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AN ALGORITHM FOR THE
PROJECTIVE CHARACTERS OF
FINITE CHEVALLEY GROUPS

RANDALL R. HOLMES

ABSTRACT. An algorithm is obtained for the Brauer char-
acters afforded by the projective indecomposable modules (in
the defining characteristic) for the finite universal Chevalley
groups. Tables of character degrees for the special linear group
SL(4,2™), m = 1,2, 3, are provided.

In [4] we expressed in the language of directed graphs an iterative pro-
cedure for finding the irreducible constituents (with multiplicity) of a
product of irreducible Brauer characters (in the defining characteristic)
of a finite universal Chevalley group. Roughly speaking, the first itera-
tion produces edges which originate at the given product (viewed as a
vertex). Each of these edges terminates at either an irreducible Brauer
character or a product of such; in the latter case, a second iteration is
required. In this manner, paths (sequences of edges) are constructed
which eventually terminate at the desired irreducible constituents, the
multiplicities of which are then determined by the paths.

The method described uses Steinberg’s tensor product theorem and
depends on a knowledge of the composition factors (with multiplicity)
of products of irreducible modules, with restricted highest weights, for
the including infinite algebraic group. Indeed, the method is just a
formalization of how one possessing this knowledge would naturally
proceed by hand. (Although the required composition factors are not
known, in general, they would be known, in principle at least, should
Lusztig’s conjecture be proven.)

We will show in this paper that if we apply our iterative procedure
to a product of just two irreducible Brauer characters, then any paths
which terminate at the Steinberg character will have at most two non-
trivial edges (provided the characteristic is large enough). Because of
this, it is easy to determine all such paths and, hence, the multiplicity
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of the Steinberg character as a constituent of the product (given the
information mentioned earlier regarding the modules for the algebraic
group). Since this multiplicity is the main ingredient of the recursion
formula obtained in [4] for the characters of the projective indecom-
posable modules, we easily obtain, in turn, a more explicit formula for
these important characters (see 2.7 as well as 2.9 and 2.10).

If the characteristic is too small, then our proofs are no longer valid.
If this is the case, however, it is possible to use an explicit knowledge of
the modules for the algebraic group to amend our techniques in order to
obtain similar results. In section 3 we demonstrate this for the group
SL(4,2™). In particular, we compute the degrees of the projective
indecomposable characters of this group in the cases m =1,2,3. (The
results of section 3 appear in the author’s University of Illinois (Urbana)
thesis. The author gratefully acknowledges the guidance and kind
encouragement of his advisor, Professor Michio Suzuki.)

1. Preliminaries. Let p be a prime number, and let m €
Zt\{0} U {oco}. In what follows, m will be assumed to be fixed
except that definitions and notations involving m will be considered
established for all m € ZT\{0} U {oco}. If m < oo, set ¢ = p™ and let
F, denote a field of order g¢; if m = oo, set ¢ = oo and let Fo = K
denote an algebraic closure of F,,.

Fix an irreducible root system R of rank [ and let G = G(™) denote
the universal Chevalley group of type R defined over F,. For m < oo,
G is a finite group which we view as a subgroup of the infinite
algebraic group G ().

Choose a system {a;,1 < i < I} of simple roots in R and let
{Xi,1 < i < 1} be the corresponding fundamental dominant weights.
The A;s form a Z-basis for the weight lattice A associated with R. For
n € ZT, we define A,, = {Ja;\; € A|0 < a; < n} and we denote by
Ao = AT the set XZ1\; of dominant weights.

By “G-module” we shall mean finite dimensional KG-module if
m < oo and finite dimensional rational G-module if m = oco. For
A € AT, M()\) denotes a fixed irreducible G(>)-module with highest
weight A.

Let A = AU denote the Grothendieck ring of the category of G-
modules and let ¢, denote the element of A associated with the
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module M. If m < oo, we view s as the Brauer character afforded
by M and thus identify A with the ring of Brauer characters of G.
The elements oy := par(n), A € Ay, are called irreducible; they form a
Z-basis for A, so that for each ¢ € A, there are uniquely determined
integers [ : ¢]™ such that ¢ = ZkeAq [ : ox]™ . If o = @y for
some G-module M, then [p : ¢1](™) is just the multiplicity of M()\) as
a composition factor of M.

Given any G(*)-module M, we denote by Fr(M) the G(°)-module
which has the same underlying vector space as M but on which g € G
acts according to the new rule g -z = Fr(g)z (z € M) where Fr is the
Frobenius automorphism of G(°) which raises matrix entries to the pth
power. The assignment ¢ — @ry(ar) induces an endomorphism of the

ring A(>) which we also denote by Fr.

