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SEPARATION THEOREMS FOR
NONSELFADJOINT DIFFERENTIAL SYSTEMS

E.C. TOMASTIK

ABSTRACT. Conditions are given that identify certain so-
lutions of the system of differential equations (™) — (—1)"—k.
q(t)z = 0 that must have at least one component that van-
ishes. Here g(t) is an m x m matrix of continuous functions
that is positive with respect to a certain cone. The results
presented are new even for second order self-adjoint systems
and for the general scalar equation.

1. Introduction. This paper is concerned with separation theorems
for the differential equation

(1) 2 — (=1)"*q(t)z =0,

where n > 2 and k is an integer with 1 < k < n — 1 and where ¢(t)
is an m X m matrix of functions continuous on the interval [a,b] with
a > 0, subject to the conjugate point type boundary conditions

@) {x@)(a)_gi, i=0,...,k—1,

(Also considered is the second order system given by (11) in Section 3,
which is more general than (1) for n = 2.) More specifically, conditions
will be given that identify certain solutions of (1) that must have at
least one component that vanishes. Since no assumptions are made
on the integer k or on the symmetry of ¢(t), (1) will in general be
nonself-adjoint. But even if (1) is self-adjoint, the results presented
here are new. The results are new for the second order case also since
the hypothesis on ¢(t) given in this paper is not as restrictive as that
given by the author in [4]. The results are also new in the general
scalar case.
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Throughout this paper it is assumed that some partition {I,J} of
the integers {1,...,m} has been given, i.e., IUJ = {1,...,m} with
INJ = ¢, and that the cone K is given by

K={(z1,...,2m):1€l=2 >0, i€ J =z <0},
and that g(t) satisfies the following “positivity” condition
q(t) : K = K, t € la,b].
It is easy to see that this condition simply implies that

(3) 45 (t) = 14i (£)[6:6;

where ¢ = (¢;;) and where 6, =1if p€ I and 6, = -1if p € J.

A point b = ¢ n_r(a) > a is called the (first) (k,n — k)-conjugate
point of a if there exists a nontrivial solution z(¢) of (1) such that

t@@)=0, i=0,...,k—1,
() om0 1
0, ¢t=0,...,n—k—-1

and there is no nontrivial solution z(t) of (1) with 2(9(a) = 0, i =
0,...,k—1land z9(8) =0,i=0,...,n—k — 1, where a < 8 <
ck,n,k(a) =b.

There are very few separation theorems in the literature for (1) of the
sort that assures that a given solution of (1) will vanish or that some
component will vanish. The author [4] has given a separation theorem
for (1) in the n = 2 case but used more restrictive hypotheses than
given here.

Another such separation theorem has been given by Ahmad and Lazer
[1] for the case n = 2. They assume that g;;(t) > 0 if ¢ # j. Under
these conditions, they show that if b is the first conjugate point of
a, then any solution of (1) with all components strictly positive at
t = a must have at least one component that vanishes on (a,b]. In
this paper Corollary 2 gives a stronger conclusion for a (in general)
different class of differential equations. Namely, that if K is the cone
given above and ¢(t) satisfies the positivity condition given above and
z(t) is any solution of (1) in the second order case, with z(t) € K°, the
interior of K, in some right deleted neighborhood of a, then at least
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one component of z(t) must vanish on (a, b]. Thus, Corollary 2 permits
a solution to have zero components at ¢ = a whereas the result in [1]
does not. Both results apply when one assumes that g;;(¢) > 0 for all
1,7 =1,... ,m. In this context, K is the first quadrant.

Morse [2] has given a separation theorem in the second order self-
adjoint case, i.e., the case when the matrix ¢(¢) is symmetric. Although
this theorem is a very important result, it does not actually permit
one to conclude that a particular solution of (1) vanishes or that a
component vanishes. Rather, the theorem only permits one to conclude
that some unknown linear combination of m certain solutions will
vanish. To be more precise, notice that if X is an m X m matrix
solution of the matrix equation X" 4+ ¢(t)X = 0, where ¢(t) is assumed
to be symmetric, then a very easy calculation shows that

(X () X'(t) - X™(6)X(1)]" =0,

k)

where indicates transpose. Thus,

X*)X'(t) - XY ()X (t) =C,

where C' is an m X m constant matrix. One then says that X is
a prepared matrix solution if C' is the zero matrix. Two important
examples are the two unique matrix solutions U(t) and V(¢) given by
the initial conditions U(a) =0, U'(a) = E, and V(a) = E, V'(a) = 0,
where E is the identity matrix. Morse’s separation theorem says that
the number of zeros, counting multiplicity, of det X;(¢) and det X»(t),
can differ by at most m, if X;(t) and X5 (t) are two prepared matrix
solutions and “det” denotes the determinant.

Now it is well known that the first conjugate point of a for this second
order self-adjoint differential equation is the first zero after a of det U(¢),
where U(t) has been defined in the previous paragraph. Thus, if b is
the first conjugate point of a, then det U(t) has m+1 zeros on [a, b]. By
the Morse separation theorem, the matrix solution V (¢), for example,
defined above must have det V(t) = 0 in [a,b]. The only thing that
can be concluded from this about vector solutions of the corresponding
second order self-adjoint equation is that some linear combination of
the solutions that make up the columns of the matrix V' (¢) must vanish
on [a,b]. Although this is certainly useful information, one does not
know which particular solution will vanish. In contrast, this paper will
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identify certain particular solutions that will have a component that
vanishes.

