ALMOST COMPLETELY DECOMPOSABLE TORSION-FREE GROUPS

H. PAT GOETERS AND WILLIAM ULLERY

Recently, D. Arnold and C. Vinsonhaler were successful in developing a complete set of numerical invariants for certain pure subgroups and homomorphic images of completely decomposable abelian groups [4]. Their results extended work by F. Richman [8]. Let A_i be subgroups of the rationals, \mathbf{Q} , containing the integers, \mathbf{Z} . The groups that they consider are the strongly indecomposable groups of the form: $A_1 \oplus \cdots \oplus A_n / \langle (1,1,\ldots,1) \rangle_*$; or Ker σ , where $\sigma: A_1 \oplus \cdots \oplus A_n \to \mathbf{Q}$ is defined by $\sigma(a_1,\ldots,a_n) = \sum a_i$.

In this paper we assume that A is almost completely decomposable (quasi-isomorphic to a finite direct sum of subgroups of \mathbf{Q}), and give conditions on the types of the quasi-summands of A which characterize when every pure subgroup and/or every torsion-free homomorphic image of A is again almost completely decomposable. Our results generalize a theorem of M.C.R. Butler $[\mathbf{6}]$.

Throughout, all groups considered are torsion-free abelian. If n is a positive integer ≥ 2 , we write \bar{n} for the set $\{1, 2, \ldots, n\}$. Suppose for each $i \in \bar{n}$, τ_i is a type. If $I \subseteq \bar{n}$ is nonempty, we write τ^I (respectively, τ_I) for $\sup\{\tau_i: i \in I\}$ (respectively, $\inf\{\tau_i: i \in I\}$). If $I = \{i, j\}$, we often write τ^{ij} or $\tau_i \vee \tau_j$ (respectively, τ_{ij} or $\tau_i \wedge \tau_j$) for τ^I (respectively, τ_I).

1. Almost completely decomposable homomorphic images. We will assume that $A = A_1 \oplus \cdots \oplus A_n$ with $\mathbf{Z} \leq A_i \leq \mathbf{Q}$. Set $G\langle A \rangle = A/X$, where X is the pure subgroup generated by $(1, 1, \ldots, 1)$.

Let $f: A_1 \oplus \cdots \oplus A_n \to G\langle A \rangle$ be the natural quotient map. If K is corank-1 in $G\langle A \rangle$ (i.e., if $G\langle A \rangle/K$ is rank-1 and torsion-free), set cosupp $(K) = \{i \in \bar{n} : f(A_i) \leq K\}$. By [2, Theorem 1.4], there is a cobalanced embedding $\delta: G\langle A \rangle \to \oplus \{G\langle A \rangle/K : K \text{ is corank-1 and cosupp } (K) \text{ is maximal with respect to inclusion}\}$, where δ is induced

Received by the editors on November 23, 1988, and in revised form on June 31, 1989.

by the quotient maps $G\langle A\rangle \to G\langle A\rangle/K$.

Suppose $1 \leq i < j \leq n$ and $K_{ij} \leq A$ is such that $A/K_{ij} \cong A_i + A_j$. Then $\overline{K}_{ij} = K_{ij}/X$ is the unique corank-1 subgroup of $G\langle A \rangle$ with maximal cosupp $(\overline{K}_{ij}) = \overline{n} - \{i,j\}$. Since $G\langle A \rangle/\overline{K}_{ij} \cong A_i + A_j$, the above discussion yields a cobalanced embedding $\delta: G\langle A \rangle \to \bigoplus \{A^{ij}: 1 \leq i < j \leq n\}$, where $A^{ij} = A_i + A_j$. Moreover, if $\pi_{ij}: \bigoplus \{A^{lm}: 1 \leq l < m \leq n\} \to A^{ij}$ is the projection map, δ can be chosen so that $\pi_{ij}\delta((a_1,\ldots,a_n)+X)=a_i-a_j$. With the above notation we can show

Proposition 1.1. Suppose $G\langle A \rangle$ has a rank-1 quasi-summand. Then, there exist distinct $i, j \in \bar{n}$ and nonempty disjoint subsets I and J of \bar{n} such that $I \cup J = \bar{n}$ and $\tau^{ij} = \tau_I \vee \tau_J$.

Proof. Let $\delta: G\langle A\rangle \to \oplus \{A^{ij}: 1 \leq i < j \leq n\} = D$ be the cobalanced embedding. If C is a rank-1 quasi-summand of $G\langle A\rangle$, then C is a quasi-summand of D, so $C \cong A^{ij}$ for some i < j.

