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DUALITY IN SOME VECTOR-VALUED
FUNCTION SPACES

PATRICK N. DOWLING

ABSTRACT. We prove two results concerning duality in
some function spaces. First we show that for 1 < p < oo and
X a complex Banach space, the space HP(D, X*) is isometri-
cally isomorphic to a dual space and we use this result to get
a characterization of the analytic Radon-Nikodym property in
dual spaces. Second, we show that if A is an infinite Sidon
subset of the dual of a compact abelian metrizable group, if
X is a Banach space and 1 < p < oo, then LY (G, X*) is a
dual space if and only if X* does not contain a copy of cp.

1. Introduction. In [3] Bochner and Taylor proved that if 1 <p <
00, 1/p+1/g = 1 and X is a Banach space, then (LP([0,1]; X))* =
L9([0,1]; X*) if and only if X* has the Radon-Nikodym property with
respect to Lebesgue measure on [0, 1]. They also gave a representation
of (LP([0,1]; X))* when 1 < p < oo and X is any Banach space. In this
note we make use of this representation in two settings. In Section 2 we
will show that H?(D, X*) is a dual space where X is a Banach space
and 1 < p < co. As an application we obtain a new characterization of
the analytic Radon-Nikodym property in dual spaces. In Section 3, we
consider the function space L (G, X*), where G is a compact abelian
metrizable group, A is a Sidon subset of the dual group of G and X is a
Banach space. We show that L% (G, X*) is a dual space for 1 < p < o0,
if and only if X* does not contain a copy of cy.

2. The analytic Radon-Nikodym property. We denote by
(I, B, m) the Lebesgue space on the unit circle IT with m(II) = 1 and
D will denote the open unit disk in the complex plane.

Let X be a complex Banach space and let 1 < p < co. The space
HP (D, X) counsists of all holomorphic functions f : D — X satisfying
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[|fllp < oo where

2m . 1/p
151l = sop ([ lreeip amo)
0<r<1 0

for 1 <p < oo and

£l = sup [|f(2)|
zed

If f:1II — X is a Bochner integrable function, then its Fourier
coefficients are

fmy= [ fee ™ dm)

0
for each n € Z.

Similarly, if F' is a vector measure on 11, its Fourier coefficients are

2
F(n) = /0 e M g (t)

for each n € Z.
For 1 < p < oo we define the following spaces

HP(I, X) = {f € LP(I1, X) : f(n) =0 for all n < 0}

and

HY(II,X)={f € LP(IL, X) : f(n) =0 for all n < 0}.

For a vector measure F' : B — X we define

E(F|r) = %XE,

where 7 is a finite measurable partition of II, along with the convention
0/0 = 0. For 1 < p < oo, the space VP(II, X) consists of all vector
measures F' : B — X with [|F||, < co where

1F[lp = sup [[E(F|m)|| e (1, %)

and the supremum is over all finite measurable partitions 7 of II.
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In [3] Bochner and Taylor proved that for 1 < p < oo and 1/p+1/q =
1 the space VP(II, X*) is isometrically isomorphic to (L9(II, X))*. It
was shown by Singer [13] that V1(II, X*) is isometrically isomorphic
to (C(II, X))*, where C(II, X) is the space of continuous X-valued
functions on II, with the supremum norm.

Finally, let us recall the following result of Blasco [2].

Theorem 1. Let X be a compler Banach space and let 1 < p < oo.
Then HP(D, X) is isometrically isomorphic to VP(II, X), where

N

VP(II,X)={F € VI, X): F(n) =0 for all n < 0}.

Combining Blasco’s result with those of Bochner and Taylor [3] and
Singer [13] gives us

Corollary 2. Let X be a complex Banach space.