Let A™ = @;”;&Yj (weak direct sum if m = co), where Y; is a copy
of A. We view Y; as a subgroup of A™ and denote by ¢; : A = Y; C A™
and 7; : A™ — Y; C A™ the natural injection and projection,
respectively. We view A™ as a subset of A* in the natural way.

Let J = {(;,4))1 < i < [,0 < j < m} and for (i,j) € J, set
)‘ij = LJ(AZ) Then {)\”|(Z,j) S J} is a Z-basis for A™.

Set a;; = tj(;) and K5 = pAij — A j+1 (viewing second subscripts in
Z/mZ if m < oo so that A; j41 is always defined). We obtain a partial
order < on A™ by declaring ' < z if x — 2’ € P := V + H, where
V= EZ*aij and H = ZZ+K/Z’]'.

The assignment \;; — p’\; defines a homomorphism wt : A™ — A

. . .. . m m—1
which induces a bijection of the set Aj* := 7.7 ¢;(A,) onto Ag. We
define M(z) := M(wt(z)) and ¢, := Q@) (@ € A}).

Denote by X = X(™) the free abelian monoid on the set B =
U;-"Z_OILJ-(AP)\{U}. We view each i;(A,) as a subset of X' (identifying
0 € ¢j(Ap) with 1 € X) and in turn identify A}® with its image in X'
under the map X¢;(p;) — [[¢j(n;) (n; € Ap). Forx =z1...2, € X
(l'i € B) we set g, = H()0$i'

The directed graph T which was described in the introduction is
defined as follows (cf. [4]). Its set of vertices is X and its set of edges

is {(Coy---,Cm-1)|¢; € Aj} where A; = {(a,b) € 7;(X) x Ag"\[goa :
¢b(™) # 0}. (Here m; : X — X fixes ¢;()\) and sends ¢4x()\) to 1 for
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k+#3j.) If e=(¢;) = ((a;,b;)) is an edge, it originates at o(e) := [[ a;
and terminates at t(e) := [] res(b;) where res : X(*) — X is defined
by ¢;(A) = t3(X) (j + j is reduction modulo m if m < oo and the
identity map if m = c0).

Let z,2' € X. A path c of length s from z to 2’ with vertices x; is a
sequence e, ... ,es of edges such that o(e;) = z = xg, t(es) = 2’ = x4
and t(e;) = o(eiq1) = z; (1 < i < s). Cs(z,z') denotes the set of
all paths from z to =’ of length s. The essential length of the path c
(written e.l.(c)) is the number of edges for which o(e;) # t(e;); we set
el (z,z') =lub{e.l.(c)|c € UsCs(x,2’)}.

For ¢ = (a,b) € A}, (0 < jo < m) we define

h(¢) = < i < i bikpk_j_1>/iij> €H

i=1 Nj=jo \k=j+1

where b = )" b;;\ij, and mult(¢) = [, : @], where the bar indicates
the map which takes ¢ = z1...25s € X (z; € B) to T = Xx; € A™.
We extend these definitions first to an edge e = (¢;) in T by setting
v(e) = Xv((;), h(e) = Lh(¢;) and mult(e) = [ mult(¢;) and then to a
path ¢ =ey,... ,es in T by setting v(c) = Zv(e;), h(c) = Th(e;) and
mult(c) = [[ mult(e;).

Theorem 1.1. [4,2.6.1]. Ifz € X and 2’ € A}, then el.(z,2') < o0
and for each positive integer s > el.(z,z'), we have

(9o 1 par]™ = Z mult(c).

ceCs(z,z')

Theorem 1.2. [4, 2.54, 2.6.2]. If ¢ is a path in T from z to 2’
(z,2" € X), then T — &' = h(c) +v(c). In particular, if x € X, z' € A}
and [+ ]™ # 0, then z' < Z.

For the remainder of the paper, we assume m < oco. If z € AJY,
we denote by ®, the Brauer character afforded by the projective
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indecomposable G-module P(z) that has unique irreducible quotient
M(z). If we set v = X(p — 1)\;j, then I' := &, = ¢, is the Steinberg
character.

Theorem 1.3. [4, 3.1.2]. Ifx € A}, then

o =T¢y 0— > [pyapy:TI™M,
z<y€A;"
y#z

(Here @ denotes the complex conjugate of ¢.)

2. The algorithm. In this section, we assume that p > (p,aq) + 1
(= hg, the Coxeter number of R) where (, ) is the inner product in
the definition of R, p = £\; and o = 2ap/{ao, ) is the co-root of
the short dominant root ay.

Lemma 2.1. If Etij)\ij = Eaijaij + Ebijﬁij e P (tij € Z and
aij, bij € ZT), then (3, bijhi,of) < D/(p — 1) for each j, where
D= maxk<2tik)\,-,a5/>.

