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EXISTENCE OF SOLUTIONS
TO BOUNDARY VALUE PROBLEMS FOR IMPULSIVE
SECOND ORDER DIFFERENTIAL INCLUSIONS

L. ERBE AND W. KRAWCEWICZ

ABSTRACT. We consider nonlinear boundary value prob-
lems for second order differential inclusions y" € F(t,y,y’)
where the solution undergoes an impulse at certain points
tr. The technique used is an adaptation of the topological
transversality method to systems with impulses.

1. Introduction. In this paper we shall study the following bound-
ary value problem for a system of second order impulsive differential
inclusions:

y' € F(t,y,y') for a.e. t € |ag, a1]
y(te) = I(y(te))

y(t5) = Ni(y(te),y'(te) k=1,...,m
Gi(§) =0 i=0,1,

(1.1)

where
(i) F : [ao,a1] x R® x R" — 2R" is a multifunction,
(ii) L
(iif) Ny :
) § = (y(ao),y'(a0), y(a1),y'(a1)) and

:R™ — R" is a homeomorphism for £ =1,...,m,
R"™ x R™ — R" is continuous, k =1,... ,m
(iv

G; : R'™ — R" is continuous, i = 0, 1.

(V) ag =ty <ty < -+ <tm <tmy1=as.

We look for a solution to (1.1) which is a piecewise C'!-function with
points t of discontinuity, k = 1,... ,m, of the first type for y and 7/
at which they are left continuous.
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We shall mention that differential inclusions, which generalize the
notion of differential equations have been studied by many authors, for
example, [1, 7, 8, 9, 14, 24, 31, 32, 33] (see [32] for an historical
outline and an extensive list of resources).

There are many physical problems, in particular in optimal control
theory, which involve impulsive behavior (see, e.g., [2, 3, 6, 26,
29, 30]. The fact that solutions to such problems are discontinuous
renders the classical methods somewhat ineffective. We shall apply the
topological transversality method of Granas based on the existence of a
priori bounds for solutions to (1.1), which is appropriately modified to
deal with the impulsive nature. The results presented in this paper
could be obtained with the use of the topological degree but the
simplicity of the topological transversality method seems to make this
approach more desirable. Furthermore, the topological transversality
method of Granas has been applied before in the study of boundary
value problems in [12, 13, 14, 16, 17, 18, 20, 21, 22, 23].

To the best of our knowledge, we are not aware of any other attempts
to apply these methods to systems of impulsive differential equations.

We first present two motivating examples involving impulses.

Example 1. A market model with price expectations and govern-
mental price adjustment policy:

We consider a dynamic market model with n commodities. The
supply and demand are denoted by the vectors Qs = (Q!,...,Q7)
and Qq = (QY,...,Q1), respectively. The price vector is denoted by
P = (P!,... ,P"). We assume that the supply and demand are given
by functions which depend on time, prices, actual changes of prices,

and on the expectation of the price rising. We denote this by

(1.2) Qa = D(t, P(t), P'(t), P"(t))
and
(1.3) Qs = S(t, P(t), P'(t), P"(t))-

We also assume that the process of price adjustment is characterized
by the equation

dP

(14) = (@4,Q.).
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For example, (dP*/dt) = ay,(Q% —Q%), k = 1,... ,n. We are interested
in the evolution of the prices according to this model. Putting (1.2)
and (1.3) into (1.4) and solving this equation with respect to P"(t), we
obtain the following second order equation

(1.5) P"(t) = F(t,P(t), P'(t)).

We suppose next that at certain times 0 < t; < --- < t,, < T the
government, according to its market control policy, changes the actual
prices at tx, k = 1,... ,m. This action may be viewed as an impulse
at time ¢ at which the price vector P(t) is replaced by the new price
vector I(P(t)), where I : R® — R" is the mapping which yields
the “new prices.” Evidently, such an intervention into the market
will also cause some changes in the process of price adjustment. It
therefore seems reasonable to assume that the vector P’(t) is replaced
by Ni(P(tx), P'(tx)). We call the market control policy limited if it
does not change the actual trend in price adjustment. We can express
this condition as follows: for every £k =1,...,m, we assume that if

(16) P(tk) . Pl(tk) Z 0 then Ik(P(tk)) . Nk(P(tk),Pl(tk)) Z 0.