(a) For 1 < p < oo, HP(D,X*) is isometrically isomorphic to
(L9(11, X)/HI(IL, X))*, where 1/p+1/q =1 and

(b) HY(D,X*) is isometrically isomorphic to (C(IL, X)/Ay(IL, X))*

A~

where Ag(II, X) = {f € C(I, X) : f(n) =0 for all n < 0}.

to VP(II, X*). By [3], VP(II,X*) is isometrically isomorphic to
(L9(I1, X))*, for 1/p + 1/q = 1, under the obvious correspondence.
It is easy to show that (H{(IL, X))* is isometrically isomorphic to
VP(II, X*) and so (a) clearly follows. The proof of (b) is similar to
(a) and can also be found in [10].

Proof. (a) By Theorem 1, H?(D,X*) is isometrically isomorphic

Definition. A complex Banach space X is said to have the analytic
Radon-Nikodym property if H!(II, X) is isometrically isomorphic to
H'(D, X) under the correspondence

2
F(re?) = P.(0 — t)f(e') dmf(t),
0
where F € H'(D, X), f € H'(II, X) and P,.(§ —t) is the Poisson kernel
0<r<1,0<6<2n).
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This property was introduced in [5] by Bukhvalov and Danilevich who
showed that if 1 is replaced by p for any p € [1, c0], then the property
remains the same.

Theorem 3. Let X be a complex Banach space.

(a) If1 <p<ooandl/p+1/q=1, then X* has the analytic Radon-
Nikodym property if and only if the natural inclusion of HP (II, X*) into
(L9(I1, X ) /HJ (I, X))* is surjective.

(b) X* has the analytic Radon-Nikodym property if and only if the
natural inclusion of H (I, X*) into (C(I1, X)/Ao(IL, X))* is surjective.

The proof of Theorem 3 is an easy application of Theorem 1 and
Corollary 2.

Remark. HP(II, X) is always isometrically isomorphic to a subspace
of H?(D, X), but, in general, the two spaces may be quite different. For
example, by Corollary 2, HP(D,l,) is a dual space when 1 < p < oo.
However, by a slight modification of Bourgain’s proof in [4], we can
show that HP(II,[,) is not a dual space when 1 < p < co. In fact, if
1 < p < oo, then HP(II,l.,) contains a complemented copy of ¢y (see
[8]) and so it is not a dual space [1].

3. The A-Radon-Nikodym property. Let G be a compact
abelian metrizable group, let B(G) denote the c-algebra of Borel
subsets of G and let A be normalized Haar measure on B(G). We can
define L?(G,X) and VP(G, X) for a Banach space X in the obvious
manner. Let I' denote the dual group of G. If u € VP(G,X) and
v €T, then the Fourier coeflicient fi(7) is defined by

fi(y) = /G v(g) du(g)-

We can similarly define f(v) for f € L?(G, X). If ACT, we let
L4(G,X) = {f € IP(G, X) : f() =0 for all ¢ A}
and

VG, X)={peVP(G,X): i(y) =0 for all v ¢ A}
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for 1 < p < 0.

Definition. [9]. A Banach space X is said to have the A-Radon-
Nikodym property if and only if V*(G, X) = LY (G, X).

Remarks. 1) When we write “V°(G,X) = LP(G,X)” we mean
that the natural inclusion of L (G, X) into V°(G, X) is surjective.

2) If G =11, then I" = Z. In this case Z-Radon-Nikodym property
is equivalent to the Radon-Nikodym property and N-Radon-Nikodym
property is equivalent to the analytic Radon-Nikodym property.

3) If A is finite then every Banach space has the A-Radon-Nikodym
property and if A is infinite then ¢g fails the A-Radon-Nikodym prop-
erty.

Proposition 4. [9]. Let G be a compact abelian metrizable group,
ACT, N ={yeT:5¢ A} and let X be a Banach space. Then X has
the A-Radon-Nikodym property if and only if for every bounded linear
operator T : L*(G)/L%.(G) — X, the operator Tq is representable
where q : LY(G) — LY(G)/L%.(G) is the natural quotient.

This result will now be used to characterize the A-Radon-Nikodym
property when A is a Sidon subset of I'. Recall that A is a Sidon set if
and only if Cy(G) is isomorphic to I*(A).

