UNCONDITIONALLY CONVERGING AND COMPACT OPERATORS ON c_0

ELIZABETH M. BATOR

ABSTRACT. It is shown that if Y is a Banach space, then co imbeds in Y if and only if for every infinite dimensional Banach space X, there exists a noncompact operator T: $X \to Y$. In order to prove this, we first examine properties of operators on c_0 , showing that if $T:c_0\to X$ is a noncompact operator, then there exists a subspace Z of c_0 such that Z is isomorphic to c_0 and $T|_Z$ is an isomorphism.

The Josefson-Nissenzweig Theorem states that if X is an infinite dimensional Banach space, then there exists a weak*-null norm-1 sequence (x_n^*) in X^* . It is easy to see that, for such a sequence, $T: X \to c_0$, given by $T(x) = (x_n^*(x))$ is a noncompact operator. A natural problem then is to characterize the Banach spaces Y such that for every infinite dimensional Banach space X, there exists an operator $T:X\to Y$ such that T is noncompact. The goal of this paper is to show these Banach spaces are precisely those which contain isomorphic copies of c_0 . Along the way we will examine properties of operators on c_0 . Many properties of operators on c_0 can be determined by considering c_0 as a space of continuous functions on a locally compact Hausdorff space that vanish at infinity. For instance, one can modify the proof of Corollary IV.2.17 of [3] to get a corresponding result for c_0 . The proof of this involves representing measures of such operators. Our investigation of these operators requires only a basic study of non relatively compact subsets of l^1 .

All terms not defined in this paper can be found in [2,3]. If X is a Banach space, we denote the closed unit ball of X by B_X . Let X be a Banach space. Let (x_n^*) be a bounded sequence in X^* equivalent to

Received by the editors on February 1, 1989, and in revised form on July 12,

¹⁹⁸⁰ AMS Mathematics subject classification. Primary 28B05, 46G10.

Keywords and phrases. Unconditionally converging operators, compact opera-

tors, Banach space.
Partially supported by a Faculty Research Grant from the University of North Texas.

 (e_n^*) , the unit vector basis of l^1 . We define a normalized l^1 -block of (x_n^*) to be a sequence (y_n^*) defined by

$$y_n^* = \sum_{i \in A_n} \alpha_i x_i^*,$$

where (A_n) is a sequence of pairwise disjoint finite subsets of **N** and $\sum_{i \in A_n} |\alpha_i| = 1$. Certainly (y_n^*) is also equivalent to (e_n^*) .

Lemma 1. Let V be a bounded nonrelatively compact subset of l^1 . Then there exists $\varepsilon > 0$, sequences $\{x_n\}$ and $\{y_n\}$ in V, a sequence of positive numbers $\{\lambda_n\}$, and a normalized l^1 -block $\{z_n\}$ of $\{e_n^*\}$ such that for every $n \in \mathbb{N}$:

- $(1) \|x_n y_n\| \ge \varepsilon,$
- $(2) ||z_n \lambda_n (x_n y_n)|| \le 1/2.$

Remark. The two conditions above imply that $\lambda_n \leq 3/(2\varepsilon)$ for every $n \in \mathbb{N}$. Indeed, since $||z_n|| = 1$, $||\lambda_n(x_n - y_n)|| \leq 3/2$ by condition (2) and the desired result follows from condition (1).

Proof. Since V is not relatively compact, there exists $\varepsilon>0$ and an infinite subset W of V such that $\|x-y\|>\varepsilon$ whenever $x,y\in W,\,x\neq y$. We proceed by induction. Suppose that x_j,y_j,z_j and λ_j have already been constructed for $1\leq j\leq n-1$. Let $A_j\subset \mathbf{N}$ be the support of z_j . Thus,

$$U_n = \operatorname{span}\left\{e_i : i \in \bigcup_{j < n} A_j\right\}$$

is a finite dimensional subspace of c_0 . Let T_n denote the restriction map from l^1 to U_n^* . Since V is bounded and T_n is a bounded linear operator with finite rank, we can cover $T_n(V)$ with finitely many balls B_i , $1 \leq i \leq p$, of radius $\varepsilon/12$. Since W is an infinite subset of V, we can choose x_n and y_n in W such that $T_n(x_n)$ and $T_n(y_n)$ are in the same ball, and hence $||T_n(x_n) - T_n(y_n)|| \leq \varepsilon/6$. We can write:

