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COMMUTATIVITY OF COONS AND
TENSOR PRODUCT OPERATORS

GERALD FARIN

ABSTRACT. We show under what conditions Coons type
surface approximation operators and tensor product approxi-
mation commute. An application is given for Bézier surfaces.

Definitions. We first define a C'oons patch: Consider a surface patch
s(u,v), which is a continuous map of the unit square into R3. We can
define its (bilinearly blended) Coons approximation by

Cs(u,v) = (1 — uw)s(0,v) + us(1,v)
+ (1 —v)s(u,0) + vs(u, 1)

s(0,0),s(0,1) 1—vw
~0-we (300rn) (157):
This Coons patch interpolates to all four boundary curves of s; in fact,

it only depends on data from the boundary curves. For more details,
see [1 or 6].

(1)

Let us next define a tensor product surface: Let x(t) be a curve,
i.e., a continuous map of the unit interval into R3. We can define an
approximation to it by

(2) Ax(t) = Z x; Ai(t),

where x; = x(¢;) for 0 = ¢ty < #1,...,< ¢, = 1. The A;(t) are
univariate functions; they determine the nature of the approximation
scheme. A second such scheme might be of the form
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The corresponding tensor product approximation A ® B to a surface
s(u,v) is given by

(3) (A® B)s(u,v) =) > sijAi(u)B;(v),

i=0 j=0
where s; ; = s(u;, v;). For more details about tensor product approxi-
mation schemes, see [4].

We finally need the notion of linear precision: The operator A has
linear precision if and only if for constants a and b

A(a+tb) =a+tb,

i.e., the operator A reproduces straight lines. Since linear precision
implies constant precision, we have

(4) Z A(t) = 1.

The commutativity theorem. To a given surface s, we can con-
struct its Coons type approximation C's or, given two (not necessarily
different) curve approximation schemes A and B, we can construct its
tensor product approximation (A ® B)s. We can then approximate the
tensor product approximation by a Coons approximation: C'(A ® B)s
or vice versa: (A ® B)Cs. Under what conditions will those two ap-
proximations coincide? The following theorem provides the answer.

Theorem. Tensor product and Coons surface approzimations com-
mute, i.e.,
(5) C(A® B)s = (A® B)Cs
under the following conditions:

1. Both A and B have linear precision,

Remark. Equation (6) states that the curves Ax, Bx agree with x at
the endpoints of x.
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Proof. Let us first establish an auxiliary result. Provided that (6)
holds, a boundary curve of a tensor product patch is the univariate
approximation to the corresponding boundary curve of the original
patch s. To see this, we write

(A &® B)S(O, ’U) = Z Z Si’in(O)Bj(U)
:ZSOJ'B v

The last follows because of (6). Analogous results hold for the three
remaining boundary curves.

(7)

We can now write
(A® B)Cs(u,v)

— Z 2(1 — u;)80,; Ai(u)Bj(v)
n Z]ZuistAi(U)Bj(v)
DO NEHEIOEID
n ;;vjsm i(u)Bj(v)
g ;;(1_%%)( oo ) (11 0) 4By (o).

Sm,0; Sm,n

The first term in this equation can be rewritten
ZZ 1—’1,141 S()J ZB SO,jZ(l—ui)A u
i
By linear precision of A,

l—u ZB SOJ

Because of (7),
= (1 —u)(A® B)s(0,v).
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The remaining terms are treated analogously, and we get:
(A® B)Cs(u,v)
=(1—-u)(A® B)s(0,v) + u(A
+ (1 —v)(A® B)s(u,0) + v(
_(1— (A® B)s(0,0),
(1 —u,u) ((A® B)s(1,0), (A
= C(A ® B)s(u,v).

® B)s(1,v)
A® B)s(u,1)
Gemman) (')

Remark. I am grateful to a referee for realizing that the above theorem
not only proves sufficiency but also shows the necessity of the above
conditions.

Applications. Let us investigate a special case of the above theorem:
Let A and B be Bernstein approximation operators, i.e., A;(t) =
(T)t’(l — t)™"*; more specifically, let

m .

1

Ax = Zx <E> A;(¢).
=0

If s is a piecewise bilinear surface with breakpoints s; ;, we say that

(A ® B)s is the Bézier patch defined by the control net s; for more
details, see [3].

We now have an easy way to construct the Coons patch to four
boundary Bézier curves (of compatible degrees): Suppose that each
boundary curve is specified by its control polygon. We can then
construct the Coons patch to the four boundary control polygons.
(Note that in order to do this, we must assume that the polygons are
evaluated at their vertices, corresponding to parameter values i/m or
Jj/m, respectively.) This Coons patch will be piecewise bilinear and can
thus be interpreted as a control net for a Bézier surface. By the above
theorem, this Bézier surface is the Coons patch defined by the four
boundary curves. This construction is much simipler than obtaining
the control net from the original Coons approach (1).

If all four boundary curves are cubics, the patch generated by this
method is bicubic and has as its corner twists the so-called Adini-twists
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(see [2, p. 34 or 3, p. 83]). We thus have a direct method to determine
Bézier points corresponding to Adini-twists.

If A and B denote B-spline approximations, the theorem is not in
general valid; it is only applicable if the end knot multiplicities are
chosen to be high enough so that (6) holds. Also, evaluation of the
boundary polygons must now occur at the “Greville abscissae” (see [5,
p. 11 or 6, p. 122])

&= <%> (wi+ -+ Uigm—1)-

A generalization. One generalization of the standard Coons patch
is the so-called Gordon surface, see [3]. Let F and G be two curve
approximation schemes of the form (2), defined over knot sequences
0=1d9 <U1,..., <ty =land 0 =19y < 01... < 0y = 1, respectively.
We can apply them to a surface s by means of a Boolean sum:

M

(F & G)s(u,v) =) s(tur,v)Fr(u) + Z s(u, 95)G s (v)

Z Z S(ﬁ[,@])F](U)GJ(’U).

I1=0J=0

The functions F; and G ; have to be chosen such that they are cardinal:
Fr(ug) = 61,k and Gy(vg) = d;k. Hence, the Gordon surface
interpolates to the isoparametric lines v = u;,v = vy of s, see also
[7]. In the special case M = N = 1, Fy(u) = 1 — u, Fi(u) = u,
Go(v) =1 — v, G1(v) = v, one obtains the original Coons formula (1).

The result of the previous theorem can now be generalized under the
assumption that the operators A and B possess a richer structure than
do F and G, more precisely,

Theorem. The Gordon and tensor product surface approximation
schemes commute, i.e.,

(A®B)(F®G)s=(F®G)(A® B)s

under the following conditions:
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1. The Fy (respectively, G y) are in the precision set of A (respectively,
B),

2. Ai(ar) = 6(ui,ur), By(vy) = 6(vj,05), where § denotes the
Kronecker Delta.

The proof proceeds exactly as for the preceding theorem.
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