Proposition 5. If A is a Sidon subset of ', then every Banach space
not containing a copy of co has the A-Radon-Nikodym property.

Proof. If A is a finite subset of I', then we have the result trivially.

If A is an infinite Sidon set, then L'(G)/L},(G) is isomorphic to cg
[11, p. 121]. Therefore, if X is a Banach space not containing a copy
of co, then every bounded linear operator T : L'(G)/L},(G) — X
is compact [6; p. 113, exercise 2|. Consequently, Tq is a compact
operator and so it is representable. By Proposition 4, X has the A-
Radon-Nikodym property.

In [9] Edgar asked the following question: If A is a Riesz subset of I’
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and X has the A-Radon-Nikodym property is Vi (G, X) = L} (G, X)?
(A subset A of I is a Riesz set if V1 (G) = L (Q)).

We will now give a sufficient condition for V{ (G, X) = L} (G, X),
which, in particular, applies to Sidon sets.

Proposition 6. Let A be a Riesz subset of I' and let X be a
Banach space. If L'(G,X) has the A-Radon-Nikodym property then
VG, X)=Li(G, X).

Proof. Let u € V{(G, X) and define an operator
T:LYG) - L'(G, X)

by T(f) = f* p for all f € LY(G). For vy € T, T(y) = v * p = fi(7)7y-
Therefore, T(y) = 0 for all v ¢ A. Let us note that in the notation

f 9], ' = {y ¢ A}. Hence, T|L11wc) = 0. Thus, there exists a
bounded linear operator S : L!'(G)/L%,(G) — X such that T = Sgq
where ¢ : L'(G) — L'(G)/LL,(G) is the natural quotient. It is easily
seen that if a Banach space has the A-Radon-Nikodym property then
it has the A-Radon-Nikodym property. Consequently, if L!(G, X) has
the A-Radon-Nikodym property, it has the A-Radon-Nikodym property
and so T is a representable operator by Proposition 4. Hence, there
exists a function g € L*°(G, L*(G, X)) such that

T(f) = /G F()g(t)dA()
for all f € L'(G); that is,
fep= /G F(H)g(t) dA().

To complete the proof, apply the same methods as in Coste’s Theorem
[7, pages 90-92].

Corollary 7. If A is a Sidon subset of T' and X does not contain a
copy of co, then Vi(G, X) = Li(G, X).
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Proof. If X does not contain a copy of ¢y, then L!(G, X) does not
contain a copy of ¢y [11]. Thus, L'(G, X) has the A-Radon-Nikodym
property when A is a Sidon set by Proposition 5. Apply Proposition 6
to complete the proof.

Remark. 1t is easily seen that if V{(G,X) = L{(G,X), then
V(G,X)=LE(G,X) for all 1 < p < oo.

Theorem 8. Let A be an infinite Sidon subset of ', let X be a
Banach space and let 1 < p < co. Then LY (G,X*) is a dual space if
and only if X* does not contain a copy of cy.

Proof. If X* does not contain a copy of cg, then X* has the A-Radon-
Nikodym property by Proposition 6. By Corollary 7 and the remark,
LR (G, X*) =VFE(G,X*) for 1 < p < oo.

By [2, 7] and methods similar to those in Section 2,

LG, X)\"
6.x - (L6

L%, (G, X)
forl<p<ooand 1/p+1/¢=1, and

vex) - (i)

where C'(G, X) is the space of continuous X -valued functions on G, with
the supremum norm, and Cy,(G, X) is the space of C(G, X )-functions
whose Fourier coefficients vanish off A’. Therefore, L} (G, X*) is a dual
space for 1 < p < oco.

Conversely, suppose X™* contains a copy of ¢y. Then an application
of Bourgain’s result [4] shows that L} (G, X*) is not a dual space for
1<p<oo

Remark. If A is infinite, 1 < p < oo and X is a Banach space such
that X* contains a copy of ¢, then L (G, X*) contains a complemented
copy of ¢y (see [8]), and so L} (G, X*) is not a dual space [1].
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