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ON THE REPRESENTATION OF MEASURABLE
SET VALUED MAPS THROUGH SELECTIONS

ARRIGO CELLINA AND RINALDO M. COLOMBO

1. Introduction. Under reasonable hypotheses, a measurable
multi-function F admits measurable selections. Actually [1], in this
case, one can describe the whole multi-function through a countable
family F of selections, in the sense that

F(z)=cl{f(z): f € F}.

In the present paper we consider an integrably bounded (or L?-
bounded) multi-function with values in R™ and we show that the
countable family F can be chosen to be (relatively) compact in L.

Equivalently, we show the existence of a family F of selections of F’
describing F' as above, such that a(F) = 0, where « is the Kuratowski
index. In [2], o(F) was determined for the family F of all the integrable
selections of F.

2. Notation and preliminary results. For a subset A of a set
X, (A)€ is the complement of A in X. For X a metric space and A
bounded, a(A) is the Kuratowski index [14],

a(A) = inf {8 A= U A;,diam (4;) < 8},
i=1

cl (A) is the closure of A. The finite dimensional space R™ is supplied
with the norm ||z|| = sup; |z;|. ||A| is sup{||a]| : « € A}. The closed
ball in R™ of center y and radius ¢ is denoted by B[y,e]. When F
is a set-valued map and A is a set, F~'(A) is {z : F(z) N A # &}.
We recall that F' from a measure space to the subsets of R™ is called
measurable if F~1(A) is measurable for every closed A; this implies
that F~!(B) is measurable for every open B. For the properties of
measurable multi-functions on measure spaces, we refer to [3].
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Note that ({z € X : F(z) C A})C = {z : F(z) N (A)C # 2} =
F~1((A)®). In particular, from the above, we have that {z : F(z) C C}
is measurable for every closed C.

3. Main result. It is our purpose to prove the following theorem.

Theorem 1. Let (X,S,u) be a measure space; let F from X into
the nonempty closed subsets of R™ be measurable and such that

(3.1) 1F ()] < U(z)

for some l in LP(X,R), 1 < p < co. Assume that, for 1 < p < oo,
(X,8, 1) is o-finite. Then there exists a countable family F of LP-
selections of F, such that

i) cl{f(z): feF}=F(z), z in X;
i) a(F) = 0.

Proof. The proof is divided into several steps. We first assume that
l is bounded a.e. by a constant L and obtain the result in L*°. The
general case is then a straightforward application. We note that (3.1)
implies that every measurable selection of F' is in LP.

Since we consider the L*> case first, assume that the images are
contained in a closed bounded ball (actually, due to the chosen metric,
a cube). By partitioning this cube and taking counter images of each
part, we obtain a smaller map from which we take a selection. By
changing, in every possible way, the order in which the parts are
taken, we obtain measurable selections that pass essentially everywhere,
(hence approximating the graph of F'), this “essentially” depending
on the size of the partition. By taking a further refinement, and all
the selections corresponding to different orderings, we obtain a better
approximation of the graph. The iteration of this process, however,
would lead to a noncompact family of selections. Hence, we limit the
construction to a subset of all the possible permutations of the elements
of the partition. This subset has to be large enough to yield measurable
selections passing essentially everywhere and small enough to give a
compact family. The basic rule for the choice of the permutations
is given in (3.7). It may be useful for the reader to think of the
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representation of integers in the base 2™, since each refinement divides
each previous cube into 2™ parts.

Steps a)—c) deal with the construction of the refinements and with
preliminaries concerning permutations. In step d) we check that inverse
images of a special choice of permutations give back the whole inverse
image of a previous partition. The family of selections is defined in e)
and in f) we show its relative compactness.

a) Let Iy be the set of integers {0,... ,N — 1}. Every [ in Iynm can
be uniquely represented by its expansion in the base 2™ as

n—1
(3.2) 1= 2"c, with ¢, in Im.
r=0
In addition, for every h = 1,... ,n — 1, we introduce the quotient [},

and the remainder [} of the division of | by o(n=h)ym i e

(3.3) | = 2n=hmy 4l

h—1 —h—1
Remark. 1), = ' Z0 2™ ¢pyp_p and I} = 3 1717 2",

b) Set: Xy = {z € X : F(z) C B[0,L]} (X is measurable and
p((X£)€) = 0) and F, = Flx,. Let 4 = 0 and &g = L. Then
Fr(z) C Blyl,e0] for every z in X;. We wish to define a family of
successive refinements of B[yJ,eq]. Let &, = £¢/2" and assume that
the refinement {B[yzfpz%fl]}lelﬂn,l)m of Blyd,eo0] is known, with
n > 1. Define the points {¢, };c1,. so that