PTOOf. Since Rij = p)\ij — >\i,j+17 we have Zi(tij + bi,j—l —pbij)Ai =
Y;a;;ja; for each j (second subscripts in Z/mZ). If jy is chosen with
(;bijo Ai, o ) maximal, then for each j we have

D—(p-1)_bijhiay)
> () tijohi ) — <Zpbijo>\i,a3> + <Zbi,j01)\i,0ég>

2

>0

where we have used the fact that (o;, ) > 0 for each i. O

The following notation will be used throughout the rest of the paper.

Notation 2.2. Fix two elements y = [[¢;(p;) and z = []¢;(v;)
(1j,vj € Ap) of AJ' C X and assume ¢ = ey,...,es is a path in T
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from yz to v with vertices yz = zg,x1,...,xs = 7. Each edge e, is
an m-tuple "¢* (0 < k < m) where "¢* = ("a*"b*) € Ap. Write
nbk = ZL]- nb%)\,’j and set nb;c = ﬂ'j(nbk) = Zi "bfj)\”

Lemma 2.3. "b;?:O ifj¢{k,k+1} orifn>1andj#k.

Proof. From the definitions it is clear that "b;? =0if j < k. Now,
if we write y + 2z — v = Xt;;\i; (tij € Z), then t;; < p — 1 for each
(i,4) € J. Also, if j > k+ 1, then ), ”bfjpj’k’lmk is a summand of
h(c) which is a summand of y + z — v (1.2). Thus, by 2.1,

. 1
p]_k_1< >l )\l,a0> < p—l< Y (- 1)Ai,a(¥>

= (p,ag) <p-1
if 7 > k+ 1. Therefore, since (A\;, ) > 0 for each i, we have that
n k o . .
b =0if j ¢ {k,k+ 1}.
Now, write Z; — v = Xs;j\i; (si; € Z). By the first paragraph, we
have 1 =[], res [(*0f)(*bf,)] so that for each j,

<Zsij>\i,ag>—<z b i +Z b] i — —1)p,a5/>
<Z N, ><p1

(interpreting the superscript j — 1 as m — 1 if j = 0). Furthermore, if
n>1landj>k+1, then ), ”bka k=1, is a summand of Z; —
(1.2), whence p/=*~ 1<Zi"bfj)\i,a0> <1 (2.1). Therefore, "b% = 0 if
n>1and j#k. mi

Corollary 2.4. el.(yz,v) < 2.

Proof. If ¢ has length at least 2, then 2.3 implies that z2 € A" C X
Now it is clear that the only edge in T originating at an element of A}
is the one which terminates at the same element. Hence, 2 = v and
the statement follows. O
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Define Ho = {Xhijkij € H| >, hijAi € € for each j} where & = {n €
Apl(n, aq) < (p,aq)}-

Corollary 2.5. If h(c) = Xh;jkij, then h;; = 1b{7j+1 for each
(1,7) € J. In particular, h(c) € Ho.

Proof. This is clear from 2.3 and its proof. u]

For p,v,n',n € A, we define

mult (p, v,7',m) = > [puspw : 0aFr(en)] ™ [pan : 0(p—1),] .

BeA,

Lemma 2.6. If h = Xh;;k;; € Ho, then

m—1
Z mult(c) = H mlllt(,uka’/kunk—lunk)
k=0

c€Cs(yz,y)
h(c)=h

where n; = >, hijA;.

Proof. Assume that c has length 2 and that h(c) = h. Then

m—1
mult(c) = H [‘pﬁk(y)(pwk(z) : wlbz ‘p1b§+1](00) [‘plbz 9011):4 : ‘pwk('\/)](OO)
k=0

by 2.3. Set B, = > _; Lk X\; € A,. By 2.5 and the fact that [ : <p’](°°) =
[Fr(ep) : FT(SDI)](OO) (p, 9" € Al) o irreducible) we get

m—1

mult(c) = H [()Dp«k Puy, + ‘PBkFr(QDT/k)](OO)[‘PBk Prk—1 * 90(11*1);)]
k=0

(00)

Conversely, if this product is nonzero for some m-tuple (8x) (B € Ap),
then the assignments 6% = 14 (Bk)tkr1(nk) and 2bF = 14(7), determine
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a path ¢ € C3(yz,7) with h(c) = h (see 2.5). Therefore,

Z mult(c)

c€Cz(yz,7)
h(c)=h
m—1
= H [@Hk¢uk : ()OﬁkFr(sank)](OO) [()Oﬁk Sa‘f]k71 : (p(p—l)p](m)
(Br) k=0
BrEAp

and switching the sum and product on the right gives the desired
formula. ]