We may then consider the following boundary value problem for equa-
tion (1.5): P(0) = Py, P(t) = Py, where Py, P, € R™ are two given
vectors. Thus, given an initial price level and a desired terminal price
and assuming the market adjustments at times tx, k = 1,...,m, one
wishes to know if (for the governing equation) there is a solution to the
BVP. (Such government interventions in the market actually occur in
certain countries, especially in Eastern Europe.)

With slight modifications, a similar model illustrating the incomes
of n independent producers may be given. In this model, taxes are
imposed or subventions are granted at certain fixed times, which result
in an impulsive differential system.

Example 2. A model of a cruise missile with deceiving impulses.

Suppose that y(t) € R> denotes the position function of a cruise
missile. The missile is launched from a point yo € R? and is supposed
to hit a target at a point y; € R3. According to the laws of motion,
we can consider the trajectory of the missile y(t) as a solution to the
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following second order differential system of equations with Dirichlet
boundary conditions:

(1.7) {y”(t) = f(t,y(t),y'(t))

y(0) = o, y(T) = v1.

A solution to the BVP (1.7) represents the simplest and shortest
trajectory from yo to y;. Therefore, from a tactical point of view,
this may be the least desirable since detection of the missile would lead
to its destruction by the adversary. Therefore, it seems to be natural
in this situation to change the direction of the missile several times
in order to deceive the adversary and minimize the possibility of its
destruction. The simplest way to do this is to change appropriately the
direction of the missile at the time 0 < t; < --- < t,,, < T according to
the actual position of the missile and its direction. That is, at the time
te, k = 1,...,m, an impulse y'(t{) = Ni(y(tx),y (tx)) changes the
velocity vector of the missile. The function Vi consists of commands,
depending on the position and velocity of the missile, for the guidance
system. One may include in Ny additional information concerning the
location of the adversary’s radar and missile detectors in such a way
that the actual trajectory of the missile perceived by the adversary will
be very confusing. It seems reasonable that one should impose some
restrictions on the impulses /Vi. The condition

(1.8) if fly>R and y-y >0 then y-Ni(y,y') >0

can be interpreted as the requirement that the impulses N, do not
perturb “too much,” the trajectory of the missile when it is still at a
safe distance from the target, i.e., ||y|| > R. The condition (1.8) means
that the change of the direction can be done only in some limited
range, which is plausible from physical considerations. With these
considerations and restrictions in mind, it seems nevertheless to be
of interest to study such models and to interpret the consequences of
the introduction of impulses on the existence of solutions to the BVP
(1.7).

2. Existence results. In what follows, we will consider the
following functional Banach spaces: C([a,b]; R™) = {u : [a,b] - R™ :
u is continuous on [a, b]} with the norm [|u||ec = sup,c(q 4 [|u(t)|| Where
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| - || will denote the usual Euclidean norm in R™. C¥([a,b];R™) =
{u:[a,b] = R™:u € C([a,b];R™),0 < i < k} with the norm

[l soste = max{||u|oc : 0 < i < K}

L?([a,b); R™) = {u : [a,b] — R™ : ||u(t)|| is L?-integrable} with the
b m m

norm |Jullz = (f, [lu(t)||* dt)'/*. H*(la,b;R™) = {u : [a,b] = R™ :

u has weak derivatives u(Y) € L?([a,b];R™) for 0 < i < k} with the

norm '
|2 = max{|lu?||z: 0 < i < k}.

[Ju
The spaces H*([a,b]; R™| are the usual Sobolev spaces of vector
functions denoted also by W*2([a, b]; R™) (for more details, see [5]).

We introduce the following definition which will allow us to avoid
repetition of technical assumptions in the sequel.

Definition. Suppose that F : [ag,a;] xR™ — 2R" is a multifunction
with nonempty convex and compact values. We say that F'is admissible
if the multivalued map (Nemitsky operator)

Np : C([ao, al]; Rm) — LQ([ao,al]; Rn)
given by
Ng(u) = {w € L*([ag,a1]; R™) : w(t) € F(t,u(t)) for a.e. t € [ag,a:1]}

is well defined with nonempty convex values and such that the com-
posed multivalued map (J o Np)(u) := J(Nr(u)) is upper semi-
continuous and completely continuous (i.e., J o N, F|x is compact for
every bounded set X), where J : L%([ag,a1] : R") — C([ao,a1]; R™)
is an arbitrary completely continuous linear operator.