$$x_n = x_n^1 + x_n^2 + x_n^3$$
$$y_n = y_n^1 + y_n^2 + y_n^3$$

with x_n^1, y_n^1 having support in $\bigcup_{j < n} A_j, x_n^2, y_n^2$ having support in some finite subset A_n of **N** such that A_n is disjoint from $\bigcup_{j < n} A_j$, and x_n^3, y_n^3

having support in $\mathbf{N} \setminus \bigcup_{j \leq n} A_j$ such that $||x_n^3|| \leq \varepsilon/12$ and $||y_n^3|| \leq \varepsilon/12$. Note that:

$$||x_n^1 - y_n^1|| = ||T(x_n) - T(y_n)|| \le \varepsilon/6$$

and

$$||x_n^2 - y_n^2|| \ge ||x_n - y_n|| - ||x_n^1 - y_n^1|| - ||x_n^3|| - ||y_n^3|| \ge 2\varepsilon/3.$$

In particular, $||x_n^2 - y_n^2|| \neq 0$. Thus, defining $\lambda_n = ||x_n^2 - y_n^2||^{-1}$ and $z_n = \lambda_n (x_n^2 - y_n^2)$, then z_n has its support in A_n , $||z_n|| = 1$, and

$$||z_n - \lambda_n(x_n - y_n)|| = \lambda_n ||(x_n^2 - y_n^2) - (x_n - y_n)||$$

$$\leq \lambda_n (||x_n^1 - y_n^1|| + ||x_n^3|| + ||y_n^3||)$$

$$\leq 3/(2\varepsilon)(\varepsilon/6 + \varepsilon/12 + \varepsilon/12) = 1/2.$$

Theorem 2. Let X be a Banach space, and let $T: c_0 \to X$ be a bounded linear operator. If T is not compact, then there exists a subspace Z of c_0 such that Z is isomorphic to c_0 and $T|_Z$ is an isomorphism.

Proof. Let X be a Banach space, and let $T:c_0\to X$ be a noncompact operator. Thus, $T^*:X^*\to l^1$ is also noncompact and $V=T^*(B_{X^*})$ is a nonrelatively compact subset of l^1 . By Lemma 1, there exists $\varepsilon>0$, sequences $\{u_n\}$ and $\{v_n\}$ in B_{X^*} , a sequence of positive numbers $\{\lambda_n\}$ and $\{z_n\}$, a normalized l^1 block of $\{e_n^*\}$ such that for every $n\in \mathbb{N}$:

- (1) $||T^*(u_n) T^*(v_n)| \ge \varepsilon$
- (2) $||z_n \lambda_n(T^*(u_n) T^*(v_n)|| \le 1/2.$

Let us write $z_j = \sum_{i \in A_j} a_i e_i^*$. Let $P_j = \{i \in A_j : a_i > 0\}$ and $N_j = \{i \in A_j : a_i < 0\}$. Defining $x_j \in c_0$ by $x_j = \chi_{P_j} - \chi_{N_J}$ for every $j \in \mathbf{N}$. Clearly,

$$\langle z_i, x_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

It is also clear that $Z = \{\sum t_i x_i; (t_i) \in c_0\}$ is isometrically isomorphic to c_0 , as the x_i 's have disjoint support. Moreover, if $(t_i) \in c_0$ and

 $||(t_i)|| = |t_j| = 1$, then

$$\left| T\left(\sum t_{i}x_{i}\right) \right| = \sup_{x^{*} \in B_{X^{*}}} \left| \left\langle x^{*}, T\left(\sum t_{i}x_{i}\right) \right\rangle \right| \\
\geq 1/2 \left| \left\langle u_{j} - v_{j}, T\left(\sum t_{i}x_{i}\right) \right\rangle \right| \\
= 1/2 \left| \left\langle T^{*}u_{j} - T^{*}v_{j}, \sum t_{i}x_{i} \right\rangle \right| \\
\geq (2\lambda_{j})^{-1} \left(\left| \left\langle z_{j}, \sum t_{i}x_{i} \right\rangle \right| \\
- \left| \left\langle z_{j} - \lambda_{j}(T^{*}u_{j} - T^{*}v_{j}), \sum t_{i}x_{i} \right\rangle \right| \right) \\
\geq (2\lambda_{j})^{-1} (1 - 1/2) = (4\lambda_{j})^{-1} \geq \varepsilon/8.$$

Thus $T|_Z$ is an isomorphism.

