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A QUASILINEAR SYSTEM MODELING
THE SPREAD OF INFECTIOUS DISEASE

W.E. FITZGIBBON, J.J. MORGAN AND S.J. WAGGONER

ABSTRACT. Recent results for quasilinear systems are ap-
plied to a quasilinear reaction diffusion system modeling the
spread of an infectious disease within a system. The long-
time behavior of the system is investigated and asymptotic
convergence results are obtained.

1. Introduction. We shall be concerned with a system of quasi-
linear reaction diffusion equations which model the spread within a
population of infectious disease. The population is assumed to be sub-
divided into three classes: the susceptible class S consisting of indi-
viduals capable of becoming infected, the infective class I consisting of
individuals capable of transmitting the disease, and the removed class
R which consists of individuals who have died or recovered from the
disease and have become immune.

We make the following assumptions regarding the kinetics of our
model: individuals of the susceptible class enter the infective class
at a rate proportional to the product of the size of the susceptible
class and the infective class with constant of proportionality pu > 0,
and individuals who do not survive as infectives enter the removed
class at a rate proportional to the size of the class I with a constant
of proportionality A > 0. We assume that the epidemic occurs in a
bounded spatial region which is a bounded Lipschitz domain in R™ with
C?*¢ boundary 0 < ¢ < 1 and that the population is constrained to
remain for all time. Finally, we assume that diffusion takes place in all
classes and that the diffusion mechanism is represented by a quasilinear
diagonal diffusion operator which can be written in divergence form.
These assumptions lead to the following quasilinear parabolic system
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of equations:

(1.1a)  0:S(x,t) =V - (¢(S(z,t))VS(x,t)) — uS(x,t)I(z,t)

t> 0,z €,
(1.1b)
Ol(z,t) =V - (Y (z,t))VI(z,t)) + pS(z,t)I(z,t) — A\ (z,t)
t>0,x e,
(1.1c) O¢R(z,t) =V - (0(R(z,t))VR(z,t)) + A (z,1)
t>0,ze

which are subject to boundary conditions of the form

0S(z,t)  OR(z,t) OI(x,t)
(1.1d) s b e it)

Finally, we have the initial conditions
(1.1e)
S(z,0) = Sp(x) I(z,0) = Ip(x) R(z,0) = Ry(x) z € Q.

The diffusivities, ¢( ),¥( ),0( ), are assumed to be smooth, non-
degenerate, strictly positive, and uniformly bounded. Namely, there
are positive constants g and @ so that

a < min{@(u), P(u),0(uw)} < max{p(u),¥(u),0(u)} <a

(1.2)
for all u € R.

We assume the following about our initial data:
(1.3) So( ), To( ) Ro( ) € HY(Q).

We shall have occasion to impose several different norms on functions
defined on Q. The symbol, || ||pq, shall denote the standard L,(2)

norm. The norm in H'(2) will be denoted by || ||g1s)z

Webb [13] studies this system for constant linear diffusion in each
component in the case of one space dimension and is able to analyze
the behavior as ¢ — co. These results have been extended to the case
of arbitrary dimension and distinct diffusion constants in [1].
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2. Existence and a priori bounds. This section contains
a discussion of existence and provides a priori bounds requisite for
analyzing the asymptotic convergence of solutions to (1.la—e). We
specify our notion of solutions to (1.la—e).

Definition 2.1. A triple (S(, ), I(, ), R(, )) is said to be a classical
solution to (1.1a—e) on Q x [0, 7] if the following are satisfied:
(i) Forallt € (0,T], (S(,t),I(,t),R(,t)) € C*Q,R?*)NC(Q,R?);
for z € Q, (S(z, ),I(z, ),R(z, )) € C*((0,T],R?) and the partial
differential equation is satisfied for z €  and ¢ € (0, T7.

(i) limg o [1SC,8) = SoO IS + I11(,6) = To( )50 + IR ,¢) —
Ro()|IS'%] = 0.

Our basic existence result follows.

Theorem 2.2. If (1.3) holds, the initial data is nonnegative, and
T > 0, then there exists a unique classical solution of (1.la—e) on
Q x [0,T]. Moreover, S(z,t),[(z,t), R(z,t) > 0 for x € Q, t > 0.

