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PRIME IDEALS AND FINITENESS CONDITIONS
FOR GABRIEL TOPOLOGIES
OVER COMMUTATIVE RINGS

MARGARET BEATTIE AND MORRIS ORZECH

ABSTRACT. We examine some finiteness conditions on
Gabriel topologies, particularly over commutative rings. We
study special classes of topologies defined by sets of prime
ideals and provide examples to establish that a number of
these classes are distinct.

Introduction. The equivalent concepts of Gabriel topologies, hered-
itary torsion theories, idempotent radicals and idempotent kernel func-
tors, were originally investigated, starting about 1960, with an eye to
extending localization techniques, so useful in commutative algebra,
to the realm of noncommutative rings. However, relatively early in
the study of Gabriel topologies, in 1973, P.J. Cahen noted there were
interesting questions about such topologies even in the context of com-
mutative rings. More recently, other investigators have focused on this
context, looking at either Gabriel topologies (e.g., [2, 3, 5, 13]) or
idempotent kernel functors (e.g., [4, 19, 20]). This paper is related to
work done by these people.

Finiteness conditions of one sort or another, either on Gabriel topolo-
gies, or on the underlying ring, play a crucial role in the work cited
above. So do prime ideals. One indication of the connection between
finiteness conditions and prime ideals is that if R is a noetherian com-
mutative ring, then every Gabriel topology on R is determined by a set
of prime ideals. It is not surprising that many of the finiteness condi-
tions on Gabriel topologies referred to in the literature imply that the
topology is determined by prime ideals. The investigation of topologies
determined by prime ideals will be the primary goal of this paper, and
the focus of Sections 1 and 2.

In studying Gabriel topologies over commutative but not noetherian
rings, it is often necessary to restrict the topologies in order to obtain

Received by the editors on November 2, 1988, and in revised form on March 13,
1989.

Copyright ©1992 Rocky Mountain Mathematics Consortium

423



424 M. BEATTIE AND M. ORZECH

reasonable results. As in the broader context of commutative algebra,
competing conditions vie as the natural hypotheses which yield gener-
alizations of results known in the noetherian case. In Section 3 we will
examine a number of hypotheses which have appeared in the literature,
sorting out logical implications among them. It has not always been
clear in the literature whether these conditions are all different (at least
two have appeared with the same name in different places), and we will
provide examples to show that they are indeed logically distinct.

1. Gabriel topologies and prime ideals. In this section we will
first review how a set P of primes determines a Gabriel topology L(P).
We will provide characterizations for those topologies £ which are of the
form L(P), and discuss conditions analogous to, but weaker than the
underlying ring R being noetherian, which imply that £ is an L(P).
We will use [17], particularly Chapter 6, as a general reference for
Gabriel topologies and related concepts. Many of our basic definitions
and comments may also be found in the introductory material of [2,
5]. Unless otherwise stated, we will assume we are dealing with Gabriel
topologies over a commutative ring R.

Let R be any ring (commutative or not). A nonempty set £ of right
ideals of R is a Gabriel topology if it satisfies these conditions [17,
Chap. 6, Lemma 5.2]:

(T3) If I'isin £ and b is in R, then (I : b) is in L.

(T4) If Jisin £ and I is an ideal of R such that (I : b) is in £ for
all b in J, then [ is in L.

For R commutative, (T3) and (T4) can be replaced by (T4) and either
of the simpler conditions:

(TO) Risin L.
(T1) If I'is £ and I CJ, then J isin L.

Let P be a set of prime ideals of R. For p in P write U(p) for the set
of ideals of R which are not contained in p. Define

L(P) = {ideals I of R|I,, = R, for all p in P}

= (U

pPEP

It is straightforward to verify that £(P) is a Gabriel topology.