Our consideration of admissible multifunctions will be restricted to
Carathéodory multifunctions (cf. [7, 31, 32]).

Let us recall that a multifunction F : Q x R™ — 2E" Q c RF,
with nonempty compact convex values is said to be a Carathéodory
multifunction if it satisfies the following conditions:

(a) for each u € R™ the mapping F(-,u) is measurable;

(b) for each z € Q the mapping F(z,-) is upper semi-continuous.
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The following lemma is a direct consequence of Proposition 1.7 in
[31].

(2.1) Lemma. Suppose that a Carathéodory multifunction F :
[a,b] x R™ — 2R" satisfies the following growth condition

(G) for any bounded B C R™ there exists g € L?[a,b] such that
|1E(t,u)|| < op(t) for a.e. t€la,b andallueB
where | F(t,u)| := sup{||v|| : v € F(t,u)}.
Then F is admissible.

In what follows, we will suppose that the multifunction F' appearing
in the system (1.1) is admissible. We define the following Banach space:

¢ =[] C(te, tri;R™)
k=0

where the norm |[{u} " ;|| is defined by ||[{ur }i olloo := max{||ur|oc;
0 < k < m}. We introduce also the following Banach spaces:

1 := [ B*([tr, tera]; R™)
k=0
and
L? .= H Lz([tk,tk+1]; R")
k=0

where the norms are defined in a similar manner as in C.

A solution to (1.1) may be identified with a unique element of the
space HZ.
We shall make the following hypotheses in what follows:

(H1) There exists a constant R > 0 such that if ||yo|| > R and
Yo - ¥y = 0, then there is a § > 0 such that

essinf inf{y-w+ [|y/[|* : w € F(t,y,9'), (4, 9) € Ds} >0

t€[ao,a1]
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where D5 := {(y,4') € R*" : [ly — woll + llv' — woll < &}
We put

Siivk = sup{[[z]| : z € (Liyx o --- 0 L;)(B(0, R))}
Rigir = sup{llal] : o € (17" 0-+-0 I54) (B(O, R))}
where 1 <i,i+k <m, k>0, B(0,R) = {z € R"%||z|| < R}, and
M = max{R; ;j4+%; Siite; R: 1 <i4,i +k <m;k > 0}.
The following well-known Nagumo conditions will also be assumed;
(H2) There is a function ¢ : [0, 00) — (0, 00) such that

S

% 10, o0 < sds
o S L0 [5G

for a.e. t € [ag,a1] and all (y,y’') € D := {(z,2') € R* x R" : [|z|| <

(H3) There exist constants k, « > 0, such that

=oo and |[[F(t,y,y)ll < o(ly'])

£ty ) < 2a(y-w+ ||y []°) + &

for a.e. t € [ag,a1], all (y,y’) € D and w € F(t,y,y").

In the case where F is a continuous function the condition (H1) re-
duces to the classical Nagumo-Hartman condition [25]. The conditions
(H2) and (H3) are related to the usual Bernstein-Nagumo growth con-
ditions. We refer also to [11, 12, 13, 14, 16, 17, 18, 20, 21, 22,
23].

The following conditions were introduced in [12]:

Let G; : R — R", i = 0,1, be continuous functions and let
Ao,A1 € GL(TL,R)

For a fixed function G;, i = 0,1, we introduce the following condi-
tions:

(N1) One of the following two inequalities is satisfied for all
ug, ug, ug, uj € R™

(—1)"Tu; - v} + A (Gi(uo, upy, ug,uy) - ul] > 0.
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(N2) One of the following two inequalities is satisfied for all
ug, ug, ug, uj € R™

(—1)"u; - uy + A;Gi(uo, ug, ug,u}) - ug] > 0.
(N3) One of the following two inequalities is satisfied for all A € [0, 1]

and all ug, uj,ur,uy € R™ such that ||u;|| > R: (where the constant
R > 0 is the same as in the hypothesis (H1) introduced above)

wi # Mu; £ A;Gi(uo, ug, ur, ul)].
Our last assumption concerns the impulses Ny and I:
(IN) For every k =1,... ,mify -y’ > 0 and ||y|| > R, then
Ix(y) - Ni(y,y') > 0.