For p € A,, define
T(w) = {0, n,)n'sn €& 7€M put+T €A, and 747 —pny € BZF o, }
and for x = ¥ (pu;) € A}, let
Uz) = {((5,m5,75)) € X756 T ()l = mj-1, 0< j <m—1}
(interpreting 7y as 7,,—1). Now, for each u = ((7;,n;,7;)) € U(z), set

Ty = Xt;(7;) and hy, = Xh;jk;j, where n; = X;h;;A;, and define

m—1
ﬂ-(u) = H mult((p — l)p — Wiy ok + Tk,ﬂkaﬁk)-
k=0

Theorem 2.7. If z € A", then

o, =Tg,_, — Z 7(w) Py r, -
ueU(x)
Tu#0

Proof. From 1.3, 1.1, 2.4 and 2.5, we see that

(2.8) o, =T¢g,_, — Z Z Z mult(c)®,

T c

h(c)=h
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where the first sum is over all h € Hy, the second sum is over all
7 € P\{0} such that = + 7 € A}* and the third sum is over all
¢ € Cy(1) := Cao((y — z)(z + 7),7) such that h(c) = h.

Let h and 7 be fixed indices for the first two summations, respectively,
in 2.8 having the property that h = h(c) for some ¢ € Ca(r). As
before, write h = Ehijliij (h” S Z+) and set n; = Zi h”)\z Similarly,
write 7 = Etij)\ij (tij € Z) and set T = Zz tij)\i- Fix ¢ € CZ(T)
with h(c) = h and write v(c) = Za;ja;; (a;; € Z1). 1.2 implies that
7 = h(c) + v(c). Therefore,

4 (Tj + i1 = Pnj) = ¢ [Z(tij + hij1 —Phij)&]
= Wj( tindik — hik’ﬂk)
ik ik
= Wj(ZMk%’k) =1l (Z%’j%’),
ik i

whence 7; +n;_1 —pn; = >, aijo; € SZT .

It follows that (k,7) — ((mj—1,7;,7;)) defines a bijection from the
set of all pairs (h,7) in 2.8 having the property that h(c) = h for some
¢ € C2(7) onto the set of all v € U(z) having the properties that
T« # 0 and h(c) = h, for some ¢ € Cy(7,); the inverse of this map is
u +> (hy, 7). Therefore, we have

O, =Tp 0 — Z Z mult(c) @y s, -
uw€U(z) c€Ca(Ty)
TuZ0  h(c)=hy

The desired formula now follows from 2.6. O

Remark 2.9. We comment briefly on how 2.7 can be used to compute
the values of the projective indecomposable characters at a p’-element
(for instance 1¢) of G. It is easy to write a computer program which will
determine the sets T'(1) and U(z). (For the special case G = SL(4,2™),
see [3].) Aside from these sets, one needs to know only the values
of the irreducible characters at the given p’-element, the composition
factor multiplicities [p, 0 1 92]) (1, 4" € Ap, A € A,2) and a linear
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ordering of the elements of A7 which places z € A" after each z + 7,
(u € U(x),7, # 0). The linear ordering is easy to arrange. Let
f : A = R be any homomorphism satisfying f(}\;) > 0 and f(c;) > 0
for each i (e.g., f = (-,p)), and let f : A™ — R be the homomorphism
induced by A;; — f()\;). Since 7, € P\{0} (see the proof of 2.7), it
follows that f(7,) > 0. Therefore, given z,y € A}, it suffices to put y
before z if f(y) > f(x) (and to order them arbitrarily if f(y) = f(z)).

Remark 2.10. The proof of 1.3 relies on the fact that, for z € A", the
G™)-module M := M(v) ® M(y — x)* (* denotes contragredient) is
projective and hence a direct sum of various P(y) (y € A}") with P(z)
appearing exactly once. In general, M is much larger than P(z) in the
sense that M has many summands P(y) with y # z. Consequently, to
simplify computations, it is reasonable to look for a naturally occurring
and well understood summand of M which is a direct sum of P(x) and
a fewer number of the other P(y)’s. For p > 2hg — 2, it is shown in [5]
that the restriction to G(™) of the injective hull Q(z) of M(z) in the
category of “p™-restricted” G(°°)-modules is such a summand. In fact,
Jantzen shows in [ 6, 2.10 Corollary 2] that the multiplicity of P(y) as
a summand of Q(z) is

Z [y ‘PzFrm(‘PZ)](oo)'
zeA;"

(Jantzen remarks that we actually need only sum over those z for which
p— wt(z) € £QTe;.) From 1.2 it now follows that if this multiplicity
is nonzero, then y — x € P’, where

