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ABSTRACT. We give precise conditions under which the
method of harmonic balance will correctly predict the exis-
tence of periodic solutions for a system with relay hysteresis.
The equation modeling the system is assumed to be of the
form L, [y](¢t) = fly](t), t > 0, where Ly, is a constant coef-
ficient linear differential operator of order m > 2 and f is a
possibly discontinuous operator with hysteresis.

1. Introduction. For a system of the form

(1) Linlyl(®) = flyl(®), >0, m=>2,

the method of harmonic balance is a heuristic method for predicting
the existence of periodic solutions, see [1, 7, 21, 23]. Here, L,, is a
constant coefficient linear differential operator of order m > 2 and f[y]
can be any well-defined mapping, not necessarily continuous, operating
on functions from an appropriate space. When f[y](t) is for each ¢ just
a nonlinear function of the number y(t), there is an extensive literature
concerned with general existence, uniqueness, and stability, see [5, 6,
8, 9, 11, 12, 20, 24, 25, 26|, but only a few papers deal with the
existence of periodic solutions, see [10, 13, 19, 22]. For an overview
of the literature on hysteresis we refer to [27].

2. Modeling hysteresis. There are two types of hysteresis, relay
(or passive or positive) hysteresis and active (or negative) hysteresis. In
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FIGURE 1.

relay hysteresis, there is given a pair of real numbers o < 3 (thresholds)

and a pair of real-valued continuous functions h,(u) > h.(u) (“0” =
p o - C

open, “c” = closed) defined respectively on [a, c0) and (—o0, 5] (Figure

1).

For a given continuous input w(t), ¢ > to, one defines the output

v(t) = flu](t) of the relay hysteresis operator as follows.

ho(u(®)) if u(t) > B;
) heut)) i u(t) < o

@ T =4 ) i u(t) € (@ 8) and u(r (1)) = B:

he(u(t)) if u(t) € (a,B) and u(7(t)) = a;

where 7(t) = sup{s | s € [to,t],u(s) = o or u(s) = B}. If 7(¢) does not
exist (i.e., u(o) € (a, B) for o € [to,t]), then f[u](co) is undefined—we
must initially set the relay open or closed when u(ty) € (o, ). When
the input u(t) is identically zero we set f[u](t) = 0. If either h,(8) >
he(B) or ho(a) > he(a) (as in Figure 1), then it is clear that the
output f[u](t) will be discontinuous for certain continuous inputs u(-).
A little thought will convince the reader that in this case f[u] is not
continuous from C([a, b], R) into PC([a,b],R) or L”((a,b), R), for any
interval (a, b).
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FIGURE 2.

Active hysteresis allows “trajectories” in the interior of the hysteresis
region
H= {(U,U) ‘ a<u<B, hc(u) <v< ho(u)}

In active hysteresis, which is perhaps best pictured as representing
either magnetization or plastic deformations, if the input u(t) changes
from increasing to decreasing as w(t) reaches a point v € («,3) (see
Figure 2), then the pair (u(t), f[u](t)) traces out an interior path in H.
If u(t) increases after it reaches the value d, the trajectory (u(t), f[u](t))
traces out another interior path (dashed in Figure 2). Clearly this type
of hysteresis postulates the existence of two families of curves inside
H, one family for decreasing u(-), one family for increasing u(-), with
certain reasonable regularity properties. Note that in the case of relay
hysteresis, we would have f[u](t) = h.(u(t)) in the given example.

In the case of active hysteresis, the output of the hysteresis operator
is effectively modelled as a particular selection from a compact-convex-
valued upper semi-continuous multifunction 7{[u](¢) which for a given
u(t) € [o, B] has the interval [h.(u(t)), ho(u(t))] as its value. Thus this
type of hysteresis is readily treated by methods of our earlier paper
[15]. However, in the case of relay hysteresis, our previous results
cannot be applied because the associated multifunction does not have
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convex values.