The condition (IN) says that the monotone character of the function
r(t) = |ly(t)||?, where y(t) is a solution to (1.1), is not changed
after the impulse is applied, provided that ||y(t)] is large enough, i.e.,
ly(®)] > B.

Our main result is the following

(2.2) Theorem. Under the hypotheses (H1), (H2), (H3) and (IN) if
G; : R* — R", i = 0,1, satisfy one of the conditions (N1), (N2) or
(N3), the problem (1.1) has at least one solution y € H2.

Proof. Let us introduce the following notation:
Cy == [ [{C(ltk, trral; R™) x C([th, teral; R™)}.
k=0
If the function G; satisfies the condition (N1) or (N3), we put
wi(§) :==y(ai);  gi(7) = y(a:) £ AiGi(7);

otherwise
(ai);  9:(7) = y'(a:i) £ A;Gi(9)

w;(7) ==y’
where § = (y(ao),¥'(a0),y(a1),y'(a1)), ao = to, a1 = tmy1-
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We consider the following family of nonlinear boundary value prob-
lems:

y' —ey e MF(t,y,y') —ey} ae. tElag,ai]
y(te) = I, M (y(t)))

Y () = ANk(y(tr), ¥ (tr))

wi(F) = A~ 9i(9) i=0,1; A€ 0,1].

(1.1x)

We define the linear operator L:H?> 5 L2xR"xR™" x R" x R™™
by

L({ur}ito) = ({uf — eur}ilo, wo(do), {ur(tr1) iy, wi(@m),

{u (t1) }ior)

where @9 = (ug(ao), up(ao)), tm = (um(a1),un,(a1)), ap = to, a1 =
tm+1- Let us observe that the operator L is invertible, where ¢ > 0 will
be restricted later. Indeed, the problem of finding the inverse for L is
equivalent to m + 1 independent linear boundary value problems:

uf — eug = fo uy —eug = f
(PO) wp(@g) = xg (Pk) uy, (k) = k=1,...,m—1
uo(t1) = 2o Up(tet1) = 2k
and
Uy — €Uy = fim
(P™) § tp(tm) = Tm
w1 (Um) = 2m
where

{fi}m o€ L?; (o, {zk}z”:_ol, zm) ER"XR™"XR"™ and {zx}, €R™".

Any of these linear boundary value problems (P, (P*),k=1,... ,m—
1, and (P™), is uniquely solvable; thus, L™! exists and is continuous.

We put j : H?2 = C% j({ur}o) = {(ug,u})}7,. It is clear that
j is a completely continuous one-to-one linear operator. We define a
family of multivalued maps

By:Cy > L2XxR"XR™™ x R" x R™™"
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by

@ ({urs v tio) = AT ({us v Yio) X {(A-go (@, 9), {I " (ur(te)) it
Ag1 (i, D)} X { ANk (ve—1(tr), ur—1(tr)) by

where (@, 9) = (up(ao), vo(ao), um(ai),vm(a1)) and

T ({ur, vk }i%) := {w € L? : wy(t) € F(t,up(t), vi(t)) — cug(t)
a.e. t e [tk,tk+1],k‘ =0,... ,m}.

We consider the following diagram

CZ ¢)\ L2 x R(2m+2)n

| Jil
J
H?
The problem (1.1,) is equivalent to the following fixed point problem

(2.1) w e Fa(w); we Cy

where w = {(ug, vg)}{%, and Fy := jo L' o @, is a u.s.c. multivalued
completely continuous map with nonempty convex values. It is easy to
see that F is a homotopy, with respect to A € [0, 1], of such multivalued
maps. For A = 1, the problem (2.1) is equivalent to (1.1) and for A = 0,
the problem (2.1) is the following second order impulsive system:

y' —ey=0 a.e. t € [ag,aq]
2 ) = I (0(t)
' Yyt =0 k=1,...,m
w;(7) =0 i=0,1.

We will show that the map Fy is essential (in the sense of Granas) on
some ball U = B(0, M) in the space Cy, if the radius M is sufficiently
large. Therefore, the existence of a solution to (1.1) will follow from
the existence of a priori bounds for solutions to (1.1,).