P = {O}U{ Zaijaij+z bijrij €P = P(m)| Zbij Z# 0 for each ]}

Therefore, denoting by ¥, the Brauer character of the G(™-module
Q(z), we get a formula for ®, which resembles that in 1.3

e =¥, — Z Z [y ‘PzFrm(‘PZ)](OO)(I’ya
z<'y€A;" ZEAX
y#T

where z <’ y if and only if y — z € P’. As anticipated, the index y in
this formula ranges over a smaller set than that in 1.3, and so in this



FINITE CHEVALLEY GROUPS 621

respect computations are simplified. On the other hand, here we need
to know the characters ¥, which are more complicated, in general, than
the irreducible characters required for 1.3. (For some computations of
dim g P(z), via the modules Q(z), in the case G = SL(3,p™) (as well
as SU(3,p?™)), see the thesis [1] of Jantzen’s student, Dordowsky:.)

3. An example. SL(4,2™). If the characteristic p does not satisfy
the assumption of the previous section, in other words, if p < (p, ag ) +1,
it is still possible that a result similar to 2.7 can be obtained by
modifying the methods. For instance, this is the case for the group
G = SL(4,2™) which we use here for an illustration.

The following lemma corresponds to 2.1.

Lemma 3.1. Assume Etij)\ij = Eaijaij + Ebijﬁij with tij S
{~1,0,1} and a;;,b;; € Z". We have the following:
(i) >;bij < 3 for each j, and if equality holds for some j, then
tij = bi; =1 and a;; = 0 for each (i,j) € J.
(ii) If biyj, > 2 for some (ig, jo), then aij, + asj, < 1.

Proof. (i) Since aq; = 2A1; — Agj, agj = —A1j + 2Xz — Agj,
asj = 2A3; — Ag; and Ki; = 2X;; — Ay j+1, we obtain, for each j, the
equations

(3.2) t1j = 2a1; + 2b1; — az; — by j-1,

(3.3) taj = 2aj + 2byj — a1 —az; — bz 51
and

(3.4) tsj = 2asj + 2b3j — az; — bz j1.

(We view all second subscripts in Z/mZ.) Adding these equations gives
(35) Ztij = aij + as; +22b” _Zbi’j_l

for each j.
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Fix j with ), b;; maximal. From 3.5, we obtain

(3.6) Zbij = %(thj + Zbi’jfl —ay; — a3j> < %(3 + Zbij>a

so that »,b;; < 3. Assume ) .b;; = 3. Then 3.6 implies that
Zi tij = 3, Zz bi,j—l = 3 and ayj + as; = 0, whence tij = 1 for
each 7 and a1; = agz; = 0. By induction, Zl bij =3 and a1; = as; = 0
for each j and t;; = 1 for each (¢,j). Equations 3.2, 3.3 and 3.4 now
imply that each b;; is at least 1 and hence exactly 1. Finally, 3.2 implies
that ag; = 0 for each j.

(i) If by, 4, > 2 for some pair (g, jo), then (i) implies that » . b;; < 2
for each j. Equation 3.5 then gives a1j, + asj, = >, tijo — 2 >_; bijo +
Zibi,j0*1§3_4+2:1' O

Let vol : A™ — Z be the homomorphism induced by A;; — 1 and
extend this map to X by setting vol(z) = vol(z) for each = € X.

Lemma 3.7. Let z,z’ € X. If 2’ < &, then vol(z') < vol(z).

Proof. The assumption z’ < Z implies that z — ' = Yajjog 4+ bk
with a;j,bi; € ZT. Now, vol(ay;) = vol(azj) = 1 and vol(asj) = 0 for
each j, and vol(k;;) = 1 for each (7,7). Therefore, vol(z) — vol(z’) =
vol(Z) — vol(z) = vol(Z — z') > 0. O

We will simplify notation by writing the number a; + 2as + 4a3 in
place of the weight a3 A1 + azA2 + agAs, and by writing ¢ in place of
Fr(p). The next lemma gives all of the composition factor multiplicities

[upu = @A) (1 € Ay, X € AT).

Lemma 3.8. In the Grothendieck ring A(>), we have the following
formulas.

(1) @11 = 97 + 2¢2.

(2) P12 =p3+ pa.

(3) @13 = w295 + 293 + 2 + 3ps.
(4) p1pa=p5+2.
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P15 = Pap] + 2p6.

p1pe = o7+ @7 + 2p2.

197 = Pep] + 20195 + 31905 + 4ps.

P22 = P35 + 2p5 + 2.

