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ON A MEASURE OF SYMMETRY FOR
STATIONARY RANDOM SEQUENCES

WLODZIMIERZ BRYC

ABSTRACT. Coefficients measuring “departure from ex-
changeability” are defined and shown to be equivalent to “con-
ditional uniform strong mixing.” The result shows that the
conditional independence conclusion of the de Finetti theo-
rem has a stability property under “small perturbations” of
the exchangeability assumption.

0. Introduction. Part of the celebrated de Finetti theorem says
that if {Xx}x=12,.. is a random sequence such that {Xj}r=12 . and
{X1,.., Xn, Xn+m, Xntm+1,- - - } have the same distribution for every
n,m > 1, then the random variables {X}} are conditionally indepen-
dent (see [1]). In this note we define “coefficients of symmetry,” which
measure “departure from exchangeability” of a stationary random se-
quence. The coefficients, defined by (1) below are nonnegative numbers
and equal to zero for exchangeable sequences only. We show that if the
coefficients tend to zero, then the distant past and the future of the
random sequence become asymptotically “conditionally independent”
in the appropriate sense. Namely, we show that a conditional variant
of the so-called ¢-mixing condition and “asymptotic exchangeability”
as defined by (1) below are equivalent. Theorem 1 below can be inter-
preted as stability of the de Finetti theorem.

While there are several other measures of weak dependence used in
the literature (for definitions see, e.g., [5]), our proof seems to permit
only two of them (¢-mixing and the so-called ¢-mixing) to be obtained
as “measures of departure” from conditional independence in the form
given by Theorem 1 below.

Our result might be of some interest to limit theorems, see, e.g.,
[6, 8] for limit theorems under exchangeability; it also might help to
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approximate stationary sequences by exchangeable random variables,
compare [2, 3, 4].

1. Notation. Let {X,},cz be a stationary sequence on a prob-
ability space (Q, M, P). For —oo < a < b < 400 denote by FC the
o-field generated by {X,, : a < n <b}. By S:Q — Q we denote the
forward shift corresponding to {X,,}. Transformation S is assumed to
be measurable and measure preserving (one can take, e.g., = RZ
with S{zx}) = ({zx+1}). For any m > 1 define the “coefficient of
symmetry”

(1) (m) = sup { P(ANS” %)— P(ANB)|

AecF ,P(A)>0,BeFrkc N}.

We shall say that a sequence {X,,} is “asymptotically exchangeable” if
limy, 00 m(m) = 0.

Notice that S™%(B) € Fg2,, for every k > 1, and hence m(m) is a
nonincreasing function of m; in particular, lim,,_, ., 7(m) always exists.
Also, if 7(1) = 0, then w(m) = 0 for all m > 1; under stationarity, this
is known to be equivalent to exchangeability, see, e.g., [1].

2. The main result. The following theorem shows that 7 is essen-
tially a “conditional variant” of the so-called uniform strong mixing, or
¢-mixing condition; for the definition and properties, see, e.g., [5]. The
result shows that “asymptotically exchangeable” random sequences are
“conditionally asymptotically independent”; hence, the conditional in-
dependence conclusion of de Finetti’s theorem has a “stability prop-
erty” under “small perturbations” of the exchangeability assumption.

Theorem 1. For every m > 1 and each A€ F°_, B € F°,
(2) |P(AN B|T) — P(A|ZT)P(B|T)| < 7(m)P(A|T) a.s.,
where T is the invariant o-field

T={AecM:8(A)=A}.
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Remark 1. A partial converse to Theorem 1 is also true: Suppose
{#(n)} is a sequence of (deterministic) numbers such that for every
m>1, A F°_ and B € F we have

P(AN BIT) - P(AT)P(BIT)| < ¢(m)P(AT) as.,

where 7 is the invariant o-field. Then 7(m) < 2¢(m), m > 1. Indeed,
for each k > 1 we have

|P(ANS~*(B)) - P(ANB)| = |[E{P(ANS~*(B)|I) - P(AN B|T)}|
< [E{P(ANS™*(B)[T) — P(AIZ)P(S7"(B)|D)}]
+|E{P(ANB[I) — P(A[I)P(B|1)} < 2¢(m)P(A);
we used invariance of Z to assure P(S~*(B)|Z) = P(B|Z) as.