3. The existence of periodic solutions. In this section we convert
the question of the existence of periodic solutions of the equation (1)
L., [y](t) = fly](t), with f[y] a hysteresis operator of the form (2), into
an abstract problem to which we can apply topological methods based
on the results in [14]. We convert (1) to a vector equation in the usual
way, defining z(t) = [y(t),y'(t), ... ,y™ D ()]* (tr = transpose),

(3) #(t) = Az(t) + Flz](t),  2(0) = 2(T),

T unknown, Flz] = [0,...,0, f[z]]*. We normalize the unknown
period to 27 by replacing ¢ by (27/T)t, resulting in the following
problem for z(t) = z(wt), w = T/2m:

(4)  wi(t) — Az(t) = F[2](t), 0<t<2m  2(0) = 2(2n).

We will assume below that in a suitable domain the Green’s func-
tion exists for the left side of (4) with the given periodic boundary
conditions, in which case it is given by

eAlt=s)/w, 0<s<t

G, (t— - (1 7 — 27rA/w1{
( S) ( /W)[ € ] eA(27r+t_S)/W’ t<s <o

In this case (4) is equivalent to

2m
(5) 2(t) = | Gu(t = s)F[2l(s) ds = (G © F[2]) (D).

0
Let W12((0,27), R™) be the usual Sobolev space of absolutely con-
tinuous R™-valued functions defined on [0,27] with derivative in
L?((0,27),R™), and let Z denote the subspace of functions z(-) for
which z(0) = z(2w), extended to R by 27-periodicity. Let X denote
the space of functions which belong to C([0,27], R™), extended to R
by 2m-periodicity. It is clear that G, : L?((0,2nr), R™) — Z, for any
w > 0.

For each z(-) € x the associated Fourier expansion

z(t) = ap + Z(akeikt + ape k)
k=1
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converges in the L?((0,27), R™) norm to z(-), and we can define the
projection operator

P, : X —spanc{l, e e ... e e M}

P, :xz(t) — ao + Z(akeikt + are*) = P, [z](t).
k=1

For the given hysteresis operator F[u] = (0,...,0, f[u])" with f(u)
defined by (2), we define a set-valued map F[u](t) which for u(t) # o, 8
coincides with F[u](t), i.e., it is the singleton {(0,...,0, f[u](¢))}.
For u(t) = a(B), Flu|(¢) is the interval [h.(a),ho(c)] (respectively,
[he(B), ho(B)]). The associated Nemytskii operator Flu] is defined as
all measurable selections v(-) from {Flu](t) | 0 < ¢t < oo}, which
satisfy v(t) = v(t + 27) a.e. on [0,00]. Therefore F : X — {U |
U C L*((0,27),R™)}.

For our purposes, the input u(-) will take on the values «, 8 at most
a finite number of times and «'(¢) will be nonzero at these instants. In
this case any function in F[u](-) will consist of a fixed finite number of
pieces of h,(+) and h.(-), with arbitrary values from [h.(t), ho(t)] at the
jump points. Thus, G, o F[u] will be in fact piecewise C* for m > 2.

Continuing our abstract formulation from (5), we define

T, =i0G, oF : X — 2% where i is the natural imbedding of Z into
X. We note that ¢ is a compact imbedding, and we will not bother to
write it in what follows. We can now rewrite (5) as

(6) 0e (I-T,)z.

If we set X,, = P, X, X* = (I — P,)X, z,(t) = P,[z](t), z*(t) =
(I — Pp)[z](t), then we can create the following homotopy for z € X,
0<A<1:

(6)
{ (a) 0, €(I—P,T,)Pnlz] + MP,(I -T,)— (I—P,T,)P,}[7],
(b) 0* € (I — P, —\T,)[z]
When A =0, (6p) is the equation of harmonic balance, while for A =1

we obtain an equation which is homotopic to the original problem (5)
(see [15, Remark 3]).
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Our approach is to assume that the harmonic balance equation has
a solution (@, Z,) with nonzero degree, then place assumptions on the
problem (see (A1)—(A5) below) which allow us to use the homotopy
(6)) to conclude that the degree is nonzero when A = 1, so the original
problem has a solution.