P23 = P15 + 1 + 20407 + 3.
P24 = Y6 + 1.
P25 = o7+ 7 + 01 + 2¢s.
P26 = Paps + 4+ 201907 + 3ps.
P27 = P53 + 208 + 30207 + 3297 + 695 + 693 + 8.
P3p3 = @3 + 207 + 20507 + 20203 + 40T + 4o + 6¢2.
304 = 7+ P + 202.
P35 = ] + L1907 + 20403 + 204 + 30107 + dps.
P3p6 = Y593 + 2908 + 3p20] + 3297 + 693 + Tps + 10.
P37 = a3 + 20397 + 20105 + 20603 + 30307 + dpap] +

4p195 + 60107 + 8ps + 8p1.

19)
20)
21)
22)

24)
25)

Paps = @§ + 2.

Paps = P17 + 2p3.

Pape = P27 + 203 + 2+ 3ps.

papr = @3] + 20195 + 3pap] + 4ps.

P5p5 = 95 + 20207 + 290207 + 4ps + 4¢3 + 6.

P56 = P39 + Papq + 20103 + 201 + 3pap] + 4.

P57 = Q298 + 207 + 205 + 298 + 3507 + 3507 + 4203 +

897 + 897 + 10¢s.

(
(
(
(
(23)
(
(
v
(

26)
(27)

Yo = p§ T 207 + 20507 + 20205 + 4o + 4pT + 6p2.
vepr = P19§ + 20607 + 20408 + 20305 + 3pepq + dp19] +

4493 + 6p107 + 83 + 8pq.

(28)

2
Y17 = 7+ 20707 + 20707 + 20505 + 20205 + 20208 +40] +

497 + 493" + 8pspg + 12T + 140297 + 1608 + 2005 + 3205 + 40.

In the preceding lemma, formulas (1), (2), (4), (8), (10), (11) and (19)
were computed first using weight space decompositions (and duality)
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and then the remaining formulas were obtained by using the associative
law in A(®), For instance, the equation @7 + ¢ + ¢ + 4py =
(Pap1)p2 = Pa(p19p2) = P3ps + 97 + 2> gives formula (15).

We return to the notation set up in 2.2 and further define ",8;-“ =
Zi"bfj)\i €A,

Lemma 3.9. "b¥ = 0 if j ¢ {k,k +1}.

Proof. We proceed by induction on n. First assume that n = 1 and
suppress the superscript n in the notation. Since a* = u1, (s )ir(v),
3.8 implies that b;? =0ifj ¢ {k,k+1,k+ 2} so we need only show
that b}, = 0. Assume bf,, # 0 for some k. Then 3.8 implies that
ur = v = 7 and d := (Bg,ﬁ,’jﬂ,,@’,’jﬁ) = (0,0,1),(0,0,2) or (0,0,4).
Therefore, we have

v(CR) = i (pn + v — BF — 268, — 46F.,)

and
h(¢F) = Z[(bf,k-&-l + 2b§,k+2)"@ik + bf,k+2“i,k+1]-

If d = (0,0, 1), then v(¢¥) = —2\1x + 2Xok + 2A3x = 209% + 203, and
h(¢*) = 2k1p+51 k41 But this contradicts 3.1(ii) since v(¢*) and h(¢¥)
are summands of v(c) + h(c) =gz — v =y + 2 — v € {Stij\ijlti; €
{-1,0,1}} (see 1.2). We obtain a similar contradiction if either d =
(0,0,4), in which case v(¢*) = 2a1j+2aak and h(¢*) = 2K35+K3 k41, OT
d = (0,0,2), in which case v(¢¥) = a1 +as, and h(¢F) = 2K+ K2 kt1.
This handles the case n = 1.

If n > 1, the induction hypothesis gives "a* = (*~16k)("~1bf 1) =
(M TUBE) ek (PBETY) (interpreting the superscript k — 1 as m — 1 if
k = 0) so the argument given above for the case n = 1 applies here to
complete the proof. o

Lemma 3.10. el.(yz,v) < 3.

Proof. 1t is enough to assume that the length of ¢ is at least 3 and
prove that x; = - for some 7 < 3.
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Suppose vol(*by ;) = 3 for some k. Then 'bf, ,, =1 for each i, so
that h(1¢*) = 3, ki (3.9). By 3.1(i) we have that y = z = ~ and
a;j = 0 for each (¢,j) € J where v(c) = Xa;ja;; (cf. proof of 3.9). In
particular, 'a® = 14,(7)1x(7) and v(1¢*) = 0 for each k, so that, by 3.8,
1p* = 1341(7) for each k. Therefore, z; = []res(b*) = 7.