3. Proof of Theorem 1. We prove a result of technical character
first.

Lemma A. Let f,g : 2 — R be nonnegative functions such that f
is integrable F° _-measurable and g is bounded F° -measurable. Then

(3) |E{fgoS*} - E{fg}| < n(m)E{f}gll
for each k € N. (Here ||g||co denotes the essential supremum of |g|.)

Proof. For each fixed s,t > 0, consider events A = {f > t},
B = {g > s}. Since for every k > 1, definition (1) implies

[P(AN S7*(B)) - P(AN B)| < n(m)P(A);
therefore, we get

P(f>t,g>s)—m(m)P(f >t) < P(f >t,goS*>s)

<P
<SP(f>tg>s)+m(m)P(f > 1)
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Integrating this double inequality, we obtain

oo rllglle oo rllglle
/ / P(th,ng)dtds—W(m)/ / P(f >t)dtds
o Jo o Jo
o rllglle
g/ / P(f>t,g08*>s)dtds
o Jo
o rllglleo
g/ / P(f>t,g>s)dtds
o Jo

+ m(m) /Ooo /Olglloo P(f>t)dtds. o

This ends the proof of the lemma, since by a well-known consequence
of Fubini’s theorem, we have

o0 rllglle
/ /9 P(f>t,goS*>s)dtds = E{fgoS*},
0 0
oo rllglleo
/ / P(f > t,g > s)dtds = B{fg},
0 0

0o rllglleo
/0 / P(f > t)dtds = |lgllF{f}-

The following lemma is well known.

Lemma B. Let G = ﬁkgoffoo be the left tail o-field. If A € Z, the
invariant o-field of S, then for each € > 0, there is B € G such that
P(IA #* IBE) <E.

Lemma C. Let X,Y be integrable random variables and F C M
a o-field. If for each F-measurable bounded nonnegative Z we have
E{XZ} <eE{YZ}, then E{X|F} < eE{Y|F} a.s.

This lemma is a consequence of the well-known implication which says
that if E{(X —eY)Z} < 0 for every F-measurable bounded nonnegative
Z, then E{X — €Y |F} <0 as.

Proof of Theorem 1. Let m > 1 be fixed. We shall show that if f > 0
is integrable FY__-measurable, g is F°-measurable and 0 < g < 1,



MEASURE OF SYMMETRY 475

then

(4) |E{fg|Z} — E{f|T}E{g|T}| < m(m)E{f|T}.
This will end the proof, since putting into (4) characteristic functions
of events A, B for f, g, respectively, will give (2).

By an approximation argument, it is enough to prove (4) for bounded
functions of a finite number of arguments only, i.e., f = f(X;: —M <
k<0)and g =g(Xr:m <k <m+ M).

Let h = h(Xy : Kk < —N — M) be a bounded nonnegative function.
For each k > 1 by Lemma A we have

(5) [B{fgoS*h} — E{fgh}| < m(m)E{fh}.

Since h > 0 is an arbitrary F~ X ~M_.measurable function, therefore (5)
implies (by Lemma C applied twice to X = fgo S*¥ — fg,Y = f and
X=fg—fgoS*Y =)

E{fglF XM} = a(m)E{f|F- 5 M} < E{fgo S*|F-Z M}
< B{fg|F~ 5 M} + n(m)E{flF- 5 M}

Hence, passing to a limit as N — oo, we get

(6) E{fglG} —m(m)E{f|G}
< E{fgo S*|G} < E{fg|G} + =(m)E{f|G},

where G = Nyp<oF", is the left tail o-field.

oo

Summation over k in (6) gives

P{f90} - n(m)B(/16) < B{ fn™' 3 g0 "0}
k=1
< B{/glG} +n(m)E{/10}

(7)

foreachn=1,2,....

From the ergodic theorem, see, e.g., [7, p. 178, Corollary 3.5.2], we
have n™ 1 Y"7_, goS* — E{g|Z} in Ly as n — co. Since f is bounded,
we can pass in (7) to the limit as n — co and we obtain
(8)

E{f9|G} — n(m)E{f|G} < E{fE{g|T}|G} < E{fg|G} + m=(m)E{f|G}.
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Since for each invariant event A in Z there is B in G such that A = B
a.s., see Lemma B, therefore E{.F{.|G}|IZ} = E{.|Z} a.s. Hence,
conditional expectation E{.|Z} applied to each side of (8) gives (4).
This concludes the proof. a
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