PRIME IDEALS AND FINITENESS CONDITIONS 425

A set P of primes gives rise to the same topology as its generic
closure, i.e., as the set of all prime ideals contained in some prime of
P, and, moreover, the family of generically closed subsets of Spec(R)
parameterizes the set of Gabriel topologies of the form £(P) [2, Section
3.

Definitions. We will call a Gabriel topology of the form L(P), for
some subset P of Spec(R), a primal topology. The primal topologies are
the half-centered, or HC topologies of [5, 13, 15]. Cahen [6] introduced
the latter terminology to describe a Gabriel topology £ (with associated
class of torsion modules 7) such that M is in 7T if and only if every
weakly associated prime of M is in £. We prefer the work primal in
our setting because it is more suggestive of the (equivalent) property
on which we are focusing.

A topology L is said to be of finite type if it has a basis of finitely
generated ideals, i.e., if every [ in £ contains a finitely generated ideal
which is also in £. For L£(o), the Gabriel topology associated to an
idempotent kernel functor o, Caenepeel [4] used the phrase every ideal
of L(o) is o-finitely generated to describe L(c) being of finite type,
and in this case labelled o as being noetherian. It should be noted that
the use of the latter word will be inconsistent with our usage in Section
3.

A topology L is principal [7], or a 1-topology [17], if each ideal I of
L contains a principal ideal that is in L.

The following result gives three intrinsic characterizations of primal
topologies, one of which is usually easier to work with than the defini-
tion.

Theorem 1.1. The following conditions on a Gabriel topology L are
equivalent:

(a) L = L(P) for some set P of prime ideals of R.

(b) If I is an ideal of R not in L, then there is a prime ideal p of R
not in L and containing I.

(c) L is an intersection of topologies of finite type.

(d) L is an intersection of principal topologies.
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Proof. (a) < (b) [17, Prop. 6.13].
(a) < (c) For p a prime ideal of R we have that

L({p}) = {ideals I of R|I is not contained in p}.

Hence, L({p}) is of finite type. Since for P a set of primes

L(P) = [ L£({p}),

peEP

it follows that a primal topology is an intersection of topologies of finite
type. The converse follows from the observations that if £ is of finite
type, then £ = L(P) for P the set of primes not in £ [17, Corollary
6.15] and that the intersection of primal topologies is primal.

(a) < (d) For p a prime ideal the topology £({p}) is principal. Hence,
the proof of the equivalence of (a) and (c) shows the equivalence of (a)
and (d). o

Apropos of condition (c) of the last theorem, we now turn to the
condition that £ is of finite type, which can be characterized in an
interesting way. An arbitrary family £ of ideals of R (commutative
or not) will be called noetherian if whenever the union of a countable
ascending chain of ideals of R totally ordered by inclusion is in £, then
one of the ideals must be in £. This terminology goes back to [9]. We
will say L is strongly noetherian if the same union condition holds for
all totally ordered chains of ideals, rather than just for countable ones.

Golan [7, Chapter 3, Section 14] gave a number of conditions equiva-
lent to £ being noetherian (phrased in the language of torsion theories
rather than Gabriel topologies). Our next result adds to these condi-
tions.

Theorem 1.2. Let R be any ring, possibly noncommutative, L a
family of right ideals of R, satisfying property (T1). The following
conditions are equivalent:

(a) L is of finite type.

(b) L is strongly noetherian.
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Proof. (a) = (b). Suppose L is of finite type and that {I;} is a family
of right ideals of R, totally ordered by inclusion, such that I = UI; is
in £. Then I contains a finitely generated right ideal J which is in L.
Being finitely generated, J is contained in some I;. Because L satisfies
(T1), I; is in L.

(b) = (a). Suppose L is strongly noetherian. Let A be a right ideal
of L. Let T be a set of generators of A. We may assume 7' is infinite
and well ordered. Hence, we may identify 7" with a limit ordinal p. For
z < p, define B, to be the right ideal of R generated by all y with y < z.
Then {B,|z < p} is a family of right ideals totally ordered by inclusion
and whose union is A, hence, in £. Because L is strongly noetherian,
some B, is in L. Let

Z ={z|z<p, B, + Jisin L, J some finitely generated
right ideal in A}.