If B is a rank-1 pure subgroup of $G\langle A \rangle$, define supp $(B) = \{lm : 1 \le l < m \le n \text{ and } \pi_{lm}\delta(B) \ne 0\}$ and supp $(G\langle A \rangle) = \{\text{supp }(B) : B \text{ is a pure rank-1 subgroup of } G\langle A \rangle\}$. Set $S_{\delta} = \{S \in \text{supp } (G\langle A \rangle) : S \text{ is minimal with respect to inclusion}\}$, say $S_{\delta} = \{S_1, \ldots, S_t\}$. For each u, $1 \le u \le t$, let G_u be the unique rank-1 pure subgroup of $G\langle A \rangle$ with supp $(G_u) = S_u$. By [2, Theorem 1.2], there is a balanced surjection $\phi: G_1 \oplus \cdots \oplus G_t \to G\langle A \rangle$.

Since C is projective with respect to $G_1 \oplus \cdots \oplus G_t \to G\langle A \rangle$, $C \cong G_k$ for some $k, 1 \leq k \leq t$. We will show type $(G_k) = \tau_I \vee \tau_J$ for some I and J. Suppose $0 \neq b = (b_1, \ldots, b_r) + X \in G_k$. Set $I = \{i \in \bar{n} : b_i = b_1\}$ and $J = \bar{n} - I$. Let $a = (a_1, \ldots, a_n) + X$, where $a_i = 1$ if $i \in I$ and 0 otherwise. Thus, supp $(\langle a \rangle_*) \subseteq \text{supp } G_k$ so by minimality, $\langle a \rangle_* = G_k$. Moreover, since the embedding $\delta : G\langle A \rangle \to \oplus \{A^{uv} : 1 \leq u < v \leq n\}$ is pure, type $G_k = \text{type } \langle a \rangle_* = \inf \{\tau^{uv} : u \in I, v \in J\} = \tau_I \vee \tau_J$, completing the proof. \square

For $I \subseteq \bar{n}$, set $A_I = \bigoplus \{A_i : i \in I\}$. Let $A \sim B$ denote the quasi-isomorphism of the finite rank groups A and B.

Proposition 1.2. Suppose $A = A_1 \oplus \cdots \oplus A_n$ where, for each $i \in \bar{n}$, $\mathbf{Z} \leq A_i \leq \mathbf{Q}$ and type $(A_i) = \tau_i$. Assume there exist distinct $i_0, j_0 \in \bar{n}$ and a nontrivial partition $\bar{n} = I \cup J$ such that $i_0 \in I$ and $\tau^{i_0 j_0} \leq \tau^{ij}$ for all $i \in I$ and $j \in J$.

- (a) If $j_0 \in J$, $G\langle A \rangle \sim G\langle A_I \rangle \oplus G\langle A_J \rangle \oplus G\langle A_{\{i_0,j_0\}} \rangle$.
- (b) If $j_0 \in I$, $G\langle A \rangle \sim G\langle A_I \rangle \oplus G\langle A_{J \cup \{j_0\}} \rangle$.

Proof. First, part (a) is Lemma 1 in [7]. As such, we shall omit the proof. To see how (b) follows from (a), we first observe that if $\tau_i \geq \tau_j$ for $i \neq j$, then $G\langle A \rangle \sim A_i \oplus G\langle A_{\bar{n}-\{i\}} \rangle$ by applying (a) with $I = \{i\}$ and $J = \bar{n} - \{i\}$.

Now, set $\tau_{n+1} = \tau_{j_0}$ and let $A_{n+1} \leq \mathbf{Q}$ be a group of type τ_{n+1} containing \mathbf{Z} . Then $I \cup (J \cup \{n+1\}) = \overline{n+1}$ is a nontrivial partition and $\tau_{j_0} \vee \tau_{n+1} = \tau_{j_0} \leq \tau^{ij}$ for all $i \in I$ and $j \in J \cup \{n+1\}$. Thus, by part (a), $G\langle A_{\overline{n+1}}\rangle \sim G\langle A_I\rangle \oplus G\langle A_{J\cup\{n+1\}}\rangle \oplus G\langle A_{\{j_0,n+1\}}\rangle$. Note $G\langle A_{\{j_0,n+1\}}\rangle \cong A_{n+1}$ and $G\langle A_{\overline{n+1}}\rangle \sim A_{n+1} \oplus G\langle A\rangle$ by our observation in the previous paragraph. Part (b) now follows. \square