2m—1

2" l_
(3.4) U Blyn " en] = Bly Tt enal-
_,=0
As a consequence, if h =1,... ,n — 1, then

o(n—h)ym _q

2(n—h)mll 4 I
(35) U B[yn at hagn] = B[yhhagh]
=0
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and

2mm_1
(3.6) | Bk en] = By, eul.
=0

c) Let ¥ be the set of the permutations of Iy. Define S,, to be the
set of those o in Y9nm such that

om o) T

r=0 r=0
with o, in Xgm. (Note that S; = Xanm.)

In a way similar to the one used in (3.3) to decompose an element of
Ionm, any o in S, can be written as

n—1 n—1
o ( Z 2Tmcr> = Z 2" g, (cr)
r=0 r=0

h—1
= g(n=h)m 2Tm0'r+nh(c7‘+nh):|

L

+ [n_zh_lfmar(cr)}

=0

where the term inside the first square bracket is a permutation ¢” in

Sp, given by
h—1
(3.8) Uh(l;z) = Z 2" 0 tn—n(Crin—h)-

r=0

Although S, is a subset of the set of all permutations of Y.gnm, it has
the following property that will be of importance later: for every n and
every k in Iynm, there exists a o in S,, such that ¢(0) = k. In fact, write
k as ¥2"™¢, and choose for every r a o, in Sy such that ¢,.(0) = c,.
The o defined in (3.7) and computed at 0 is k.

d) We define a family of finite partitions of X into measurable
subsets as follows. Fix n; for every [ in Ionm, set

E;, = Fp* (Blyp, €n))-
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From (3.4), it follows that
2m_1 2mll l” l/
(3.9) U B =B
1, =0

and from (3.6), one has

2mll +l”
U E. 't = X
v

. 7l
For every o in S, we set A2 to be

n—1

A70 = B and AY' = Eg(”\( U Eg<k>>.
k=0
We have that the A2 are measurable, disjoint and such that
2nm_1
(3.10) U 47t =x..
1=0

Write each [ in Iynm as I = 2™, + 17 _,. Notice that, in the case
I!,_, =0, one has

2m—1
U 4 =500 (B 0\ E;©) U
1 =0

n—1""

Y [EZ@"‘—U\(E;(O) U..-U E;rL(zm—z))}

2m—1

— Eg(lg—l)
U 0

1

n-1-

_ o)

n—1
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where 0™ 1(-) is defined as in (3.8). When I/, _; >0,

2m—1

U Aa2 l' 1+l'T:71
lll —

2™, —1
_ [Eo—@ - )\( U EZ“”)]
k=0
2m—1 -1 2™ 1
U{ U [Ez(zmz’nﬁl’;l)\( U E Lﬁk)u U Eg(k)>:|}‘
v =1 k=0
The set in braces may be rewritten as
2m_1 Iy -1 2my -1
U |:<EZ(2’"I’ it 1)\ U Ea(Z’"l’ 1+k)>\< U Eg(k)>:|
l_,=1 k=0
so that
2m 1
U AO‘,Z U+,
1, =0
|: (2mll ) 2m—1 (2mll 1 ) 12_171 (2mll +k)
— EZ n-1) U <EZ n—1 n—l\ U EZ n—1 >:|
o =1 k=0
2™y -1
(Y =)
k=0
2m_1 2™, -1
— U(zml’n—1+l::—1)>\< o-(k))
=( U &n U Eg®).
<l;: ,=0 k=0

However, by (3.9), one has

2Mm—1
! " n—1/y/
U EU(2 b1+l 1) EZ—l (n-1) (O_n—l as in (3 8))

4
ln 1
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while
2", -1 Ly_1—lom_1
U polh) _ U U Eo@mhD)
n n
h=0 h=0 [=0
A | )
_ "1 (h)
- U En—l
h=0
so that
2" -1 omy/ " n l(ll ) l;171_1 1
o, atly 1 o -1 o™~ (h)
U oaresti g0\ (Y B
1 =0 h=0

s Ay .
and, by the very definition of AZ_”l t, it follows that

271
02", +H '7"717’;171
(3.11) U 4- A, .
L_1=0
We wish to generalize this last relation as
o(n—h)ym _q
(3.12) | ag® T gt
1'=0
In fact,
2("7h)m—1
| ap e
1'=0
2m_1 2m -1 2m 1 e he
U Uy e
= . n
cn—h-1=0cpn_p—2=0 co=0
2m 1 2m—1 2m_1