Now suppose that vol(*bf ;) < 3 for each k. Then vol(®a*) =
vol(*b%) + vol(*6F 1) < 5, whence vol(2b¥) < 3 for each k (3.8). Since
v < Ty, for each n (1.2), we have from 3.7 that 3m = vol(y) < vol(zz) =
Yvol(?bF) < £3 = 3m. Thus, vol(zz) = 3m and vol(?b*) = 3 for each
k.

We now prove that vol(*a*) = vol(3b*) = 3 for each k. If vol(3a*) # 3
for some k, then, since Yvol(*a*) = vol(z2) = 3m, we must have
vol(3a¥) > 3 for some k in which case vol(*b*) < vol(3a*) by 3.8.
But, in any event, vol(3b*) < vol(®a*) for each k (3.8), whence
3m = vol(y) < vol(zz) = Zvol(®3v*) < Zvol(®a*) = 3m. We conclude
that vol(®a*) = vol(3b*) = 3 for each k.

Finally, the preceding paragraph and 3.8 show that each 3b* = 1(7),
whence z3 = 7. O

Corollary 3.11. vol(2b*) = vol(3a*) = vol(3b%) = 3 for each k.
Proof. This follows from the proof of 3.10. u]

Lemma 3.12. Assume that the length of c is 3.
(i) If 2 = v, then h(c) € Hyo.
(il) If zo # 7y, then y = z = v and mult(c) = 2™.
Moreover, C3(v%,7) contains exactly two paths for which za # 7.

Proof. We consider two cases.

Case 1. vol(*a*) = 3 for some k. Fix such a k. 3.8 and 3.11
imply that 2b% = 1;(7). Since 3a®+! = (2b;11)(*bf,,) (by 3.9) and
2pf, =1 € X, we have that vol(*b}T]) = vol(*a**1) = 3 (by 3.11),
whence, 2b¥*t1 = 4, 1(7) (3.11 again). Continuing this process, we
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obtain 2b* = 1;(7) for each k, so that x5 = [[res(?b*) = 7. Combining
our results with 3.9, we now have that "b% = 0 if j ¢ {k,k + 1} or if
n>1and j #k (cf. 2.3). Also, if h(c) = Shyjkj, then hij = ! . so
that h(c) € Ho (cf. 2.5).

Case 2. vol(%a¥) # 3 for each k. If vol(2a*) < 3 for some k, then 3.11
and 3.8 give the contradiction 3 = vol(2b*) < vol(2a*) < 3. Therefore,
vol(2a*) > 4 for each k. Since vol(b*) < 4 for each k (3.8), we obtain
4m < Yvol(?a*¥) = Xvol(*b*) < 4m, so that vol(*d*) = 4 for each k.
3.8 now implies that y = z = v and, for each k, (18F, lﬁlljﬂ) = (7,1),
(7,4) or (5,5). Set "d* = ("B,"Bk, ). We will establish the following
statements.

(1) If 'd* = (7,1) for some k, then 1d* = (7,1) and 2d* = (6,1) for
each k.

(2) If 'd¥ = (7,4) for some k, then 'd* = (7,4) and 2d* = (3,4) for
each k.

(3) 'd* # (5,5) for each k.

Assume that 'd* = (7,1) for some fixed k. If 'd* = (5,5) for some &/,
we may assume k' is chosen so that 'd*' ~! = (7,1) or (7,4) (interpreting
1d=1 as 1d™~1). But then 3.8 implies that vol(2b*') < 3, contrary to
3.11. Now, if 'd*¥" =(7,4) for some k", we may assume that k" =k — 1.
Then 3.8 and 3.11 imply that 2d* = (3,4) and 2d**! = (6,1). So
3ghtl = (%Zﬁ)(%’,ﬁ“) = 1;41(6)tk+1(4) and vol(36F*+1) < 3 (by 3.8)
contradicting 3.11. Thus, 'd* = (7,1) for each k, and from 3.8 and
3.11 we find that 2d* = (6,1) for each k. This proves (1) and a similar
argument proves (2). Finally, if 'd* = (5,5) for some k, then (1)
and (2) imply that 'd* = (5,5) for each k. But then 3.8 implies that
vol(2b*) < 3 (for each k), contrary to 3.11. This proves (3).

We have shown that, under the assumption vol(?a*) # 3 for each k,
there are only two possibilities (given by the conditions in (1) and (2),
respectively) for the path ¢ and that for either of these possibilities,
xy # 7, y = z = v and mult(c) = [[>_, [[, mult(*¢*) = 2m1m1™ =
2m(3.8). O
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Theorem 3.13. For each x € A}, we have
o, =T¢g,_, — Z 7(w) Py r, — 2™ 1040
uelU(x)
Tu7#0

(620 = Kronecker delta).