For definitions and facts concerning the topological transversality
method and the proofs of those results, we refer to [11, 12, 13, 14,
18, 27].
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Suppose now that y(¢) is a solution to (1.1y), for A € [0,1]. The func-
tion y(t) can be represented as a sequence {yx }" o, Yk  [tk, tk+1] — R™.
We put 7(t) = ||y(¢)||>. Although the function y(t) has discontinuities,
the function r(t) can also be represented as a sequence of functions
{rr()}iZo; e (t) = lur @) & =0,... ,m.

The constant € > 0 can be chosen appropriately small in order that
the conditions (H2), (H3) still imply the existence of a constant M; > 0
such that for any solution y(t) of (1.1,), ||¢'(¢)]] < Mi, provided
r(t) < M? (see [12] for details).

We need the following lemma for establishing the existence of a prior:
bounds for solutions to (1.1,).

(2.3) Lemma. Under the above hypotheses, if y is a solution to the
differential inclusion y" —ey € AF(t,y,y') — ey], A € [0,1] such that
the function r(t) = ||y(t)||* achieves its local mazimum m% at a point
S0 € [ao,a1] such that sy # to,t1, ... ytmytmt1, OF So € {tk—1,tk} and
rie(s0) = mg, 7i.(s0) = 0, then it follows that m3 < R?.

Proof. Let us remark that the multifunction F)(¢,y,y') := AF(t,y,y')
+ (1 — Mey also satisfies the hypothesis (H1) for A € [0,1] (see [12,
Lemma 4.1] for more details).

Suppose that 74(sp) = mg > R? and 7},(s0) = 2yx(so) - ¥4 (s0) = 0.
Since (yk(t),yr(t)) — (yx(s0),yi(s0)) as t — so, thus there exist an
a > 0 and an 7 > 0 such that for almost every ¢ € A, := {t € Dom ys:
|t — sol <n}

inf{ye(t) - w+ [[y']I* : w € Fat,y(t),y' (1))} > @ >0
and, therefore,
1
57k () = ye(t) - i (&) + [y ()]* > 0

for almost all t € A,. But this is a contradiction to the maximum
principle (see [4]). o

Let us now suppose that y(t) is a solution to (1.1,) and let ri(so) =
sup ||y(t)||*. If so # to,t1,--- »tmstm+1, then it follows that r(sg) =
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r1(80), and the a priori bound ||y(¢)|| < R follows from Lemma (2.3).
Suppose now that sy = a;,2 = 0 or 1. In this case we obtain by the
assumptions (N1), (N2) or (N3), that r’'(a;) = 0. Indeed, if G; satisfies
(N1), we have

0> (~1)"'(a;) = (~1)'2y(ai) - o' (as)
= (1) 2A[y(as) - y'(a:) £ A:Gi(§) - y'(a:)] > 0
and thus 7'(a;) = 0. If G, satisfies (N2), we have

0> (—1)"r"(as) = (-1)"2y(as) - ' (as)
= (=1)"2A\[y(a:) - ¥'(a;) = AiGi(7) - y(ai)] > 0
and thus r(a;) = 0.

In the last case where we suppose that G; satisfies (N3) we have that
y(ai) = My(ai) £ AiGi(g)], A > 0, thus [ly($)]| < [ly(e:)]| < R and the
required estimate is obtained.

Since 7/(sg) = 0, in the case where G; satisfies (N1) or (N3), it is
sufficient to apply Lemma (2.3) and the a priori bound |ly(¢)|]] < R
follows.

Suppose now that sg = tg, k& € {1,...,m}. We will show that
ly(@)l < M.

There are only two cases to consider:

1) the supremum of ||y(t)|| is achieved by |lyx_1(t)|| at the point tg,
or

2) the supremum of ||y(t)|| is achieved by ||yx(t)|| at the point ¢, where
we identify the solution y(¢) with the sequence {y;(¢)},.