There are two technical complications which must be addressed. The
first stems from the fact that the problem is autonomous, thus the time
origin is not fixed—if z(¢) solves the system (4), for some w > 0, so does
z(t + ) for any 6 € R. This means that the Fourier coefficients ay, are
not uniquely determined, i.e., if (ag,a1,... ,a;,) are the coefficients of
2(t), then (ag,a1€®, ... ,ane’) are the coefficients of z(t+#). To select
a single-valued branch of solutions for 0 < A < 1, we can arbitrarily
(without loss of generality) select a coefficient a;, (ip > 1), which has
one component, a;,j, with Im(a;,j,) = 0, Re(aiyj,) # 0. We then
“normalize” by keeping a;, j, real-valued as (w, x,,) vary by introducing
the map Vy : Ry x X, x X* — Rx2%» x2X" defined by V) = (Vi¢, V),
0 < A <1, where

Vi = (argaiyj, (w, 2n), right side of (6x)(a))),
VY = right side of (6, (b)),

and replace (65) by

(H)\) { (a‘) 0e V)il[w’ Zn, Z*]a

(b) 0€ VYw,zn, 2]

We will ask that deg (V§*, Q,,0) # 0 for an appropriate region Q,, C
R, x X, of (w, z,)-space containing (@, Z,).

The remaining technical difficulty is due to the fact that the equations
0 € V4, (6x) and (6) are not entirely equivalent because we are dealing
with inclusions rather than equations (e.g., A — A is not in general
{0} for a set A). However, an easy argument shows that if the degree
is nonzero for any one of them, then it is nonzero for the others [15,
Remark 3].

Below, || - || will denote the norm in L*°((0,27), R™). Obviously, it
reduces to the sup norm on X. We are now in a position to prove the
following:
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Theorem. If Assumptions (A1)—(Ab) below hold, then the nonlinear
system L., [y](t) = fly](t), t > 0, m > 2, with f the relay hysteresis
operator defined by (2), has a nontrivial periodic solution.

(A1) The continuous functions h,(u), h.(u) in (2) both satisfy
|h(w)] < m|u| +n2 for some constants n1 > 0, n2 > 0;

(A2) Let A, C Ry x X, be the open set satisfying the following
assumptions

(h1) For all (w, z,) € A,, there exists r1 = ri(w, z,) > 0 such that

X 1/2
Var| S0 6P| s s (- Pl

|k\2n+1 HZ*H<7’1 yE}-[z,fFZ*]
<r (UJ, Zn)
where G.,(ik) is the Fourier transform of the matriz G, (t) evaluated
at ik.
(h2) For all (w,z,) € A, we have ||(I — P,T,)[z,]|| < o(w,2s)

where

0 < o(w,2n)

n 1/2

= \/271-[ Z |Gw(ik)|2] sup ||P,Flzn + 2*] — P, Fz]]]
k=0 [lz*]|<r1

and equality holds on 0A,,.

The term |G, (ik)|? is the sum of the squares of the entries, and the
last “set-valued norm” on the right is defined by the usual convention:
sup ||lw — wy|| | w € P, Flzy + 2*], wy, € PyF|zn]}-

Note that (I — P,T,)[zy] is set-valued. Its norm is defined by the same
convention.

Let 2, be the connected component of A, containing the solution
(@, Z,) of the harmonic balance equation

(60) O, € (I - PnTw)[zn]a

for which arga;,;,(@,%2,) = 0. Let @ = {(w,2p,2*) | (w,2n) €
Qp, |25 < r1}-
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(A3)(i) I — e*™4/% is invertible whenever w is such that

(w,z,) € Q, for some zy,;

(ii) (w,0) ¢ Q, for any w € Ry. Moreover, the function (w,z,) —
@iy jo (W, 2n) has real part different from zero in .