Z is nonempty, so it has a least element ¢. Let J be a finitely generated
right ideal contained in A such that B, + J is in £. If ¢ is a finite
ordinal, then B, is finitely generated, and it follows from the definition
of Z that A contains a finitely generated right ideal of £. We shall
show that a contradiction arises from assuming ¢ is not finite.

Suppose t is not finite. Then t = ¢ + n with ¢ a limit ordinal, ¢ < p
and n finite. Let K be the right ideal generated by ¢,¢+1,... ,q + n.
Arguing as above, there exists s < t with Bs + K + J in £. This
contradicts the minimality of ¢ in Z and completes the proof of the
theorem. 0O

Theorem 1.2 is related to an interesting topological fact that does
not appear to be widely known, namely that a topological space X is
compact if and only if

(¥) For every covering X = U;crX;, with {X;}ier a family of open
sets totally ordered by inclusion, X = X for some j in

[12, Chap. 5, Exercise H]. The method used to show that (b) implies
(a) can be easily adapted to prove this characterization of compactness.
On the other hand, the topological fact provides an alternative proof
that (b) implies (a) in the special case where £ = L(P) is a primal
topology (keeping in mind that £(P) is of finite type if and only if P
is compact.)
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As we indicated in the introduction, if R is noetherian, then every
Gabriel topology £ is an L(P), since P may be taken as the set of
prime ideals not in £. This is a consequence of Theorem 1.1. The next
result shows that the same conclusion holds if every prime ideal in
L contains a finitely generated ideal which is in £. This result also
suggests a variant theorem which generalizes I.S. Cohen’s theorem that
if every prime ideal of R is finitely generated, then every ideal of R is
finitely generated [ 1, Chap. 7, Exercise 1] or [11, Section 1.1, Theorem
7]). Our proof uses the ideas in the proof of Cohen’s theorem.

Theorem 1.3. Let R be a commutative ring. Let L be a family of
ideals of R satisfying property (T1). Let S be a family of ideals of R
having the following properties:

(i) If {L;} is a family of ideals totally ordered by inclusion and UI;
is in S, then some I; is in S.

(ii) If I s an ideal of R such that I + (b) and (I : b) are in S for
some b in R, then I is in S;

Suppose every prime ideal of L is in S. Then LCS.

Proof. Suppose B, the family of ideals in £ which are not in S, is not
empty. Then B has a maximal element, call it I, by (i). It suffices to
show that I is a prime ideal.

If I is not prime, then there exists b in R such that I + (b), (I : b)
contain I properly. These ideals are in £ by (T1), and [ is a maximal
element of B. It follows that I 4 (b), (I : b) are in S. Then I isin S,

by (ii).

Corollary 1. Suppose L is a Gabriel topology such that every
prime ideal of L s finitely generated. Then every ideal of L is finitely
generated.

Proof. Take § the family of finitely generated ideals of R. It is easy to
see that (i) holds for this S. Condition (ii) holds by an argument used
in the proof of Cohen’s theorem: if I + (b) = (a1 + r1b,... ,an + rpb)
and (I :b) =(c1,...,cm), then I = (a1,... ,apn,c1b,... ,cyb). O



PRIME IDEALS AND FINITENESS CONDITIONS 429

Corollary 2. Suppose L is a Gabriel topology such that every prime
ideal of L contains a finitely generated ideal of L. Then every ideal of
L contains a finitely generated ideal of L, i.e., L is of finite type.

Proof. Let S be the family of ideals of £ which contain a finitely
generated ideal of L. It is easy to see that S satisfies (i) and (ii). ©

Pakala shows [13, Prop. 7.1] that the hypotheses of our Corollary 2
imply that £ is WC (Cahen’s well-centered criterion, that a module
M is torsion free with respect to £ if and only if each of its weakly
associated primes is outside £). This result follows from our Corollary
2 since if £ is of finite type, it is WC [13, Corollary 7.3].

