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UNCONDITIONALLY CONVERGING
AND COMPACT OPERATORS ON ¢

ELIZABETH M. BATOR

ABSTRACT. It is shown that if Y is a Banach space, then
cp imbeds in Y if and only if for every infinite dimensional
Banach space X, there exists a noncompact operator T :
X — Y. In order to prove this, we first examine properties of
operators on cp, showing that if 7" : ¢cg — X is a noncompact
operator, then there exists a subspace Z of ¢g such that 7 is
isomorphic to ¢g and T'|z is an isomorphism.

The Josefson-Nissenzweig Theorem states that if X is an infinite di-
mensional Banach space, then there exists a weak*-null norm-1 se-
quence (z¥) in X*. It is easy to see that, for such a sequence,
T : X — ¢, given by T'(z) = (z(x)) is a noncompact operator. A
natural problem then is to characterize the Banach spaces Y such that
for every infinite dimensional Banach space X, there exists an operator
T : X — Y such that T is noncompact. The goal of this paper is to
show these Banach spaces are precisely those which contain isomorphic
copies of ¢g. Along the way we will examine properties of operators
on cg. Many properties of operators on ¢y can be determined by con-
sidering cy as a space of continuous functions on a locally compact
Hausdorff space that vanish at infinity. For instance, one can modify
the proof of Corollary IV.2.17 of [3] to get a corresponding result for
cg- The proof of this involves representing measures of such operators.
Our investigation of these operators requires only a basic study of non
relatively compact subsets of I1.

All terms not defined in this paper can be found in [2,3]. If X is a
Banach space, we denote the closed unit ball of X by Bx. Let X be
a Banach space. Let (z7) be a bounded sequence in X* equivalent to
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(%), the unit vector basis of I!. We define a normalized ['-block of
(z¥) to be a sequence (y}) defined by

x 2 : *
Yn = Qi

i€EA,

where (A4,,) is a sequence of pairwise disjoint finite subsets of N and
Y ica, lail = 1. Certainly (yy,) is also equivalent to (e;,).

Lemma 1. Let V be a bounded nonrelatively compact subset of I*.
Then there exists € > 0, sequences {z,} and {y,} in V, a sequence
of positive numbers {\,}, and a normalized I*-block {z,} of {e’} such
that for every n € N:

(D) zn —yull > ¢,
(2) lzn — An(Tn — yn)|| < 1/2.
Remark. The two conditions above imply that A, < 3/(2¢) for every

n € N. Indeed, since ||z,|| = 1, [[An(zn — yn)|| < 3/2 by condition (2)
and the desired result follows from condition (1).

Proof. Since V is not relatively compact, there exists ¢ > 0 and an
infinite subset W of V' such that ||z —y|| > € whenever z,y € W, z # y.
We proceed by induction. Suppose that x;,y;,2; and \; have already
been constructed for 1 < j <n —1. Let A; C N be the support of z;.

Thus,
U, :span{ei 11 € U Aj}
j<n

is a finite dimensional subspace of cg. Let T,, denote the restriction
map from (! to U?. Since V is bounded and T;, is a bounded linear
operator with finite rank, we can cover T, (V) with finitely many balls
B;, 1 < i < p, of radius €/12. Since W is an infinite subset of V', we
can choose z, and y, in W such that T,(z,) and T, (y,) are in the
same ball, and hence ||T},(z,) — Tn(yn)|| < £/6. We can write:

xn:wiﬁ-mi—i—mi
— ol 2 3

with z%,yL having support in U;j<,A;,z2,y2 having support in some

finite subset A,, of N such that A,, is disjoint from Uj<,A;, and 23,43

n
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having support in N\ U;<,A; such that ||z3|| < e/12 and [|y3]| < e/12.
Note that:

lz — ynll = 1T (2n) — T(yn)|| < /6

and
22 = yall > llon — ynll = 5 — yall — 23] — llyall > 2¢/3.

In particular, ||z2 — y2|| # 0. Thus, defining A\, = [|22 — y2| ! and
Zn = An(22 — y2), then z, has its support in A,, ||z,]| = 1, and

2 = An(Tn —yu)|l = An”(mi - y727,) —(zn —ya)l
< Al = vl + sl + llwal)
<3/(2)(e/6+¢e/12+¢/12)=1/2. O

Theorem 2. Let X be a Banach space, and let T : ¢cg — X
be a bounded linear operator. If T is mot compact, then there exists
a subspace Z of cy such that Z is isomorphic to co and T|z is an
isomorphism.