(i) deg (V§,2n,,0) is well defined and different from zero.
Here Vit = (arg aiyj, (w, 2n), (I — PpT,)[2n])-

(A4) There is a solution in S, of the harmonic balance equation,
(@, Zn) such that, if we denote the mth component (Z,(t))m by (),

)
(a) infigom@(t) < a < B < supjgoq (1)
(b) For all t; such that §(t;) = a or B, §'(t;) # 0.
(A5) There exists 9 > 0 such that

(a) Q C Ry X clB(Zn,e0) where cl B is the closure of the ball of
radius €9 about Z,, in X.

(b) z € clB(Z,,e0) = y(t) = (2(t))m satisfies (A4)(a),(b).

Remark 1. (Al) guarantees that F satisfies the linear growth condi-
tion, (A2) is the “low-pass filter” assumption [2], i.e., it implies that
the linear part of the system as represented by G, attenuates high
frequencies.

Remark 2. The assumption (A3)(i) is not essential, since any given
system can be “pole shifted” to an equivalent system satisfying (A3)(i).
To see this, note that the eigenvalues of (e274/« — I) are (e2™/« — 1)
where ) is an eigenvalue of A. Thus, (A3)(i) will hold if Re A\; # 0 for
all the eigenvalues Ay of A. This can always be achieved by using the
equivalent system z(t) — (A — vI)[z](t) € Flz](t) + vIz(t). For some
real 7 this system will satisfy (A3)(i) and our hypotheses will not be
affected. In fact, in most real-world situations, one has Re A\, < 0 for all
Ak. Assumption (A3)(ii) guarantees that the trivial solution is excluded
when we apply a fixed point theorem or degree theory. Assumption
(A3)(iii) implies in particular that when A = 0 there is a solution (@, 2,)
of (Hy). Therefore, if the homotopy (H,) is admissible in Q, where Q
is the closure of the set , (i.e., the set S = {(w,2) € Ry x X | (w, 2)
is a solution of (H,) for some XA € [0,1)} does not meet Of), then
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FIGURE 3.

the homotopy invariance property and the solution property of the
topological degree guarantee the conclusion of the Theorem.

Remark 3. (A4) and (A5) guarantee that F is well-behaved on Q.
(A4) postulates that the trigonometric polynomial §(¢) crosses the
thresholds whenever it attains them. Thus there will certainly exist
€0 > 0 such that z € B(Z,,£¢) will have the same property. Assumption
(A5) postulates that £y can be chosen large enough to ensure that the
projection of  into X is contained in cl B(Z,, o).

Proof. For simplicity, we assume §(0) < «, so the hysteresis operator
is easy to picture for all ¢ > 0. Since the values of F are selected from
the two functions in Figure 3, it is easy to show that i oG, o F is upper
semicontinuous and compact (takes bounded sets from cl B(Z,, ) into
compact sets in X).

Let z € clB(%2,,e09). Then (2(0))m < a and (2(t))m will cross a
threshold « or 8 at most a finite number of times, say ¢; < -+ < t;, for

example, ((t1))m = @ (2(t2))m = B (jump), (=(t5))m = B (no jump),
(2(t4))m = « (jump), and so on. Then every v(-) € F[z] will have the
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form

he((2(t1))m), 0 <t <ty

Db1, p1 € [hc(ﬁ)aho(ﬂ)]a t=tg,
V(t) = { ho((2(t1))m), to <t <ty

D2, p2 € [hc(a)a ho(a)]a t= t4;

etc.....

It is clear that the set of all possible such v(-) is closed and convex in
X. Therefore, the operator 7, = i o G, o F maps X into 2% and is
compact, upper semicontinuous with closed, convex values and satisfies
a linear growth condition (see Remark 1).