Call a finite list of (not necessarily distinct) types τ_1,\ldots,τ_n well-formed if and only if, for every subset $S\subseteq \bar{n}$ with $|S|\geq 2$, there exist distinct $i,j\in S$ and a nontrivial partition $I\cup J=S$ such that $\tau^{ij}=\tau_I\vee\tau_J$. For us, there are two important properties of well-formed lists which follow immediately from the definition. First, any subset of a well-formed list is well-formed. Second, we remark that if τ_1,\ldots,τ_n is well-formed, and $\tau_{n+1}=\tau_i$ for some $i\in\bar{n}$, then $\tau_1,\ldots,\tau_n,\tau_{n+1}$ is well-formed. Consequently, the multiplicity of a given τ_i is irrelevant when considering whether a given list is well-formed. The importance of well-formed lists is revealed by

Theorem 1.3. Suppose $A \sim A_1 \oplus A_2 \oplus \cdots \oplus A_n$, where each A_i is a rank-1 group of type τ_i . Then A/B is almost completely decomposable for all rank-1 pure subgroups B of A if and only if $\tau_1, \tau_2, \ldots, \tau_n$ is well-formed.

Proof. We may assume $\mathbf{Z} \leq A_i \leq \mathbf{Q}$ and that $A = A_1 \oplus A_2 \oplus \cdots \oplus A_n$. First suppose A/B is almost completely decomposable for all rank-1

pure B. If $S \subseteq \bar{n}$ with $|S| \ge 2$, define $b = (b_1, b_2, \ldots, b_n) \in A$ by $b_i = 1$ if $i \in S$ and $b_i = 0$ if $i \in \bar{n} - S$. Then $G\langle A_S \rangle$ is a direct summand of $A/\langle b \rangle_*$ and hence almost completely decomposable. From Proposition 1.1, we conclude that there is a partition $I \cup J$ of S and $i, j \in S$ so that $\tau^{ij} = \tau_I \vee \tau_J$. Therefore, τ_1, \ldots, τ_n is well-formed.

Conversely, suppose $\tau_1, \tau_2, \ldots, \tau_n$ is well-formed. If $B = \langle (b_1, b_2, \ldots, b_n) \rangle_*$ is a rank-1 pure subgroup of A, set $T = \{i \in \bar{n} : b_i = 0\}$ and $U = \bar{n} - T$. Then $A/B \sim A_T \oplus G\langle A_U \rangle$. Since the list of τ_i 's with $i \in U$ is well-formed, it suffices to show $G\langle A \rangle$ is almost completely decomposable. We do this by induction on n = rank A. If n = 2, there is nothing to prove. So, we may assume n > 2. Since $\tau_1, \tau_2, \ldots, \tau_n$ is well-formed, there exist distinct $i, j \in \bar{n}$ and a nontrivial partition $\bar{n} = I \cup J$ such that $\tau^{ij} = \tau_I \vee \tau_J$. Without loss, we may assume $i \in I$. We consider two cases.

Case 1. If $j \in J$, Proposition 1.2(a) implies $G\langle A \rangle \sim G\langle A_I \rangle \oplus G\langle A_J \rangle \oplus G\langle A_{\{i,j\}} \rangle$. Since both |I| < n and |J| < n and since sublists of well-formed lists are well-formed, both $G\langle A_I \rangle$ and $G\langle A_J \rangle$ are almost completely decomposable by induction. Thus, $G\langle A \rangle$ is almost completely decomposable.

Case 2. If $j \in I$, Proposition 1.2(b) implies $G\langle A \rangle \sim G\langle A_I \rangle \oplus G\langle A_{J \cup \{j\}} \rangle$. Then, |I| < n and $|J \cup \{j\}| < n$ since $i \in J \cup \{j\}$. As in Case 1, $G\langle A \rangle$ is again almost completely decomposable by induction.

Corollary 1.4. Suppose $A \sim A_1 \oplus A_2 \oplus \cdots \oplus A_n$, where each A_i is a rank-1 group of type τ_i , and assume the list $\tau_1, \tau_2, \ldots, \tau_n$ is closed under supremums. Then, for every $m \geq 1$, any torsion-free homomorphic image of A^m is almost completely decomposable if and only if A/B is almost completely decomposable for all rank-1 pure subgroups B of A.

