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A CLASS OF CONTINUA WHICH ADMITS
NO EXPANSIVE HOMEOMORPHISMS

HISAO KATO AND KAZUHIRO KAWAMURA

ABSTRACT. It is proved that any Suslinian, hereditary
@-continuum admits no expansive homeomorphisms.

1. Introduction. A compact, connected metric space is called a
continuum. A homeomorphism f : X — X of a continuum X is called
ezpansive if there exists a constant ¢ > 0 (called the ezpansive constant)
which satisfies the following condition. For each pair of distinct points
x,y of X, there exists an integer n such that d(f"(z), f"(y)) > ¢, where
d is a metric of X. Expansiveness does not depend on the choice of
metrics of X. It is an interesting problem whether a given continuum
has an expansive homeomorphism of itself.

To consider this problem, the first author suggested the idea of
using monotone decompositions of continua in [7]. Using this idea, we
show that any Suslinian, hereditary #-continuum admits no expansive
homeomorphisms.

Definition 1. Let X be a continuum. 1) X is called a 6-
continuum (a 6,-continuum, respectively) if for each subcontinuum
Y of X, the number of components of X — Y is finite (at most
n, respectively). If each subcontinuum of X is a f-continuum (-
continuum, respectively), X is called a hereditary 6-continuum (a
hereditary 0,,-continuum, respectively).

2) X is called Suslinian if it has no uncountable collection of mutually
disjoint nondegenerate subcontinua of X.

3) X is called decomposable if X = AUB for some proper subcontinua
A and B of X. If each subcontinuum of X is decomposable, X is called
hereditarily decomposable.

It is easy to see that Suslinian continua are hereditarily decomposable.
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Our main theorem is

Theorem 2. Any Suslinian, hereditary 0-continuum admits no
expansive homeomorphisms.

2. The proof of Theorem 2. First, we prepare some results needed
in the proof.

Theorem 3. [2, Theorem 1, 8, Corollary of Theorem 8, 3, Theorem
3].

1) Any hereditarily decomposable, 0-continuum is a 6,-continuum
for some n.

2) Let X be a hereditarily decomposable 0,,-continuum. Then X
admits an upper semi-continuous monotone decomposition D such that
X/D is a nondegenerate finite graph which is a 0,,-continuum. Further-
more, D = {T?"(z)|z € X}, where T is the aposyndetic set function
defined in [4, 2].

Notice that each homeomorphism f : X — X satisfies f(T(z)) =
T(f(x)) for each z € X.

Lemma 4. [6, Lemma 2.2]. Let f : X —-X be an expansive
homeomorphism of a compact metric space X. There exists a § > 0
such that, for each mondegenerate subcontinuum A of X, there exists
an integer ng > 0 which satisfies one of the following conditions

() diam f™(A) > § for each n > ng or
(xx) diam f~™(A) > § for each n > ny.

Let G be a finite connected graph which is not a simple closed curve.
The set of all branch points of G is denoted by B(G) and the set of
all end points of G is denoted by E(G). The set of all vertices of G,
denoted by V(G), is B(G)UE(G). A circle C in G is called a free circle
if CNcl(G—C)is apoint. Let S(G) = {b € B(G)| there exists a free
circle C' such that {b} = CNcl(G — C)}. Let e be an edge of G whose
end points are v and v € V(G). The open arc e — {u,v} is denoted by
inte.
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Lemma 5. Let G be a finite connected graph which is not a
simple closed curve. There exists an integer N > 0 such that each
homeomorphism h : G — G satisfies WV |V (G) = idy gy and h™(e) = e
for each edge e of G, RN (C) = C and h™N|C is orientation preserving
for each free circle C of G.

Remark. Any “irrational rotation” of the unit circle has no periodic
points. So Lemma 5 does not hold for simple closed curves.

Lemma 6. Let X be a Suslinian continuum and Y be a continuum.
Suppose that f : X — X is an expansive homeomorphism, p: X - Y is
a monotone map which is not a homeomorphism, and h :' Y =Y 1is a
homeomorphism. If h-p =p- f, then h has a periodic point.

Proof. Suppose, on the contrary, that h does not have a periodic
point. Since f is expansive, we can take a § > 0 as in Lemma 4. For
any subset M of Y, we define M? as follows.

1) M’ = {y € Y] there exists a sequence (y;) of points of M such
that y; — y, ¥; # y, and diamp~(y;) > § for each i}.

Then we have
2) M? is closed in Y and

3) (M%) = (M?®) C M? where (M?)' denotes the derived set of M°.
For each ordinal number «, we define M, by My =Y, My = (M,)°
and M, = Ng<aMg, where o is a limit ordinal.

We claim that
4) M, # @ for each countable ordinal «.

It is clear that M; # @. Take a y; € Y such that p~!(y;) is not a
point. Applying Lemma 4, there exists an integer ng > 0 such that one
of the following conditions holds:

(x) diam f*(p~'(y1)) = diamp~1(h"(y1)) > ¢ for each n > ng or

(xx) diam f "(p~!(y1)) = diamp (h "(y1)) > § for each n > ny.
Assume that (*) holds. As the point y; is not a periodic point of

h, {h"™(y1)}n>n, is infinite. So we can take a convergent subsequence
{h™(y1)} such that h™(y;) — ya for some y; € ¥ as k — oo and
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h™(y1) # yo for each k. By the definition 1), we have yo € Mo.
Further, we easily have that hi(y,) € M, for each integer i. The case
(*%) is similar.

Take a countable ordinal A and assume that for each o < A, there
exists a y, such that h'(y,) € M, for each integer i. If \ = a + 1, we
can find a y) by the same argument as above. If A is a limit ordinal,
we take an increasing sequence a3 < ag < --- — A. We may assume
that the y,,’s converge to a point yx. Then y) is the desired point. So
we have proved 4).