Cneh—1=0cCpn_p_2=0 c1=

2m_1 2m_1 2m_1
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U U U e
0

—1 o(n—h—1)mj/ n—h—2
U U eyl e
i

dn_h_2=0d,_pn_3=0 do=0
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and applying (3.11) again, in a finite number of steps we obtain (3.12).

e) For every n, set
F9(z) = Fr(z) N ByeW,e,] for z in A"
From (3.10) in d), F? is defined on Xy. Furthermore, F? is a

measurable multifunction with nonempty closed values. Set f7 to be a
measurable selection from F;7, and let F;, be

Fr={fl:0inS,andn=1,2,...}.
Fr is countable. Moreover, we claim that
Fr(z)=cl{f(z): fin Fr}, forevery zin X,.
Fix z, choose y in Fr(z) and € > 0. Let n be such that &,, < £/2. From
(3.6), y is in B[yl ,e,] for some j. From c), there is a ¢ in S,, such that
o(0) = j. From the definition of A%", we have that

A0 = B = B) = F 1 (Bly}, &)

so that f7(x) € Blyl,ey,], hence || (z) — y|| < 2e, < &.

f) We prove the relative compactness of Fy, in the case p = oo by
showing the existence of a finite e-net in Fj,. Fix €. Let n* be such
that €, < /2. We claim that

{ff€eFr:0€8n,n<n*}

is the required e-net. Choose any fZ in F, (clearly we can assume that
n > n*). Fix z. For some [, z is in A% e,

f7(@) € Blys ¥, &5,
As in (3.5), write [ = 2(*=")™]" 4+ 1", and, as in (3.8), write
n*—1

(J'n)x (l':z*) = Z 2Tm0'7~+ﬁ_n* (Cr-i-ﬁ—n*)'
r=0
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Writing o* for o™, then by (3.12), we have A%l AZ:’II"* and hence
e Bl ).
. a(l) o (I.)
Since by (3.5), Blyn ,7] C Bly,- ,En~], we have

(3.13) 15 (z) — f2- (2)]| < 2+ <e.

g) Let ¢ be any measurable selection from F, i.e., p(z) € F(z) for
every z in X. The family F of selections on X can be considered
a family of selections on X by extending each fZ to be ¢(z) for z in
(Xz)€. Then (3.13) holds on X. Consider now the map F., defined as

_ fH{e(@)}, zin Xy
Fm(w)_{F(m), zin (X1)C.

Let Fo be a countable family of selections from F,, such that i) holds
for Fi, (see [1, Chapter III, Section 2). Such a family is obviously
compact in L>. Then the family

F=FLUFx

has the required properties.

h) We proceed to prove the relative compactness of F in the case
1 < p < oo (under the same boundedness assumption on [). Write X
as Up Xy, u(X,) < 00, X;, C Xp41, and choose N so large that

/(X ey

Then, since
(15 =glwy = [ N5=glr+ [ If-glP,
XN (XN)C

any finite ¢/(2u(Xy))-net in L* is a finite '/P-net in LP.

Hence, the theorem is proved for a measurable F' defined on any o-
finite measurable space X and bounded by a function ! in LP(X) N
L>(X).
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i) Let ¢ be any L? selection from F. Set

=<
I

cl(B[0,n]\ B[0,n —1]), n>2
X, =F1Y,), n>1

and define
F(z)NY,, zinX,

P“”‘{wwm zin (X,)C.

Define 7y = {¢} and, for n > 1, let F,, be a countable family of
selections satisfying i) and ii) for F,. Set

F=J Fn
n=0
To prove i), fix z in X and y in F(z). For some n, y is in Y,,. Hence,

yec{f(x): feF.}cd{f(z): feF}

To prove ii), fix € > 0. Since X,, C {x € X : l(x) > n — 1}, from the
integrability of [P, there exists an n* such that

p
[
Unsn*Xn 2

Consider the finite set of functions consisting of all the elements of the
(finite) e-net of Fy,... ,Fn~. We claim that it is a finite e-net for F.
Fix f in F. Then f is in F, for a suitable n. If n < n* there is nothing
to prove; therefore, we assume n > n*. Since f is a selection from F,,
it follows that

f(z) = ¢(z) for all z in (X,,)°

And, finally, we have

1/p
I =t = ([ 17 olF)
XTL
1/p
([,.0")
Unsn*xXn

<e. O
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