2. Special classes of primal topologies. In this section we
will give some natural constructions which give rise to primal Gabriel
topologies and characterize which primal topologies arise in this way.

The first construction is related to a class of examples given in [17,
Chap. 6, Prop. 6.10]. The examples there are defined for a family B of
finitely generated ideals of R. We will restrict ourselves to B = {B},
but we will not need to assume B is finitely generated.

For B any ideal of R define
R(B) = {I|I is an ideal of R with BCV/T},
where

VI = {z|z" € I for some integer n > 0} = ﬂ D
peV(I)

and V() is the set of prime ideals of R containing I.

Let P = D(B), the set of prime ideals not containing B. It is
straightforward to verify that an ideal I of R is in R(B) if and only if I
is not contained in any prime of D(B). Hence, R(B) = L(P), showing
that R(B) is not only a Gabriel topology, but a primal one as well.

Theorem 2.1. Let L be a Gabriel topology. L = R(B) for some
tdeal B of R if and only if L satisfies these conditions:
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(1) If V1 is in L, then I is in L.
(2) NrecVT is an ideal of L.

Proof. Tt is easy to see that if (1) and (2) hold, then £ = R(B) for
B = NiczV/I. We omit the other details. 0

It is clear that R(B) = R(v/B) for B any ideal of R, and that
VE— (] VI

IER(B)

Hence, there is a bijective correspondence between Gabriel topologies
R(B) and radical ideals, i.e., ideals B such that B = v/B. We will
therefore refer to the topologies R(B) as radical topologies.

We will refer to Gabriel topologies satisfying condition (1) above as
radical saturated topologies, modifying somewhat the use of saturated
alone by Shores [15]. Shores showed that these topologies can be
characterized as arising from certain topologically defined families of
closed subsets of Spec(R), generalizing the construction of primal
topologies £(P). The next result gives conditions which, together with
(1), suffice to ensure that £ is a primal topology.

Theorem 2.2. Let L be a radical saturated Gabriel topology. If L
satisfies either of the following conditions, then L is primal.

(i) Each radical ideal not in L is a finite intersection of prime ideals.

(ii) The intersection of any family of prime ideals of L is in L (or
equivalently, the intersection of any family of radical ideals of L is in

L).

The proof is straightforward, and we may omit it.

It would be interesting to have a way of generalizing Stenstrom’s
construction of the bounded topologies to a family B of ideals which
are not necessarily finitely generated.

Another way of constructing Gabriel topologies is by taking a multi-
plicatively closed set S and forming

Lg ={I|I is an ideal of R with I N S # @}.
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The topologies Lg are parameterized by saturated multiplicative sets,
i.e., by those sets S such that ab in S implies a, b are in S. Moreover,
they are precisely the principal topologies [17, Prop. 6.1], hence primal.
Although the following result is known [13, Lemma 7.7], it seems
natural to mention it in this discussion of special primal topologies.
The equivalence of conditions (b) and (c) was treated by Smith [16]
and by Reis and Viswanathan [14]. For the proof of (b) = (a) one can
take for S the complement in R of the union of the primes in P.

Theorem 2.3. Let P be a set of prime ideals of R. The following
statements are equivalent

(a) L(P) is a principal topology.

(b) L(P) = Ls for some multiplicative set S of R.

(c) For p a prime of R, pC UP implies p C qo for some qo in P.
(d) For I an ideal of R, I C UP implies I C qy for some qo in P.

3. A comparison of some finiteness and chain conditions. In
this section we will consider conditions on a Gabriel topology which
have occurred in the literature in lieu of the assumption that R is
noetherian. We will indicate which logical implications hold among
these conditions and provide examples to show that they are not
equivalent. We begin by listing the various hypotheses for a Gabriel
topology £. We assume our rings are commutative, although when
the conditions involved make sense for general rings R, the assertions
involving these conditions remain valid.