Proof. The necessity is clear, and to show the sufficiency, we may assume $\mathbf{Z} \leq A_i \leq \mathbf{Q}$ for each $i \in \bar{n}$ and $A = A_1 \oplus A_2 \oplus \cdots \oplus A_n$. By the remark preceding Theorem 1.3, the types of the summands of

$$A^m = (A_1 \oplus A_2 \oplus \cdots \oplus A_n) \oplus \cdots \oplus (A_1 \oplus A_2 \oplus \cdots \oplus A_n)$$

are a well-formed list. Theorem 1.3 implies all rank mn-1 torsion-free quotients of A^m are almost completely decomposable. By applying the pure embedding δ described at the beginning of this section, we conclude that the types of the rank-1 quasi-summands of a rank mn-1 torsion-free homomorphic image of A^m are of the form τ_i or τ^{ij} , $i, j \in \bar{n}$. Since $\tau_1, \tau_2, \ldots, \tau_n$ is closed under supremums and since sublists of well-formed lists are well-formed, the result follows by induction.

2. The dual problem and a theorem of Butler. The results of section 1 all have duals but we intend only to present the duals to Theorem 1.3 and Corollary 1.4. A list of types τ_1, \ldots, τ_n is called *cowell-formed* if for every $S \subseteq \bar{n}$ with $|S| \geq 2$ there are distinct $i, j \in S$ and a nontrivial partition $I \cup J = S$ satisfying $\tau_{ij} = \tau^I \wedge \tau^J$.

Theorem 2.1. Assume $A \sim A_1 \oplus \cdots \oplus A_n$ with each A_i rank-1 of type τ_i . Then, every corank-1 subgroup of A is almost completely decomposable if and only if τ_1, \ldots, τ_n is co-well-formed.

Proof. Using the duality developed in [5], there is an almost completely decomposable group $B \sim B_1 \oplus \cdots \oplus B_n$ with type $(B_i) = \sigma_i$ such that every corank-1 subgroup of A is almost completely decomposable if and only if B/X is almost completely decomposable for each rank-1 pure subgroup X of B. Moreover, the correspondence $\sigma_i \to \tau_i$ extends to a lattice anti-isomorphism between the lattice of types generated by $\sigma_1, \ldots, \sigma_n$ and the lattice generated by τ_1, \ldots, τ_n . Therefore, the theorem follows from Theorem 1.3.

Corollary 2.2. Suppose $A \sim A_1 \oplus \cdots \oplus A_n$ with each A_i a rank-1 group of type τ_i . If τ_1, \ldots, τ_n is closed under infimums, then for each $m \geq 1$, every pure subgroup of A^m is almost completely decomposable if and only if every corank-1 subgroup of A is almost completely decomposable.

Suppose L is a finite sublattice of the lattice of all types. If $\alpha, \beta \in L$ with $\alpha < \beta$ and there is no τ in L with $\alpha < \tau < \beta$, then β is called a cover of α in L. If every element of L has at most two covers in L, we say L satisfies Butler's condition. In [6] it is proved that the finite lattice L satisfies Butler's condition if and only if every Butler

group (i.e., a torsion-free homomorphic image or a pure subgroup of a completely decomposable group) with typeset contained in L is almost completely decomposable. The connection between Butler's theorem and our results is revealed by

Theorem 2.3. Let L be a finite lattice of types and suppose τ_1, \ldots, τ_n is a list with each $\tau_i \in L$.

- (a) If L satisfies Butler's condition, then τ_1, \ldots, τ_n is well-formed.
- (b) If $T = \{\tau : \tau = \tau_i \text{ for some } i\}$ is a lattice, the following statements are equivalent:
 - (i) T satisfies Butler's condition.
 - (ii) τ_1, \ldots, τ_n is well-formed.
 - (iii) τ_1, \ldots, τ_n is co-well-formed.

Proof. To prove (a) suppose $n \geq 3$ and set $\tau_i' = \tau_i \vee \inf \{\tau_j : j \neq i\}$ for each $i \in \bar{n}$. Suppose $\tau_1', \tau_2', \ldots, \tau_n'$ are pairwise incomparable and let L' be the sublattice of L they generate. Let τ be a cover for $\tau_1' \wedge \tau_2' \wedge \cdots \wedge \tau_n'$ in L'. Set $S = \{\alpha \in L' : \alpha \geq \tau\}$ and $S^* = L' - S$. Since L' also satisfies Butler's condition, a routine lattice-theoretic argument shows that S^* is a linearly ordered sublattice of L'. Thus, there exists a unique i with $\tau_i' \in S^*$. Say $\tau_i' \in S^*$. Therefore, $\tau_1' \leq \tau_1' \vee \tau \leq \tau_1' \vee (\tau_2' \wedge \cdots \wedge \tau_n') = \tau_1'$. Consequently, $\tau_1' \notin S^*$, a contradiction. We conclude that τ_1', \ldots, τ_n' are not pairwise incomparable. Therefore, we may assume $\tau_1' \geq \tau_2'$.