Case 1. Since the supremum of r(t) is achieved at ¢ by r;_1(t), thus
r (te) > 0. If v, (tk) = 0 or ri_1(tx) < R?, the a priori bound
ly(t)|| < R follows. Suppose that r} ,(tx) > 0 and rg_1(tx) > R2.
By the assumption (IN) we have that r(tx) = 2X - Ip(yr—1(t)).
Ni(ye—1(tk), v, (tk)) > 0. If 7 (tr) < R?, then the a priori bound

ly @I < Nyr—1 Ee)ll = 111" (o (t) | < Bie < M

follows. Otherwise, r}(tx) > 0 and ri(tx) > R?. By the hypothesis
(H1) and Lemma (2.3), ri(t) cannot achieve its local maximum at
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a point sy € [tk,tr+1] such that ri(sp) = O (this would imply that
re(tr) < re(s) < R2); thus, the function 74(t) is increasing on the
interval [ty, tx+1] and 7y (tk+1) > 0. By the hypothesis (IN), we obtain
that

Tho1(tr1) = 2M 1 (Yr (ter1) - Nira (Ur(trs1), Yk (thg1)) > 0

and again by the same arguments we obtain that either ri 1 (tgt1) <
R?, and thus ||y(t)]| < Rggx+1, or the function 7i11(¢) is strictly
increasing on the interval [tg41,tk42]. By repeating this argument
successively, eventually we will arrive to the last interval [t,a1],
where 7/, (tm) > 0. If rp(ty,) < R?, then we get |y(t)]] < Rim;
otherwise, 7,,(t) is strictly increasing on the interval [t,,,a;] and it
achieves its maximum at the point ¢ = a;. But again we can use the
assumptions (N1), (N2) or (N3) in order to obtain that r,(a1) < R?,
thus 7, (tm) < Tm(a1) < RZ? a contradiction. This means that
ly@)[l < M.

Case 2. Suppose now that the supremum of r(t) is achieved at the
point s = ¢, by the function r¢x(t) = ||yx(¢)||>. Then 7 (tx) < 0.
If re(tr) < R? or r}(ty) = 0, then the a priori bound |y(t)|| < R
will follow. Suppose then that 7 (t;) < 0 and r(t;) > R?. By the
assumption (IN), 7, (tx) < 0. If 71 (tx) < R?, then

ly@ON < Nlyw @)l = [k (yr—1(E)) ]| < Skp < M.

Otherwise, by Lemma (2.3), the function r_;(t) has to be strictly
decreasing on the interval [tg_1,tx] and r}_5(tx—1) < 0. Now, if we
repeat the same argument, we will obtain that ||y(¢)|| < Sk_1x < M
or the function r1,_o(¢) > R? is decreasing on the interval [tj_o,tx_1].
Eventually, we will arrive to the first interval [ay, t1], and by the same
argument, ro(t;) < R? and, thus ||y(t)|| < S1x < M, or ro(t) > R?
and 7¢(t) is a strictly decreasing function on the interval [ag,t1]. But
this means that 7 (t) achieves its maximum at the point ¢ = ag, thus
the assumptions (N1), (N2) or (N3) will imply that r{(ap) = 0, and
by Lemma (2.3), rmo(ag) < R2?, thus 7o(t;) < RZ, a contradiction.
Therefore, the a priori bound ||y(¢t)|| < M is proved.

We put U = {{(uk, o)}y € C2 : |lurll < M, |lvg|| < M} where
M = max{M + 1, My 4+ 1}. The obtained a priori bounds imply that
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all fixed points of Fy belong to the interior of U, thus F) is a homotopy
in the class K¢,, (U;0U) (see [12] or [23] for more details). We shall
show that F is an essential map in K¢, (U; 0U). We consider next the
family of impulsive differential systems:

y'—ey=0

tr) = A Yy(Eh), k=1,...,m
y(tk)_o
wz(g) = 05 i = 0517)‘ € [07 l]

It is sufficient to prove the existence of a priori bounds for solutions
to (2.2)). The system (2.2)) is a particular case of the system (1.1,),
thus the same arguments apply. Suppose that y(t) is a solution to
(2.2)) and assume that the supremum of 7(t) = |ly(¢)||? is achieved
by [lyx(t)||* at the point so € [tg,tx+1]- If so # tk,tr+1, then, by
Lemma (2.3), ||ly(¢)|| < R. If k =0 or k = m and sp = ag or sp = a1,
respectively, then it is easy to observe that r},(sp) = 0 and again the
estimate ||y(¢)|| < R follows from Lemma (2.3). Now, suppose that
so = tg or tgy1. The condition y'(tz) = 0 means that y(tx) = 0
and therefore r} (tx) = 0. This shows that ||rg(¢x)|| < R?, in the case
Sp = tr. Suppose next that sp = tx4+1. By assumption that y(¢) is a
solution to (2.2)), we have that

gk () | = AL (e ()| S I e ()

and y; (k1) = 0, thus 7}, (tx+1) = 0. We show similarly, as in the
case of the system (1.1y), that either ||yr+1(tx+1)|| < R or the function
Ti+1(t) is strictly increasing on the interval [ty 1,tr12]. By repeating
the same arguments we obtain that ||y(¢)|| < M.