(a) Every ideal in £ is finitely presented.
(b) Every ideal in L is finitely generated.

(c) Every ideal I of R contains a finitely generated ideal J such that
(J : ) is in £ for every z in I. This condition was dubbed “R is
o -noetherian” by Caenepeel [4, 119-120], where o is the idempotent
kernel functor associated to L.

(d) Every ascending chain of ideals of £ stabilizes.
(e) L is of finite type.

(f) Any ideal of R not in £ is contained in an ideal of R maximal
with respect to exclusion from L.
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(g) L is primal.
(h) L is the intersection of a countable set of topologies of finite type.
(i) L is noetherian.

The implications among conditions (a) to (i) are summarized by
Figure 1, provided as a visual aid to Theorem 3.1.

FIGURE 1.

Theorem 3.1. The following implications hold among conditions
(a)—(i) listed above: (a) = (b); (b) = (d); (b) = (e); (c) = (e); (e) =
(), (), (0); (£) = (g); (h) = (g); (h) + (i) = (e); (d) + (e) = (b).
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Proof. Most of the implications are immediate consequences of the
definitions. (c) = (e) uses property (T4) of a Gabriel topology. (e) =
(f) follows from Zorn’s Lemma. (f) = (g) uses the observation that if £
is a Gabriel topology, then any ideal maximal with respect to exclusion
from L is a prime ideal. (h) = (g) holds by Theorem 1.1.

Now assume (h) and (i) hold. We wish to show (e) holds. Let
L=(LiNLyN...), with £; of finite type and let I be an ideal in
L. For each i =1,2,..., I contains a finitely generated ideal J; in L;.
Letting I, = J; + --- + J, we have that I,, is in £, and is contained
in I. The sum of all the I, is in all £;, hence in £. Because (i) holds,
some I, is in £. Thus, (e) holds.

The implication (d) + (e) = (b) is mentioned [8, p. 251]. O

We now turn to examples we will call upon to show that conditions
(a) to (i) are pairwise logically inequivalent. The main thrust of the first
example is to show that a family £ we construct is a Gabriel topology.

Example 3.2. Let F be a field and B the polynomial ring over F in
uncountably many commuting indeterminates, say Yi, ¢ in [0,1]. Let
A be the ideal generated by the Y2, ¢ in [0,1]. Let R = B/A and let
X; be the image of Y; in R. The ideal M generated by all the X} is a
maximal, hence prime, ideal of R. Since any prime ideal of R contains
each X;, M is the unique prime ideal of R.

By a monomial in R we shall mean a nonzero element aZ; - Zs - - - Z,,,
where each Z; is one of the X, a € F and a # 0. A set S of monomials
will be called tame if none of the X;, ¢ in [0, 1], occurs as a factor in
infinitely many elements of S. Let £ be the set of all ideals I of R which
contain an uncountable tame set S(I) of monomials. £ is not {R}, as
it contains the ideal generated by all the X;. We claim that £ satisfies
the conditions (T0) and (T4) characterizing a Gabriel topology over a
commutative ring.

Condition (T0) clearly holds, hence only (T4) is left. Let J, I be as in
(T4). Let S(J) be an uncountable tame set of monomials in J. Well-
order S(J) and view it as an uncountable ordinal. For each monomial
m in S(J), (I : m) is in £ by hypothesis. Thus (I : m) contains an
uncountable tame set of monomials, call it T5,.
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Let f be the first element in the ordering on S(J). Let f’ be any
element in T having no factor X; in common with f. Then ff’ is
a monomial in 7 since f’ is in (I : f) and ff’ is not zero. To make
the construction below more transparent let g be the successor of f.
Because T, is uncountable, it contains a monomial ¢’ which has no
factor X; in common with ff’ or with g. As before, g¢’ is a monomial
in I, and if ff’ and gg’ have any X; as a common factor, X; must be
a factor of g.