For each i, select $\mathbf{Z} \leq A_i \leq \mathbf{Q}$ and set $A'_i = A_i + \bigcap \{A_j : j \neq i\}$. Then type $(A'_i) = \tau'_i$. Since $\tau'_1 \vee \tau'_2 \leq \tau'_1 \vee \tau'_j$ for $1 \leq i \leq n$, Proposition 1.2(a) implies $G' = G \langle A'_1 \oplus \cdots \oplus A'_n \rangle$ has a rank-1 quasi-summand. Since $G' \cong G \langle A_1 \oplus \cdots \oplus A_n \rangle$, Proposition 1.1 completes the proof of (a).

To show that (ii) implies (i) in (b), suppose τ_1, τ_2 , and τ_3 are all distinct covers of τ_4 . Let $\mathbf{Z} \leq A_i \leq \mathbf{Q}$ have type τ_i . Then $G\langle A_1 \oplus A_2 \oplus A_3 \rangle$ is strongly indecomposable (see [7, Proposition 3]), a contradiction.

For (iii) implies (ii), let G be a torsion-free image of a direct sum of rank-1 groups with types belonging to T. Then G is a pure subgroup of an almost completely decomposable group with the types of the summands belonging to T [1, Proposition 4.2], so G is almost

completely decomposable and (ii) holds. Finally, in case T is a lattice, it is well known that any pure subgroup of $\bigoplus A_i^k$ (with type $A_i = \tau_i$ and $k \geq 1$) is an epimorphic image of $\bigoplus A_i^m$ for some m. Thus (ii) implies (iii) is clear. \square

We conclude with two examples. They illustrate that the conditions well-formed and co-well-formed are independent if the list of types $\tau_1, \tau_2, \ldots, \tau_n$ is not assumed to form a lattice.

Example 2.4. Let p, q and r be distinct prime numbers and set $A_1 = \mathbf{Z}$, $A_2 = \mathbf{Z}[1/p]$, $A_3 = \mathbf{Z}[1/q]$, $A_4 = \mathbf{Z}[1/r]$ and $\tau_i = \operatorname{type}(A_i)$. It is easily verified that $\tau_1, \tau_2, \tau_3, \tau_4$ is co-well-formed but not well-formed. Therefore, if $A = A_1 \oplus \cdots \oplus A_4$, every corank-1 subgroup of A is almost completely decomposable. However, there exists a torsion-free quotient of rank 3 which is not almost completely decomposable. In fact, $A_1 \oplus \cdots \oplus A_4 / < \langle (0,1,1,1) \rangle_*$ has a strongly indecomposable quasi-summand of rank 2.

Example 2.5. Again let p,q and r be distinct primes and set $A_1 = \mathbf{Q}, A_2 = \mathbf{Z}_p, A_3 = \mathbf{Z}_q$ and $A_4 = \mathbf{Z}_r$, where the prime subscripts denote the respective localizations. If $\tau_i = \text{type } (A_i)$, note $\tau_1, \tau_2, \tau_3, \tau_4$ is well-formed but not co-well-formed. In this case, if $A = A_1 \oplus \cdots \oplus A_4$, $G\langle A \rangle$ is almost completely decomposable, yet $\text{Ker } \sigma$, where $\sigma: A \to \mathbf{Q}$ is defined by $\sigma(a_1, \ldots, a_n) = \sum a_i$, is strongly indecomposable.

REFERENCES

- 1. D. Arnold, Finite rank torsion free abelian groups and rings, Springer-Verlag Lecture Notes in Math. 931, 1982.
- 2. D. Arnold and C. Visonhaler, Pure subgroups of finite rank completely decomposable groups II, in Abelian group theory, Springer-Verlag Lecture Notes in Math. 1006 (1983), 97–143.
- 3. ———, Representing graphs for a class of torsion-free abelian groups, in Abelian group theory, Gordon and Breach, London (1987), 309–332.
- 4. ______, Invariants for a class of torsion-free abelian groups, Proc. Amer. Math. Soc. 105 (1989), 293–300.
- ——, Duality and invariant for Butler groups, Pacific J. Math. 148 (1991),
 1–10.

- $\bf 6.~$ M.C.R. Butler, A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. $\bf 15~$ (1965), 680–698.
- 7. H.P. Goeters and W. Ullery, Homomorphic images of completely decomposable finite rank torsion-free groups, J. Algebra 140 (1991), 1-11.
- 8. F. Richman, An extension of the theory of completely decomposable torsion-free abelian groups, Trans. Amer. math. Soc. 279 (1983), 175–185.

Department of Mathematics, Auburn University, AL 36849-5307