua. Proofs are based on the use of the
relatively new notion of almost universal mappings.

1. Introduction. A metric space (Y, d) is said to have the almost
fized point property (AFPP) provided that if f : Y — Y is a mapping
(= continuous function), then, for each € > 0, there exists y. € Y such
that d(f(ye),ye) < e. We note that for compact metric spaces, AFPP
and the fixed point property are equivalent. Also, AFPP is preserved by
uniformly continuous homeomorphisms (but not by homeomorphisms
in general).

In [1, 2, 15] certain metric spaces are shown to have AFPP. We
remark that the techniques in this paper are different than those in [2,
15] in that we use the notion of almost universal mappings which was
defined and studied in [1].

A continuum is a nonempty compact connected metric space. For a
continuum X, C'(X) denotes the space of all (nonempty) subcontinua
of X with the Hausdorff metric [9]; if Z C X, then C(Z) = {A €
C(X) : A C Z}. An arc-like (chainable) continuum is a continuum
X such that for each € > 0, there is an e-mapping from X onto [0, 1].
In [14] it was shown that if X is an arc-like continuum, then C(X)
has the fixed point property. In this paper we generalize this result by
showing that C'(Z) has AFPP for certain types of subsets Z of arc-like
continua. If X is a circle-like continuum, then C'(X) has the fixed point
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property [5, 13]. However, as we show in Example 2.6, the analogues
of our results for subsets of circle-like continua are false. We remark
that there do not seem to be any previous results concerning the almost
fixed point property for noncompact hyperspaces.

We now define the notions of universal and almost universal map-
pings. Let (X,d) and (Y, p) be metric spaces. A mapping f: X —» Y
is wuniversal [4] provided that given any mapping g : X — Y, there
exists zo € X such that f(z9) = g(zo). A mapping f : X — YV is
almost universal [1] provided that given any mapping g : X — Y and
any € > 0, there exists z. € X such that p(f(z.),g(ze)) < €.

Recall that if f is a mapping from a continuum X into a continuum
Y, then the induced mapping f : C(X) — C(Y) is defined by letting
f(A) ={f(a):a € A} for each A € C(X).

2. Results. The following lemma is essentially contained in a proof
in [5].

Lemma 2.1. If f is any mapping from a continuum X onto [0, 1],
then f : C(X) — C([0,1]) is universal.

Proof. The proof of 4.1 of [5] shows that there is a subcontinuum
A of C(X) such that f|A maps A essentially onto the simple closed
curve I' which is the manifold boundary of the two-cell C([0, 1]). Thus,
since C(X) is contractible with respect to I' (1.181 of [9, p. 179]),
f|A : A = T cannot be extended to a mapping of C(X) to I'. Hence,
f is an AH-essential mapping [5, p. 156] from C(X) onto C([0,1]).
Therefore, since AH-essential mappings onto n-cells are universal [8],

f is universal.

In [10, 2.11] it was shown that if f is any mapping from a continuum
X onto an arc-like continuum Y, then f : C(X) — C(Y) is universal.
This result implies the fixed point theorem in [14] and a theorem on
weakly confluent mappings in [11, Theorem 4], see [10, 2.12, 2.13].
The following Proposition is a generalization of [10, 2.11] and is used
to prove our results about AFPP.

Proposition 2.2. Let X be a continuum and let Z be a subset of
X such that there is a sequence of subcontinua of Z converging to X.



SOME NONCOMPACT HYPERSPACES 693

Let f be a mapping from X onto an arc-like continuum M. Then, the
mapping A
flc(z): C(z) —» C(M)

is almost universal.

Proof. Let € > 0 and let g : C(Z) — C(M) be a mapping. Since
M is an arc-like continuum, there is an e-mapping h. from M onto

~

I =[0,1]. By [5, 2.5], he : C(M) — C(I) is an e-mapping. Hence,
using the compactness of C'(M) and C(I), an easy sequence argument
shows that there exists a § > 0 such that if S C C(I) is of diameter

less than 8, then h_1(S) is of diameter less than . Let H denote the
Hausdorff metric for C'(I). Since X is compact, h. o f is a uniformly
continuous mapping from X onto I. Thus, from the hypothesis on Z,
there is a subcontinuum Y of Z such that

H(he o f(Y),I) <.

Hence, h. o f(Y) is a subinterval I5 = [sg,ts] of I such that s5 < § and
ts > 1—90. Define r5 : I — I5 by

ss, if0<t<ss
rs(t) = t, ifss<t<ts
ts, ifts <t <1.

We easily see that for all t € I, |rs(t) —t| < §. Hence,
(%) VI eC(),  H(J,#(T) <.