Now let m be a countable ordinal in S(J). Suppose that for each [
in S(J) satisfying I < m, we have defined !’ satisfying:

(i) ' is in T; and I’ is not zero.

(ii) If kisin S(J) and k < I, then kk’ and I’ have no X; as a common
factor.

For each [ < m, let V; be the set of monomials in 73, which have a
factor X; in common with [I’. Vj is a finite set, and the union of the
V; for [ < m, together with the set of monomials in 7}, which have a
factor in common with m, is a countable set. Since T, is uncountable,
there is a monomial m' in T}, but not in this union.

We have thus constructed m' in T, for m a countable ordinal in S(J).
Let
S(I) = {mm'|m is a countable ordinal in S(J)}.

S(I) is an uncountable set of monomials in I. We claim S(I) is tame.
For suppose X; divides mm’. Then X; divides m or m/. There are only
finitely many m divisible by X;, since S(J) is tame. As for X; dividing
m/, once it divides one m’, X; does not divide n’ for n different from
m. Hence, X; divides only finitely many mm’ and S(I) is tame.

The Gabriel topology L is noetherian since if the union of a countable
sequence of ideals I,, contains an uncountable and tame set of mono-
mials, some [,, must contain such a set. We note that £ is not primal,
since the only prime ideal of R is in £, and there are ideals of R not in

L.

It follows from Theorem 3.1 that (e) implies (g). Since the topology £
of Example 3.2 does not satisfy (g), it does not satisfy (e) either. This
gives us an example of a Gabriel topology £ which is noetherian but
not of finite type. Bergman has also provided an example of a Gabriel
topology which is noetherian but not of finite type [7, p. 319], but we
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have not been able to decide whether the topology in that example is
primal.

Example 3.3. Let F be a field, S a polynomial ring over F in
the commuting indeterminates Yz, ¢ in [0,1]. Let A be the ideal of S
generated by the Y;? —Y;, t in [0,1]. Let R = S/A and let X, denote
the image of Y; in R, M the maximal ideal of R generated by the X,.
Then M? = M and £ = {R, M} is a Gabriel topology on R [17, Chap.
6, Prop. 6.11].

We shall now show that condition (f) holds for this topology L.
Suppose [ is an ideal of R not in £. Then X is not in I for some
sin [0,1]. Let J = I + R(1 — X,). Since 1 — X, is in J, J is not
contained in M. Also, J # R since otherwise a +r(1 — X,) = 1, with a
in I; multiplying by X, we get that X;a = X, hence that X is in I,
a contradiction. Thus, J is a proper ideal not contained in M, hence
is contained in a maximal ideal of R which is not in £. Thus (f) holds.

Condition (h) does not hold for this £. To show this, we first note
that if (h) holds for a Gabriel topology L, then every ideal in £ contains
a countably generated ideal which is also in £ (see the proof that (h)
and (i) together imply (e), in Theorem 3.1). But M is in £ yet does
not contain any countably generated ideal in L.

Example 3.4. Let F be a field, S the polynomial ring over F in the
commuting indeterminates X7, Xo,.... Let N be the ideal generated
by all the X;, R the localization of S at the complement of N, and
let M be the unique maximal ideal of R. For each n = 1,2,..., let
P, be the (prime) ideal of R generated by Xi,...,X,. Let £; be the
topology L(P;) consisting of all ideals not contained in P; and let £ be
the intersection of the £;. I is in £ if and only if we have that for each
n, I is not contained in P,.

Suppose there were an ideal I maximal with respect to exclusion from
L. Then I is contained in some P,, and since P, is not in £ and [
has the indicated maximality property, I = P,,. But P,;; properly
contains P,, and is not in £, contradicting the maximality of I. There
are no ideals I as described. £ does not satisfy (f), but it does satisfy

(h).