Proof. Let X be a Banach space, and let T : ¢y — X be a noncompact
operator. Thus, 7™ : X* — [! is also noncompact and V = T*(Bx~) is
a nonrelatively compact subset of I'. By Lemma 1, there exists € > 0,
sequences {u,} and {v,} in Bx~, a sequence of positive numbers {A, }
and {z,}, a normalized ! block of {e}} such that for every n € N:

(1) HT*(un) - T*(vn)| >e€
(2) llzn = An(T™(un) — T (va)[| < 1/2.
Let us write z; = ZieAJ— aief. Let P = {i € Aj : a; > 0} and
Nj ={i € Aj:a; <0}. Defining z; € co by z; = Xp, — Xn, for every
j € N. Clearly,
1 ifi=j
(i) = {0 if i # .

It is also clear that Z = {> t;x;; (t;) € co} is isometrically isomorphic
to cg, as the z;’s have disjoint support. Moreover, if (¢;) € ¢p and
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I|(£:)]] = |tj] =1, then

()| o

2y | (o))
(w _Uj,T(Ztiwi»‘
= 1/2‘<T*uj - T*vj,Ztix,»>‘
{50
—~ ‘<zj —\j(T*uj — T*vj),ztixi>>

> (227) M(1-1/2) = (4%) P 2 e/,

Y

1/2

Thus T'|z is an isomorphism. o

An operator T : X — Y is said to be unconditionally converging if
> T(x,) is an unconditionally converging series in Y whenever > z,,
is weakly unconditionally Cauchy in X. (Recall that ) z,, is weakly
unconditionally Cauchy if > |z*(zy)| converges for every z* € X*.)
The standard example of an operator that is not unconditionally
converging is the identity operator on cg. Using the above theorem,
we show that in fact every unconditionally converging operator on cg
is compact.

Corollary 3. Let X be a Banach space, and let T : co — Y be a
bounded linear operator. Then T is unconditionally converging if and
only if T is compact.

Proof. Certainly every compact operator is unconditionally converg-
ing. The converse follows from Theorem 2. O

We now prove the main result of this paper.

Theorem 4. Let Y be a Banach space. Then the following are
equivalent:
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(i) co imbeds isomorphically into Y .

(ii) For every infinite dimensional Banach X there exists a bounded
linear operator T : X — Y such that T is noncompact.

(iii) There exists a bounded linear operator T : co — Y such that T
1§ noncompact.

Proof. By the Josefson-Nissenzweig theorem, if X is an infinite
dimensional Banach space, then there exists a noncompact bounded
linear operator T : X — ¢g. Hence, if ¢ : ¢g — Y is an imbedding, then
clearly «T': X — Y is noncompact. Thus (i) = (ii).

Certainly, (ii) = (iii). Now suppose that there exists an operator
T : co — Y which is noncompact. Thus, by Theorem 2, there exists
a subspace Z of ¢g such that T'(Z) is isomorphic to c¢y. Therefore, ¢
imbeds in Y. ]

It seems appropriate to conclude this paper with the following theo-
rem from [1] regarding noncompact operators and ! as a comparison
to Corollary 4.

Theorem 5. Let X be a Banach space. Then the following are
equivalent:

(i) I* is complemented in X .

(ii) For every infinite dimensional Banach space Y there ezists a
bounded linear operator T : X — Y such that T is noncompact.

(iii) There ezists a bounded linear operator T : X — I* such that T
18 moncompact.

Proof. (i) = (ii). Let Y be an infinite dimensional Banach space and
Z any infinite dimensional separable closed subspace of Y. It is well
known that there exists a continuous linear surjection S : [* — Z [2, p.
73]. Let P : X — [ be a projection, and let ¢ : Z — Y be the inclusion
operator. Clearly, toSo P: X — Y is noncompact.

The fact that (ii) = (iii) is clear. We now show that (iii) = (i).
Suppose that T : X — I! is noncompact. Hence, T* : [*® — X* is
noncompact and weak*-weak® continuous. Since B, is weak® dense
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in Bjeo, T*(B,,) is weak* dense in T*(Bj~). Hence, T*(B,,) is not
relatively compact in X*. Hence, by Theorem 4, there is a subspace Z
of ¢y such that Z is isomorphic to ¢y and T'|z is an isomorphism. This
implies that X™* contains an isomorphic copy of ¢g, which is equivalent
[2, p. 48, Theorem 10] to ! being complemented in X. o
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