Let k. = he o f|Y. Since Y is a continuum and k. maps Y onto Ij,
k. : C(Y) = C(I5) is universal by Lemma 2.1. Note that since Y C Z,
#50he o g|C(Y) is a mapping defined on all of C(Y) into C(Is). Thus,
k. : C(Y) — C(I5) being universal, there exists A € C(Y) such that

~

Hence, by (x), H(he o g(A), k-(A)) < §. Therefore,

H(ho(g9(A)), he(f(A))) < 6.
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Thus, using the definition of §, we see that g(A) and f(A) are less than
e apart in the Hausdorff metric on C'(M). Therefore, since A € C(Z),
we have proved Proposition 2.2. u]

Theorem 2.3. Let X be an arc-like continuum. If Z is a subset of
X such that there is a sequence of subcontinua of Z converging to a

continuum M O Z, then C(Z) has AFPP.

Proof. Since M is a subcontinuum of X, M is an arc-like continuum
or a point. Let f: M — M be the identity map. Then, by Proposition
2.2,

flc(2):C(Z) — C(M)

is almost universal. Therefore, since f(A) = A for all A € C(Z), it
follows easily that C'(Z) has AFPP. O

A metric space Y is said to be continuumuwise connected provided
that given any two points p,q € Y, there is a subcontinuum S(p, q)
of Y such that p,q € S(p,q). In the following theorem Y denotes the
closure of Y in X.

Theorem 2.4. LetY be a nonempty continuumwise connected subset
of an arc-like continuum X. Then, for any Z such thatY C Z C Y,
C(Z) has AFPP.

Proof. First note that since Y Is nonempty and connected, Y is a

continuum. Next let {y1,y2,...} be a countable dense subset of Y.
For each n = 1,2,..., there is a subcontinuum Y,, of ¥ such that
Yo D {y1,¥2,--- ,yn}. Clearly, {Y,,}22; converges to Y. Thus, since

Y C Z CY, Z satisfies the hypotheses in Theorem 2.3. Therefore, by
Theorem 2.3, C(Z) has AFPP. o

A composant of a point p in a continuum X is the union of all those
proper subcontinua A of X such that p € A [7, p. 208] Any composant
in a continuum X is clearly continuumwise connected and is dense in
X [7, Theorem 2, p. 209]. Thus, the following result is a special case
of Theorem 2.4.
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Corollary 2.5. Let X be an arc-like continuum. If Z is any subset
of X such that Z contains a composant of X, then C(Z) has AFPP.
In particular, the space of all nonempty subcontinua of any composant
of X has AFPP.

The following example shows that the results above do not extend to
circle-like continua.

Example 2.6. Let X be the dyadic solenoid, i.e., X is the inverse
limit of countably many circles with the bonding maps z — 22 [3, p.
145]. It is known that X is a topological group and that the composant
Z of the identity element e of X is an arc component of X. We will
show that C'(Z) does not have AFPP. By [12, Proof of Theorem 2], or
by [6, proof of 4.5], there is a homeomorphism A from C(X) onto the
cone K(X) over X such that h(X) is the vertex v of K(X) and, for
all {z} € C(X), h({z}) is the point (z,0) in the base B(X) of K(X).
Since h is uniformly continuous and AFPP is preserved by uniformly
continuous homeomorphisms, it suffices to show that h[C(Z)] does not
have AFPP.

We will denote any point (z,0) € B(X) by x. Let m denote the
natural projection from K (X) — {v} onto B(X), i.e., n(z,t) = z for
all points (z,t) € K(X) — {v}. Let ¢ € Z be such that ¢ # e. Let
7 : X — X be translation by ¢ under the group multiplication on X,
ie,(x) =q-zforalzec X. Since 7(e) =¢-e=gq, 7(Z)NZ # @.
Thus, since Z is an arc component of X, 7|Z maps Z into Z. Since
q # e, 7 is fixed point free. Define f on K (X)—{v} by letting f = To.
Since 7 is fixed point free and X is compact, there exists an £ > 0 such
that f(z,t) and (x,t) are at least € apart for all (z,¢) € K(X) — {v}.
By (2) of 1.52.1 of [9], C(Z) is an arc component of C(X)—{X}. Thus,
since h(X) = v, h[C(Z)] is an arc component of K(X) — {v}. Hence,
since h({z}) = z for all {z} € C(Z), we have that h[C(Z)] = n=1(2).
Since 7|Z maps Z into Z, f|m 1(Z) maps 7 !(Z) into Z. Therefore,
since f(z,t) and (z,t) are at last € apart for all (z,t) € = }(Z), it
follows that h[C(Z)] does not have AFPP.
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