Since Y is separable, there exists a countable ordinal oy such that
M, = M,, for each o > . In particular, (Mgo) = Muyy+1 = Magt2 =
(M3,)° = (MJ,). Hence, May41 is a perfect and compact set, and so
is uncountable. But for each y € My, 41, diamp~1(y) > § > 0, which
contradicts the assumption that X is Suslinian. This completes the

proof. a

Proof of Theorem 2. Let X be a Suslinian hereditary #-continuum
and suppose that f : X — X is an expansive homeomorphism. Take
6 > 0 as in Lemma 4.

Step 1. Let F = {K|K is a nondegenerate subcontinuum of X such
that f(K) = K}.

Take a minimal element M of F. The existence of M is guaranteed
by Lemma 4 and Zorn’s Lemma. By Theorem 3 and the fact that
f(T(z)) = T(f(z)), there exists a monotone map m : M — G onto a
graph G and a homeomorphism h : G — G such that m - (f|M) = h-m.
Define an integer Nj as follows. If G is not a simple closed curve,
let N7 be the integer as in Lemma 5. If GG is a simple closed curve,
then h has a periodic point v € G by Lemma 6 (note that a simple
closed curve admits no expansive homeomorphisms [1], so m is not a
homeomorphism). Let N; be a period of v such that A" is orientation
preserving. Clearly, m - (f/M)™ = Nt . m. We consider two cases.

Case 1.1. For each t € Fix (h™) (= the set of all fixed points of A1),
m~1(t) is a point.

If GG is neither a simple closed curve nor a one point union of simple
closed curves, fix an edge e of G. Then by the choice of Ny, h'V1(e) = e.
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Note that h™Vi|e # id (see [1, Theorem 4]). We may assume that there
exist two distinct points p,q € e N Fix (h™¥*) such that

1) for each t € (p,q), h™*(t) — p as k — oo and hV*(t) — q as
k — —oo.

Suppose that m~1(t) is a point for each ¢t € [p,q]. Then m1[p,q] is
an arc which is invariant under f™'. This contradicts the assumption
that ™ is expansive [1, Theorem 4]. So there exists a ty € (p, q) such
that m~1(¢o) is not a point.

Notice that diam fMk(m~1(ty)) = diamm *(hM*(t5)) — 0 as
k — £oo. Using this fact and the monotonicity of m, we can take two
distinct points z,y € m~1(ty) such that d(fN*(z), fN*(y)) < ¢ for
each k € Z, where c is an expansive constant of fV1. This contradicts
the assumption.

Next we assume that G is a simple closed curve. If v is the unique
fixed point of AN, then hV1¥(t) — v as k — 4o, for each t € G — v.
If there are fixed points other than v, we can find distinct points
p,q € Fix (k1) and an open arc (p,q) in G such that hV**(t) — p
(— g, respectively) as k — oo (— —oo, respectively) for each ¢ € (p, ).
In both cases, we have a contradiction by the same argument as above.
Also, in the case that G is a one point union of simple closed curves,
we have a contradiction.

Case 1.2. There exists a t; € Fix (h™V1) such that m~1(¢;) is not a
point. By the choice of M, t; ¢ Fix (h) and N; > 2. So there exists an
integer k; such that

2) k1 > 2 and ky divides Ny.

3) hi(ty) # hI(t;) foreach 0 < i # j < k; — 1 and h*1(¢;) = t;. Let
Xi=m Yhi(ty)) = fi(m (t1)),i=0,... k1 — 1. Then {X;|0<i<
k; — 1} is a disjoint collection of nondegenerate subcontinua of X and
fN1(X;) = X; for each i. By Lemma 4,

4) diam X; > ¢ for each i =0,... ,ky — L.

Now we proceed to Step 2.

Step 2. Let f, = f™* and F, = {K|K is a nondegenerate subcontin-
uum of X, such that fo(K) = K}.
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Take a minimal element M, of F». By Theorem 3 again, there
exists a monotone map ms : My — G5 onto a finite graph G5 and a
homeomorphism hy : G2 — G5 such that he-mg = mg - (f2| M3). Define
Ny as in Step 1.

Case 2.1. For each t € Fix (h}?), m, (t) is a point.

In this case, we can deduce a contradiction by the same argument as
in the Case 1.1.

Case 2.2. There exists a t € Fix(ha?) such that my'(ts) is
nondegenerate continuum. As in the Case 1.2, we can take an integer
ko such that

5) ko > 2 and ky divides Ns.

6) h¥(ta) # hy(ts) for each 0 < u # v < ky — 1, and h¥2(ty) = t,.
Let X;, = fi(my'(h%(t2)) = fi(f¥(my'(t2)), 0 < i < ky — 1 and
0<wu<ky—1 Then {X;,|0<i<k;—1,0<u<ky—1}isa disjoint
collection of nondegenerate subcontinua of X and sz ?(Xjy) = X4y and
X C X;. Again,

7) diam X;, > 0 foreachi=0,... ,ky —land u=0,... ,k2 — 1.

Continuing these processes, we obtain an uncountable disjoint collec-
tion
{K; J0<id <k —1,0<i3<ky—1,...}

11'2..

defined by K iyis... = Xi; N Xiyin N Xiginis --- - By conditions 4), 7)
and so on, each Kj, ;,i, ... is a nondegenerate subcontinuum of X. This
contradicts the assumption that X is Suslinian and completes the proof.
]

It would be interesting if the hypothesis “hereditary f-continuum”
can be replaced by “f-continuum.” In our situation, §-continuum is a
0,-continuum for some n. An easy example shows that a Suslinian,
0,-continuum need not be a hereditary #-continuum.
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