436 M. BEATTIE AND M. ORZECH

Example 3.5. We would like to thank M. Roitman for the following
example. Let F be afield. Let X,Y;,7=1,2,..., be aset of commuting
indeterminates over F', and let S = F[U] where

U={X,Y;/X*:i=1,2,...,s=0,1,2,...}.

Let A be the ideal of S generated by the elements XY;, i = 1,2,...,
and let R = S/A. Write z, etc., for the image of X in R. We claim
that the ideal M of R generated by x is a maximal ideal that is finitely
generated but not finitely presented.

The element X of S generates an ideal containing all Y;/X*® since
Y;/X® = (Y;/X*T1)X. The maximality of M follows easily from this.
To show that M is not finitely presented, it suffices to show that the
annihilator of  in R is not finitely generated, since there is an exact
sequence

0 —amn(z) > R— M —0.

Ann (z) contains all the y; so it suffices to show that the y; are not all
contained in any finitely generated ideal of R.

The generators of R as an F-algebra satisfy these relations for
1,7 =1,2,...:

(9i/2*)(y; /") = (xys)(y;/e*TF1) =0 fors,t=0,1,2,...;
x(y;/z®) = yi/z° ! fort=1,2,... and s=1,2,....

It follows that R is spanned as a vector space over F' by the elements
¢ and y; /2%, k = 0,1,2,..., i = 1,2,..., 5 = 0,1,2,... . If the y;
were all contained in a finitely generated ideal of R, then they would
all be contained in the F-subspace spanned by a finite set

B={l,z,...,2" y;/z*:i=1,2,... m—1, s=0,1,2,... ,N}.

In particular, y,, would be a linear combination of the elements of B.
Lifting this relation to S and multiplying by X"V leads to an impossible
relation involving polynomials. We have thus established that M is a
maximal ideal that is finitely generated but not finitely presented.

Let £ be the set of ideals of R which contain M* for some k. R/M* is
a noetherian ring since M /M?¥ is its only prime ideal, and the theorem
of [.S. Cohen, cited before Theorem 1.3, states that if every prime ideal
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of a commutative ring is finitely generated, then the ring is noetherian.
It follows that £ is a Gabriel topology whose every ideal is finitely
generated. But £ contains M, an ideal that is not finitely presented.
Thus L satisfies (b) but not (a).

In [8] Golan and Teply describe a group of conditions, including (a)
and (b), as being nonequivalent, but we have not been able to find a
specific example in the literature.

Remark 3.6. We can now make a list of various nonimplications
among conditions (a) to (i) and provide an example relevant to each.

(b) does not imply (a)-noted in Example 3.5.

(c) does not imply (b) or (d)-Let £ be the set of all ideals in a non-
noetherian ring.

(d) does not imply (b)-Let £ be as in Example 3.3.

(a) does not imply (c)-Let £ = {R}, R not noetherian.

(h) does not imply (f)—noted in Example 3.4.

(d) does not imply (g)-Let R be a one-dimensional but not noetherian
valuation domain with maximal ideal M [10, Chapter 2, Section A and
Example 34, p. 68]. We then have M2 = M. Hence, £L = {R,M} is a
Gabriel topology which satisfies (d). Let I be any ideal other than (0)
or R (take I to be all r in R with valuation v(r) at least d, with d > 0

in the value group of v). I is not in £ but the only prime ideal in which
it is contained is M, since (0) and M are the only prime ideals of R.

(i) does not imply (g)-noted in Example 3.2.
(f) does not imply (h)-noted in Example 3.3.

(d) + (f) does not imply (i)-Let R, L, etc., be as in Example 3.3, but
with countably many indeterminates.

Note added in proof. We would like to thank M. Teply for
pointing out [20] to us. In particular, [20, Example 3.19] gives a non-
commutative example illustrating the nonequivalence of (a) and (b).
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