An operator $T: X \to Y$ is said to be unconditionally converging if $\sum T(x_n)$ is an unconditionally converging series in Y whenever $\sum x_n$ is weakly unconditionally Cauchy in X. (Recall that $\sum x_n$ is weakly unconditionally Cauchy if $\sum |x^*(x_n)|$ converges for every $x^* \in X^*$.) The standard example of an operator that is not unconditionally converging is the identity operator on c_0 . Using the above theorem, we show that in fact every unconditionally converging operator on c_0 is compact.

Corollary 3. Let X be a Banach space, and let $T: c_0 \to Y$ be a bounded linear operator. Then T is unconditionally converging if and only if T is compact.

Proof. Certainly every compact operator is unconditionally converging. The converse follows from Theorem 2. \Box

We now prove the main result of this paper.

Theorem 4. Let Y be a Banach space. Then the following are equivalent:

- (i) c_0 imbeds isomorphically into Y.
- (ii) For every infinite dimensional Banach X there exists a bounded linear operator $T: X \to Y$ such that T is noncompact.
- (iii) There exists a bounded linear operator $T: c_0 \to Y$ such that T is noncompact.

Proof. By the Josefson-Nissenzweig theorem, if X is an infinite dimensional Banach space, then there exists a noncompact bounded linear operator $T: X \to c_0$. Hence, if $\iota: c_0 \to Y$ is an imbedding, then clearly $\iota T: X \to Y$ is noncompact. Thus (i) \Rightarrow (ii).

Certainly, (ii) \Rightarrow (iii). Now suppose that there exists an operator $T: c_0 \to Y$ which is noncompact. Thus, by Theorem 2, there exists a subspace Z of c_0 such that T(Z) is isomorphic to c_0 . Therefore, c_0 imbeds in Y. \square

It seems appropriate to conclude this paper with the following theorem from [1] regarding noncompact operators and l^1 as a comparison to Corollary 4.

Theorem 5. Let X be a Banach space. Then the following are equivalent:

- (i) l^1 is complemented in X.
- (ii) For every infinite dimensional Banach space Y there exists a bounded linear operator $T: X \to Y$ such that T is noncompact.
- (iii) There exists a bounded linear operator $T:X\to l^1$ such that T is noncompact.

Proof. (i) \Rightarrow (ii). Let Y be an infinite dimensional Banach space and Z any infinite dimensional separable closed subspace of Y. It is well known that there exists a continuous linear surjection $S: l^1 \to Z$ [2, p. 73]. Let $P: X \to l^1$ be a projection, and let $\iota: Z \to Y$ be the inclusion operator. Clearly, $\iota \circ S \circ P: X \to Y$ is noncompact.

The fact that (ii) \Rightarrow (iii) is clear. We now show that (iii) \Rightarrow (i). Suppose that $T: X \to l^1$ is noncompact. Hence, $T^*: l^{\infty} \to X^*$ is noncompact and weak*-weak* continuous. Since B_{c_0} is weak* dense

in $B_{l^{\infty}}$, $T^*(B_{c_0})$ is weak* dense in $T^*(B_{l^{\infty}})$. Hence, $T^*(B_{c_0})$ is not relatively compact in X^* . Hence, by Theorem 4, there is a subspace Z of c_0 such that Z is isomorphic to c_0 and $T|_Z$ is an isomorphism. This implies that X^* contains an isomorphic copy of c_0 , which is equivalent [2, p. 48, Theorem 10] to l^1 being complemented in X.

Acknowledgments. The author would like to express her thanks to the referee for many helpful suggestions, especially for simplifying the proof of Theorem 2.

REFERENCES

- 1. E.M. Bator, P.W. Lewis and D. Race, Some connections between Pettis integration and operator theory, Rocky Mountain J. Mathematics 17 (1987), 683-695.
- 2. J. Diestel, Sequences and series in Banach spaces, Graduate Texts Mathematics 92, Springer-Verlag, New York, 1984.
- 3. J. Diestel and J.J. Uhl, Jr., *Vector measures*, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
- **4.** H. Rosenthal, A characterization of Banach spaces containing l^1 , Proc. Nat. Acad. Sci. **71** (1974), 2411–2413.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, DENTON, TX 76203