Proof. Because of the modified lemmas 3.10 and 3.12 the proof of 2.7
carries over here provided we subtract 21§, from the right hand
side of 2.8. ]

The following tables give the degrees of the projective indecomposable
characters for G = SL(4,2™) in the cases m = 1,2, 3; the degrees were
computed from 3.13 with the aid of a computer. If x = Ya;;\;; €
A} (p = 2), then, in the table corresponding to the choice of m,
the integer 64~ ™®,(1) can be found in the (s1,s2)-position, where
Ea,-jpi_l"’?’j = 10s; + s2 (0 < 53 < 10). We remark that the equation
|G| =dim KG =} ym ®2(1)0:(1) [2, p. 146, Lemma 3.8] provides a
check for our computatzijons. We have verified that the degrees printed
in the tables satisfy this requirement.

TABLE 1. (m =1).

0123 456 7 89
07 3 5 3 3 5 31

TABLE 2. (m = 2).

0 1 2 3 4 5 6 7 8 9
431 188 286 132 188 198 132 36 188 61
114 42 119 68 48 12 286 114 113 44
114 72 44 12 132 42 44 15 48 24

16 4 188 119 114 48 61 68 42 12

198 68 72 24 68 35 24 6 132 48
44 16 42 24 15 4 36 12 12 4
12 6 4 1

SO W N RO
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TABLE 3. (m = 3).

0 1 2 3 4 ) 6 7 8 9

0| 20239 8408 11604 4904 8408 7180 4904 1296 8408 2960

1| 4380 1628 4076 2444 1716 432 11604 4304 4606 1680

2| 4304 2544 1680 432 4904 1580 1656 564 1728 864

3 576 144 8408 4076 4380 1716 2960 2444 1628 432

4| TI80 2492 2584 864 2492 1278 864 216 4904 1728

5| 1656 576 1580 864 564 144 1296 432 432 144

6 432 216 144 36 8408 2960 4304 1580 4076 2492

7| 1728 432 2960 969 1442 524 1498 832 576 144

8| 4380 1442 1608 552 1668 858 576 144 1628 524

9 546 186 576 288 192 48 4076 1498 1668 567

10 | 1498 848 o576 144 2444 832 864 288 848 428
11 288 72 1716 576 576 192 967 288 192 48
12 432 144 144 48 144 72 48 12 11604 4380
13 | 4606 1656 4380 2584 1656 432 4304 1442 1608 546
14 | 1668 864 576 144 4606 1608 1601 560 1608 864
15 560 144 1680 552 560 188 976 288 192 48
16 | 4304 1668 1608 576 1442 864 546 144 2544 858
17 864 288 858 432 288 72 1680 576 560 192
18 552 288 188 48 432 144 144 48 144 72
19 48 12 4904 1628 1680 564 1716 864 576 144
20| 1580 524 552 186 567 288 192 48 1656 546
21 560 188 576 288 192 48 564 186 188 63
22 192 96 64 16 1728 576 976 192 976 288
23 192 48 864 288 288 96 288 144 96 24
24 576 192 192 64 192 96 64 16 144 48
25 48 16 48 24 16 4 8408 4076 4304 1728
26 | 2960 2492 1580 432 4076 1498 1668 576 1498 848
27 567 144 4380 1668 1608 576 1442 858 952 144
28 | 1716 567 576 192 576 288 192 48 2960 1498
29 | 1442 576 969 832 524 144 2444 848 864 288
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TABLE 3. (Continued)
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0 1 2 3 4 5 6 7 8 9
30 | 832 428 288 72 1628 576 546 192 524 288
31| 186 48 432 144 144 48 144 72 48 12
32 | 7180 2444 2544 864 2444 1278 864 216 2492 832
33| 858 288 848 428 288 72 2584 864 864 288
34| 864 432 288 72 864 288 288 96 288 144
35 96 24 2492 848 858 288 832 428 288 72
36 | 1278 428 432 144 428 215 144 36 864 288
37| 288 96 288 144 96 24 216 72 72 24
38 72 36 24 6 4904 1716 1680 576 1628 864
39 | 564 144 1728 576 576 192 576 288 192 48
40 | 1656 576 560 192 546 288 188 48 576 192
41| 192 64 192 96 64 16 1580 567 552 192
42| 524 288 186 48 864 288 288 96 288 144
43 96 24 564 192 188 64 186 96 63 16
44 | 144 48 48 16 48 24 16 4 1296 432
45| 432 144 432 216 144 36 432 144 144 48
46 | 144 72 48 12 432 144 144 48 144 T2
47 48 12 144 48 48 16 48 24 16 4
48 | 432 144 144 48 144 72 48 12 216 72
49 72 24 72 36 24 6 144 48 48 16
50 48 24 16 4 36 12 12 4 12 6
o1 4 1
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