Indication of Proof. Local existence, uniqueness, and continuous de-
pendence results follow from standard arguments of abstract parabolic
theory, and standard continuation results produce existence on a max-
imal interval [0, Tyax). These results are discussed by Waggoner [12].
The positivity follows from the fact that the positive orthant is an
invariant rectangle, cf. Smoller [11]. If H(S,I,R) = S+ I+ R, we
compute a priori Lq(2) bounds on H(S(, ),I(, ),R(, )). Summing
the components (1.1la—c) we obtain

(2.3) (S+I+R)=V-W(S)VS+y(I)VI+6(R)VR).
We integrate to observe that

HH(S( 7t)7I( 7t)7R( 7t))||1,§2 S ||H(SO( )710( )7R0( ))
for t € (0, Timax)-

|10

Clearly, there exists a constant C; > 0 so that for all 0 < 7 < t < Thax

(2.4) /t/QH(S,I,R)d:Edsgcl(tT).
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Results appearing in [12] may be readily adapted to conclude that the
assumption Ty < 00 leads to a contradiction. The crux of the proof
consists of showing that Morgan’s intermediate sum condition, [8,9], is
satisfied with intermediate sum matrix

and constants K1 = Ko = 0. We may conclude that solutions exist for
any interval [0, 7] for any T > 0. o

It is trivial to observe that the first two components of (1.la—e)
decouple from the third and that determination of S( , ) and I( , )
completely determine R( , ). We shall therefore subsequently confine
our attention to the system:

(2.5a)  0uS(x,t) =V - ((S(x,t)VS(x,t)) — pS(x,t)I(z,t)

ret>0
(2.5b)
0 I(z,t) =V - (Y (z,t))VI(z,t)) + pS(z,t)I(z,t) — M (z,t)
zeQt>0

subject to boundary conditions,

08 (x,t) _ 0l(x,t)

(2.5¢) o o 0 xz € 0N
with initial data
(2.5d) S(z,0) = So(x), I(z,0) = Iy(x) z € Q.

We may adopt an argument due to Haraux and Youkana [4] to
produce a priori L,(f2) cylinder bounds for solutions to (2.5a—d).

Proposition 2.6. If (S(, ),I( , )) is the solution to (2.5a—d)

guaranteed by Theorem 2.3 on  x [0,00) and p € [1,00), then there
exists a constant K, > 0 so that for all 0 <7 <T < oo we have

(2.7) () p.axrr) < Ep(T — 7).
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Proof. The regularity of parabolic systems will ensure that we shall
lose no generality if we assume that Sy and Iy are C! on Q. The fact
that the first component of our kinetic term is nonpositive implies that
for all p € [1, o0]

(2.8) ISCs Dllp.a < [[So()llpo  fort>0.
It will simplify subsequent calculation if we set g;(S,I) = pST and
92(S,I) = uSI — M. Clearly, for S,I >0, g2(S,I) < ¢1(S,I).

If F( ) is an arbitrary real function such that F € C?*(R), F > 0
and F’ > 0, we may observe via tedious calculation that

(2.92) % /Q F(I)dz < — /Q FI(D)(D)|VI] dz + /Q 91(S, ) F'(I) da

such that

(2.9b)

% (S+ S?)F(I)dx < / (S + SHF'(I) — (1+28)F(I)|g:(S, 1) dx
Q Q

- /Q (14 28)(6(S) + $(D)]F'(I)(VI, VS) dz
- [ 2Pwus)vsP
—/sz(I)(S—i—SQ)F”(I)|VI|2dm.

We recall that there are positive constants 0 < a < @ which bound
#( ) and ¥( ) from above and below. We choose F(v) = e, where
€ > 0 will be determined later and set

(2.10) K =2a(1+2[|So( )lloo)-
We may observe that

(2.11a)

i/Q(SJrSQ)e“ dr < /Q{E(SJFSQ) —(1+28)}e g1 (S, 1) dx

dt
2K2
+/ TR \vIe do
0 8

a
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and
d

(2.11b) —/ el dx < —/(,u2ged|VI|2 dw—i—/ eel g1 (S, 1) dx.
dt Jo Q Q

Letting § = 8a%/K?, we see that
(2.12)
d

— [ 1+ 8(S + S?)|e! dz
dt Jq
< / {e+6[e(S + S8%) — (1+29)]}eg1(S, 1) dz
Q
< /Q{E +8[e([ISolloc, + [0l 3 ,0) — (1 +28)}e™ g1(S, 1) da.