We observe that the family (2.2)) defines a deformation of the map
Fo to the constant map F* = 0 in the class K¢, (U; OU). Since F* is an
essential map in K, (U; OU), by the topological transversality theorem
(cf. [11, 12, 14, 27, 28]) Fy and consequently F; are essential maps
in K¢, (U;0U). This means that F; has a fixed point in U, i.e., there
is w € U such that w € F;(w) and the existence of a solution to the
problem (1) follows. O

(2.4) Theorem. Under the hypotheses (H1), (H2), (H3) and (IN) the
following impulsive system of differential inclusions with the periodic
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boundary value conditions:

y' € F(t,y,y) for a.e. t € [ap, a1]
y(t) = Le(y(t))
(23) y,(t:) :Nk(y(tk)ayl(tk))) k= ]-7 ,m

y(ao) = y(ar)
y'(ao) = y'(a1)

has at least one solution y € H?.

Proof. The proof of Theorem (2.4) is similar to the proof of Theo-
rem (2.2) but it contains some essential differences and, therefore, we
give some details. We use the same notation as before. Put

Hpy = {(ur)iZo € H? : uo(ao) = um(ar),up(ao) = up,(a1)}

and let
L°:H} - LI* xR™" x R™"

be defined by
LO({ur}ito) = ({uff — ewr}pio, {uk (ber1) g {u (6 Hy)-

Let us observe that the operator L is invertible for all & > 0, where ¢ is
sufficiently small in the sense explained earlier. Indeed, the problem of
finding the inverse LY is equivalent to m independent linear boundary
value problems:

u% —eup = fr ae te [tk,tk,+1]

(2.4) u;(tk) =Tk
uk(tk_H) =zr, k=1,...,m—1
and
v —ev=f a.e. t € [tm, a1 + (t1 — ao)]
(2.5) V' (tm) = T,
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where

. fm(t) for t € [tm,a1]
f(t) =
fg(t —a1 + ao) for t € [al,al + (tl - ao)],
Um = V[, a1]> W0 () = v(t — a1 +ap) fort € [ar,a; + (t1 — ag)]

and {fp}7, € L?, {z}7, € R™", {zx}7, € R™™.

It is clear that the boundary value problems (2.4) and (2.5) are
uniquely solvable, thus the operator (ig)’l exists and is continuous.
Now we define

®:Cy — L2 x R™" x R™"

by

DR ({uk, vr}ito) = A - T({un, vk Yio) x ({I; (ur(tr)) Iy
X {)\Nk(uk—l(tk)a'Uk—l(tk))}-

We consider the following diagram:

P9
C; —2—L* x R™™ x R"™

—
J
2
H,
The problem (2.3) is equivalent to the fixed point problem
we F(w), weCy w={(ur,vr)}i"

where ~
Fri=jo (L% todl.

The remaining part of the proof is similar to the proof of Theorem (2.2).
O

3. Some existence results for impulsive systems on the
interval [0,00]. In this section we discuss boundary value problems
for differential inclusions on [0,00). We note that such problems for
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systems without impulses have been considered (using similar methods)
in [12, 13, 14, 18, 23]; (see also [8, 9, 33]).

Let F : [0,00) x R® x R™ — 2" be a multifunction. We assume that
F is admissible, i.e., F|j, is admissible for all 7 > 0. In this section
we study the problem of existence of a solution to the following second
order impulsive differential system on the interval [0, c0):

y"' € F(t,y,y") for a.e. t € [0, 00)

y(t)) = Lu(y(ts))

Y () = Ne(y(tn), ¥ (tr), k=1,2,...