We will now prove existence by a two-stage argument. First, for each
(w, zn) € Oy, and each 0 < A < 1, we will show that we can apply the
Schauder fixed point theorem for set-valued maps in the ball B(0,r;)
to get a solution 23 (w, z,,) of Hx(b). Thus, Hx(a) becomes an equation
in w and z,, when we replace z* by z}(w, z,). We will then show that
the original equation (1) has a solution by showing that H) represents
an admissible homotopy in (2 (see Remark 2).

We turn to the first stage. It is clear that for a given (w,z,) in
Q,, H\(b) represents a fixed-point problem z* € M)[z*] for the map
My : z* — AN — P,)T,[z* + z,) on (I — P,)X. If ||z*|| < r1, then
(recalling that for a multifunction H[ul, |[H[u]|| = sup,cp () |[v]]):

[[MA[2"][] = [[AI = Po)To[z" + 2]l < |G — Po) F[2" + z4]||

R 1/2
<var{ X IGuP) s s ([0-Pl

k| >l [|z*||<r1 veF[2*+4zn]

<mr

by (A2)(h1), so My : B(0,r) — 25m) in (I — P,)X. Now the
Schauder fixed-point theorem for multivalued maps is valid for any
upper semi-continuous, compact multifunction with convex compact
values, and as we have already noted, M) is such a map for any
A € [0,1]. Therefore, there exists a fixed point z3(w, z,) of the map
M)y, for each (w,z,) € Q,, 0 <A< 1.

Under our assumptions the topological degree of the compact convex-
valued vector field Vy, : (w, 2) — Vi[(w, 2)] on Q is defined for A € [0, 1].



PERIODIC OSCILLATIONS 679

We can now show that 0 ¢ V)[(w,2)] for (w,2z) € 092, 0 < X\ < 1,
thus by the homotopy invariance property of the topological degree
0 # deg(Vh,Q,0) = deg(Vy,Q,0) for A € [0,1), which implies the
existence of a nontrivial 2w periodic solution of (1) in Q.

Suppose there exists (w, 2z, 2*) € 0§ such that 0 € V)|w, 2y, 2*] for
some X € [0,1) where z* stands for z}(w, z,). Then, in particular, we
would have selections v, € F[z,] and v, € F[z] such that at least one
of the following inequalities holds as equality:

(73‘) ||Zn - Pnngn” < U(Wa Zn)
(7b) [12°]] < r1(w, 20)

and for which

(83) On = (zn - Pnngn) + )\[(Zn - Pnng) - (zn - Pnngn)]
(8b) 0" = (I — Pu)(z — AGu1).
Equations (8a)—(8b) imply that

0> ||zn — PaGuvnl| — Al|PaGu (v — vn)|
0> [|z*]] = All({ = Pn)Gull,

respectively. From these inequalities we obtain
(9a)

0> Hzn_PnngnH - )‘HPnguJ(v - Un)” > Hzn_Pngw”nH - )\J(w, zn)
(9b) 0= ||| = Ary(w, zn)
where the last estimates on the right hand side of (9a) and (9b) are
obtained by the usual Fourier expansion techniques, i.e.,

n R 1/2
1P.Gulv = )l £ V2| 3 1GuGOP| 1o = vl < ofwr20)

|k|=0

|<I—Pn>gw||sm[ ) GwakwﬂlmnanSr1<w,zn>

|k|>n+1



680 J.W. MACKI, P. NISTRI AND P. ZECCA

and by using (A2)(h2) and (A2)(h1), respectively. But A € [0, 1), hence
from (9a)-(9b) we obtain

0> ||zn — PnGuvnl| — o(w, zn)
0> [z*]] = r1(w, zn).

Therefore, neither (7a) nor (7b) can reach equality, contradicting the
fact that (w, z,,, 2*) € 09 for some A € [0, 1). o
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