Choosing ¢ > 0 sufficiently small so that ¢ < §/(1 + 6[[|So||co,0 +
|1S0/|2.a]), we may use the inequality in (2.12) to deduce that

d
(2.13) 7 / [146(S(x,t) + S2(z,1))]e! @ dz <0 on (0, 00).
Q
From (2.13) we see that there is a constant M so that for all ¢ > 0
(2.14) / e 1@ dp < M.
Q

Consequently,
- T %
M esen = | [ I”(m,t)dmdt]

- 1
/ /(By)ed(”) dwdt]
(2.15) L) Ja\e
[ P

IA

1

_ (7—’) M(T — T)] ’

IN

9

IN

Pys i —r)s
€
and the result follows. O

The next result will provide a priori gradient bounds for S in Ly ().
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Proposition 2.16. If (S(, ),I(, )) is the solution to (2.5a—d)
guaranteed by Theorem 2.2 on Q x [0,00), then there exists a constant
Cs > 0 so that for all T > 0,

(2.17) IVS(, T)l2,0 < Co.

Proof. We multiply (2.5a) by S and integrate over the space time
cylinder 2 x (k,k + 1), where k € {0,1,2,...}, to obtain

1 k41
(2.18) / 55w,k + 1) da +/ / 6(S(x, £)|VS(@, ) de dt
Q k Q
1
< / ~5%(z, k) dz.
Q2
By virtue of (1.2) and (2.8), we observe that

k+1 1 1
(2.19) / /|VS(x,t)|2dacdt§ —/ $%(2,0) dz = —||So|12.q.
k Q 2a Jq 2a ’

From the mean value theorem for integrals we are guaranteed the
existence of a 7, € (k,k + 1) so that

1
(2.20) / IVS(z,)|* dz < —|Sol[3.0-
Q 2a 7

Consequently, for each k € {0,1,2,...} we have a 7 so that k < 7, <
k + 1 and (2.20) is satisfied. Now, let T' € (0, 00). We multiply (2.5a)
by ¢(S5)0S/0T and integrate over the space time cylinder Q x (7%, T),
where 7, < T < 741 to obtain

(2.21)
/TkT/Qfﬁ(S(:c,t)) (%)2 dxdt+/0|¢(S(x,T))vs(x,T)|2 dr

T
<uf |
T JQ

+ /Q 16(5 (2, 7)) VS (2, 7) | d.

6(S(z, )22 ((9”; ) ‘S(ac, I(z, t) de dt
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Applying Young’s inequality we have for ¢ > 0
(2.22)

[ [ptstm - tercstmn] (22 asa

+/ |p(S(z, T))VS(z,T)|* d

< 28/ /52 x,t)I%(x, 1) dmdt—i—/ b(S(z, 7))V S(z, %) | da.

We now choose ¢ > 0 so that (¢(S) — (ue/2)(4(S))?) > 0. Using (1.2),
(2.7), and (2.20), we observe

2
(2.23) /|VS($ 7)1 %0Ka(T =) + 55 150l

Since 0 < T — 1, < 2, the result follows. a

Proposition 2.24. If (S(, ),I( , )) is the solution to (2.5a—)
guaranteed by Theorem 2.2 on ) X [0,00), then there exists a constant
Cs > 0 so that for all T > 0,

(2.25) IVI(-, T)ll2,0 < Cs.

Proof. We proceed in a manner similar to that in Proposition (2.16),
multiplying (2.5b) by I and performing an integration to obtain

k+1
1
(2.26) / /|v1(x,t)|2dxdt§ﬁ||50||oo,QK§+—/12(x,k)dx.
k Q a 2 /a

Consequently, for each k € {0,1,2,...}, we have a 7 so that k < 7, <
k+1 and

K.
(2.27) / Vi@, ) dz < El|Sollw oK + 32
Q & a
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Multiplying (2.5b) by 9 (I)01/0t and integrating over §2 X (7%, T") where
Tk < T < Tky1, we obtain
(2.28)

/ /w <8Ig§ t)> dmdt—i—/ W(I(z, T)VI(z, T))|? da
(9] (x,t) ‘

|uS(x,t)(x,t) — M (z,t)| dz dt

+ /Q | (I(x, 7)) VI(2xTy)|? de.