G(y(0),4'(0)) =0

where limy, o0 tx = 00 and tg1 >t >0,k =1,2,...; It : R* = R"

is a homeomorphism; N, : R® x R® — R" is a continuous map,
k=1,2,.... We put

(3.1)

Riivr =sup{|lzll -z € (I ' o o I 3)(B(0, R))}
Siitk = sup{[[z]| : ¢ € (Lign o --- 0 [;)(B(0, R))}.

We make the following assumption

(*) R = SUP{Ri,i+k,Si,i+k 1= 1,2,... ,k = 0,1,2,...} < 00.

Let us suppose that R > 0 is a fixed number. We put M = max{R, R}.
Let us denote by (B) one of the following boundary conditions:

(B1) y(0) =r; Ir| < R

(B2) Ay(0) — By'(0) =7, where A and B are symmetric nonnegative
definite n x n matrices such that if » = 0 then at least one of these
matrices is nonsingular; otherwise, both of them are nonsingular and
IB=H[IJATLB]l[Ir]| < R

(B3) G(y(0),y'(0)) = 0, where G : R™ x R™ — R" is a continuous
function which satisfies one of the conditions (N1) or (N3) for i = 0,
where ag = 0.

(B4) ¢/ (0) = 0.

(B5) G(y(0),y'(0)) = 0, where G : R™ x R" — R" is a continuous
function which satisfies the condition (N2) for ¢ = 0, where a9 = 0.

Let us remark that the condition (B1), for r # 0, is a special case of
the condition (B3) and (B4) is a special case of (B5).
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We shall state the following hypotheses:

(H1)" If |lyo]l > R and yp - y; = 0, then for all compact subsets
[0,7] C [0,00), r > 0, there is a § > 0 such that

P;SS[Oin]finf{y cw A [y |I* s w e F(t,y,9"), (y,4') € Ds} >0
<|0,r

where Ds :={(y,) : [ly — yoll + [y’ — vl < 6}-
(H2)" There exists a function ¢ : [0,00) — [0,00) such that
v € L2 [0, 00),

loc

> sds

S S e, [ =

and
1F(ty,y") I < e(ly'l) for ae. t €[0,00) and all (y,y') € D,

where D = {(z,2') : ||z|| < R}.
(H3)" There exist constants a and k such that

1E(ty, ") < 2a(y-w+[|y'|*) + & for ae. t € [0,00)
and all (y,y') € D and w € F(t,y,y').

We assume also that the impulses Ny and Iy satisfy the condition
(IN) for all k = 1,2,..., ie.,

(IN) For every k = 1,2,...,if y-y" > 0, then Ix(y) - Nk(y,v') > 0,
provided |ly|| > R.

(3.1) Theorem. Under the hypotheses (H1)', (H2)', (H3)" and (IN),

the following system of impulsive differential equations

y' € Ft,y,y) for a.e. t € [0,00)
y(te) = I, (y(8))

Y (tF) = Nily(te), v (tr), k=1,2,...

yeB

(3.3)

has a bounded solution.
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Proof. We consider the following family of impulsive differential
inclusions:

y' e F(t,y,y') for a.e. t € [0,

y(tk) = I; ()

y'(t;’) = Ni(y(te), v (tr)), 0<t1 <ta<- -+ <tm<p
y € By

(3:3,)

where B, denotes the set of all functions satisfying either (B1), (B2) or
(B3) and the condition y(x) = 0, or (B4) and (B5) and the condition
y'(n) = 0. It follows from Theorem (2.2) that (3.3,) has a solution
Yu € Hz := H?, where we assume ag = 0, a; = p. It is clear that
for every € N the sequence {y,4x}7>, restricted to the space Hﬁ is
bounded and thus it contains a subsequence convergent in the C'-norm.
By standard arguments there exists a subsequence {y, )} C {y,} such
that y,(x)|j0,u] = Yljo,u) in the C'-topology for all u € N and

y" € F(t,y,y') for ae. t€|0,00)
(see [12] for details). It is also clear that y will satisfy the condition
y(ts) = I (y(K))

and
y'(ty) = Nie(y(tr), y'(t)) forallk=1,2,....

Now, since ¢ € L [0,00), then

loc

ly" @O < @(lly’ (B)]) < ess sup {p(s) : s € [0, [[y'[|o]} < o0

and this proves that y is bounded. O
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