Applying Young’s inequality we have for € > 0

[ [ [ - geuen)] (P ”)2 do dt

+/Q|¢(I(m,t)VI(x,T)|2dm

(2.29)
,U2 2 2 2 A’ 2 2
< 5 150lle, @B (T 70e)™ + 5 K (T~ 7)
K262
2a

+ —HSOHOO o> +

Choosing € > 0 so that (¢(I) — (¢/2)¥?(I)) > 0 and observing that
0 < T — 71 < 2, we obtain our desired result. a

3. Asymptotic behavior. In this section we complete our study
by investigating the asymptotic behavior of our system. Although we
follow techniques developed by Webb [14] and utilized by Fitzgibbon
and Morgan [1], our convergence results are not as strong as in either of
the papers. Our asymptotic results will provide convergence in L2 (€2),
not C().

We shall let X denote the positive cone of H'(Q) x H!(Q). We define
a family of operators {U(t)|t > 0} by

(31) U(t)(SOaIO) = (S( 7t)aI( 7t))

where (S(,t),I(,t)) is the globally defined solution to (2.5a-d) guar-
anteed by Theorem 2.2. It is well known that {U(¢)|¢ > 0} is a strongly
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continuous semigroup on X. We shall also need to consider the positive
cone Y in the weaker space Ly(2) X L(2). We have

Proposition 3.2. If (S, Iy) € X, then O(Sy, Ip) = {(S(,t),I(,1))]
(SC ), I( )) is a solution to (2.5a—d), S( ,0) = So( ), I( ,0) =
Iy and t > 0} is precompact in Y. Moreover, O(Sp,1Iy) has a
nonempty, compact, connected, w-limit set, w(Sy,Iy) in Y such that
dist (U (t)(So, Io),w(So, Ip)) — 0 as t — oo where the distance is taken
in the norm of Y.

Proof. Propositions 2.18 and 2.17 insure that the trajectory O(Sy, Iy)
lies in a bounded subset of H!(Q) and therefore the Rellich lemma may
be applied to establish precompactness. The remaining assertions of
the proposition are standard results in the theory of dynamical systems,
[5]. o

We specify a nonnegative real-valued functional on Y by setting
(33) W(S,D) =G, Dl = [ (841
Q

Clearly, W( ) is continuous on Y. If we sum the components of
(2.5a-b) and integrate on the space time cylinder Q(0,t) = Q x (0,1),
we get

(3-4) W(S(,t),f(,t))+/0 AL 8)llvds =W (So( ), To( )

We may therefore consider W( , ) to be a Lyapunov function for our
dynamical system. We let IT; and II; be the projections of X onto its
first and second coordinates, respectively.

Proposition 3.5. If (So( ),Io( )) € X and (®,7) € w(So, o),
then ¥ = 0 and the projection Iy (U(t), (®,T)) =0 for all t > 0.

Proof. Because W (U (t)(So, Ip)) is nonincreasing in ¢ and bounded
below by zero we can let k = lim;_, o W(U(¢)(So, Io)). The continuity
of W( , ) implies that W (®, ¥) = k. Because w-limit sets are forward
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invariant U(t)(®,¥) € w(So, o), and, hence, W (U (t)(®,¥)) = k for
all ¢ > 0. By virtue of (3.4), we must have |[II2(U(s), (®,¥))|| = 0 for
all s > 0 and we obtain our desired conclusion. O

We introduce a family of Lyapunov-like functions W.(, ): Y — R
by

(3.6) W.(®, ) = /

A
{<I>+\If— —log(i’—i—s)}.
Q 2

Clearly, W.( , ) is continuous and bounded below.

Lemma 3.7. If (So, Iy) € X, then W.(U(t)(So, Io)) is nonincreasing
i t.

Proof. Let (S(, ),I(, )) be solutions to (2.5a—d) with initial data

So, Ip. We compute

d

EWE(U(t)(so,IO)):/Qat{SH%1og(s+s)}

(s )

<0

and thereby conclude that W, (U (t)(So, Ip)) is decreasing in t. O

Proposition 3.9. If (So,Ip) € X and (®,¥) € w(So,lp), there is a
unique nonnegative constant C so that ® = C.

Proof. Following the reasoning of Proposition 3.2, we argue that
there exists a k so that k& = limy oo We(U(t)(So,1lo)). Thus, if
(®,7) € w(Sy,ly), then W.(®,¥) = k. The forward invariance of
w(So, Ip) implies that W_(U(¢)(®,¥)) = k for ¢ > 0. Moreover, if
S(t) = Hy(U(t)(@,¥)) and I(t) = Ha(U(t)(P,¥)) we may integrate
(3.8) to observe \/u fot [|6(S)|VSI2/(S +¢)?||1 = 0 and conclude that
[||VS|?/(S+¢)||1 = 0, and we may conclude via the absolute continuity
of S that S = C for some C' > 0. To see that C'is unique, we let t,, — oo
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be such that U(t,)(So,lo) — (®,¥) € Y. We then have & = C and
U = 0. If we take the limit on each side of (3.4), we may observe that
WC.O+ [ Alla(U(s)(So o))
0

(3.10) — m(Q)C + /Ooo A2 (U (s)(So, Io)) |1

= W (So, Io)

where m(Q) denotes the m-dimensional Lebesgue measure of Q. Be-
cause (3.10) may be satisfied for only one value of C, C is unique.
O

Proposition 3.11. If (So(, ),Io(, )) € X, then lim;,  ||S( ,t) —
®||m, (@) = 0.

Proof. We have shown that S( ,t) converges to ® in L;(2) and
together with the fact that ||S( ,t)|/ec,0 < ||So||co,o implies that S( ,t)
converges to ® in Ly(Q). Consequently, if we multiply (2.5a) by S and
integrate by parts we may observe that

1 > 1
Er2)  gm@e s+ [ [ sSSPt < IS Bo

Therefore, we may obtain a sequence {t;}7°, such that ¢, < tg41,
ty — 00, try1 — gk < 2, and

(3.13) lim [[|VS(,t)||l2.0 = 0.
k—o0

If ¢y, <t < tgy1, we apply the argument producing inequality (2.22) to
produce

(3.14) /tt/n [QS(S(m,t))— %qﬁQ(S(m,t))} (8‘9;’”)2 do dt

+ /Q 16(5 (2, 1)) VS (2, )] da

< K /tt/QSQ(ac,t)IQ(m,t) dmdt+/0|¢(S(m,tk))VS(x,tk)|2dx.

= 2
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Because

t t
(3.15) //52(x,t)12(x,t)dxdtg|\50||§Q/ /IQ(x,t)dxdt,
tr JQ ’ tr JQ

we may deduce via standard convergence arguments that the first term
on the right-hand side of (3.14) converges to zero. We notice that

(3.16) /Q|¢(S(a:,tk))VS(a:,tk)\2dm§62/Q|VS(a:,tk)|2dx

and conclude via (3.13) that the second term converges to zero. Con-
sequently, from (3.14), we have for sufficiently small £ > 0

(317)  lim [|S(,t) = ®||m, (o)
= lim (|[S(,1) = @[z, + IVS(,)]l20) = 0. ©

We now use the Sobolev imbedding theorem to conclude that if n = 1,
then

(3.18) sup |S(z,t) — @] — 0.
€N

Using (3.18) together with the results of [1, Theorem 4.9], we obtain

Proposition 3.19. If (So( ),Io( )) € X and n = 1, then
[1S(-;t) — @||oc,0 — 0 and if S(x,0) > 0 on a set of positive measure,
then ® > 0.

From an epidemiological point of view, we have examined the ge-
ographical spread of an infectious disease and have shown that the
infective population decays to zero while the susceptible population
converges to a constant (positive if Sp > 0 and n = 1) value over
the spatial region. This agrees with standard results for the spatially
independent case, cf. [14].
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