The following example is instructive in what one may expect to
happen. Consider the second order self-adjoint differential equation
z"” + qr = 0, where g is the constant 2 x 2 symmetric matrix with
all entries equal to one. Then four linearly independent solutions are
zi(t) = (L,-1), «3(t) = (¢, 1), 25(t) = (sinv/2t,sinv/2t), zj(t) =
(cosv/2t,cosv/2t). Notice that the first solution does not vanish at
all and the second solution vanishes only once, while the other two
solutions oscillate. Thus, even in the second order self-adjoint case,
one can have a solution that oscillates, while another solution never
even has one component that vanishes.

For the example in the previous paragraph, one can readily calculate
the prepared matrix solution U(t) and easily discover that the first
conjugate point of @ = 0 is 7/4/2. One consequence of the results
presented in this paper is that any solution of the equation given in the
previous paragraph that starts out in the positive first quadrant must
have one component that vanishes on (0,7/4/2). Consider then as
an example the specific solution z%(t) = (2t + cos v/2t, —2t + cos v/2t)
of the second order self-adjoint differential equation of the previous
paragraph. One sees that 2} (0) = (1, 1) and that the second component
vanishes on (0, 7/v/2) but that the first component does not vanish at
all. This demonstrates that, even in the self-adjoint case, only one
component needs to vanish. Thus, in the results presented in this
paper, one cannot in general expect anything more than this.

Consider now the differential operator
(_1)n—ky(n) = 07

subject to the (k, n — k)-conjugate point boundary condition (4). Then
the Green’s function of this operator subject to (4) is given by

olt, ) :H<(t—gz)_(ba— 5), (s —baz(l;—t)>

where

)
(0. = o=y, (0= 9" -9

0 = min{u, v}.
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Thus, y(t) is a solution of (1) subject to (4) if and only if
b
)= [ a(t.s)ao)u(s) ds.

Notice that it is possible for a component of y(t) to be identically
equal to zero. For example, if (1) were the self-adjoint second order
equation with ¢(¢) diagonal with diagonal elements equal to 4 and 1
and a = 0, then y*(¢t) = (sin 2¢,0).

It is said that the vector function p*(t) = (pi(t),...,pm(t)) is an
interpolating polynomial for (2) if py(¢),... ,pm(t) are polynomials of
degree (n — 1) and

p(i)(a’):(ia ’L.ZO,...,k—]_’
pD®) =71, i=0,...,n—k—1.

It is well known that (2) has a unique interpolating polynomial (cf. [3]).
Now define the possibly empty sets M and N by the following

5 M={pef{l,...,m}:¢i=0, i=0,...,k—1,
Nz{uE{l,...,m}:nZzO, 1=0,...,n—k—1.

The following further assumptions will be made on p(t).

(6) { neM = ,pi(a) >0,

veN= (—1)"k5,p0" ") > 0,

where M and N are the same as in (5).

2. A general separation theorem. A general separation theorem
can now be given.

Theorem 1. Assume that ¢ n—r(a) = b and that p(t) is the unique
interpolating polynomial for (2) and that p(t) € K° for all t € (a,b)
and p(t) satisfies (6). If z(t) is a solution of (1) that satisfies (2), and
if z(t) € K° in some right deleted neighborhood of a or z(t) € K°
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in some left deleted neighborhood of b, then x(t) has a component that
vanishes on (a,b).

In order to prove the theorem, notice that since cg ,,—r(a) = b, there
exists a nontrivial solution y(¢) of (1) that satisfies (4) and also satisfies

It should be emphasized that since the hypothesis on ¢(t) is weaker
than that given in [5] for n = 2 or in [4] for n = n, it cannot be
concluded that y(t) is in the interior of the cone, K, for t € (a,b),
although this could be the case. As was pointed out earlier, some
components of y(t) could even be identically equal to zero.

If z(t) given in the theorem exists, then it must satisfy
b
ot) =pl6) + [ g(t,)als)a(s) ds.

Now assume contrary to the conclusion of the theorem that no
component of z(t) vanishes on (a,b), i.e., z(t) € K° for all t € (a, b).

Of course, y(t) has a zero at t = a of order at least equal to k and a
zero at t = b of order at least equal to n — k.

If i ¢ M, then z;(t) has a zero at ¢ = a of order at most equal to
k — 1. Suppose now that i € M and consider

b ok
(7 o) =p )+ [ ol sa(s)a(s) ds,
and
® @ =p@+ Y [ orale s)a(s)as(s) ds

j=1"¢

It is well known that (8%/0t*)g(a,s) > 0, a < s < b. Also, since
z(s) € K, q(s)z(s) € K for all s € [a,b]. It follows that the last term
in (7) is in K. It follows then that the sum in (8) has sign equal to
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(k)

the sign of §; or is zero. Now, since p; ' (a) has by hypothesis the same

sign as d; and is not zero, acgk)(a) is not zero (and has the same sign as

;). Thus, z;(t) has a zero at t = a of at most equal to k.

If ¢ ¢ N, then z;(t) has a zero at ¢t = b of order at most equal to
n—k—1. If ¢ € N, then one can show in a manner similar to that
in the previous paragraph that x;(t) has a zero at t = b of order at
most equal to n — k. The proof follows since it is well known that

(=1)n=k(on=F/ot"=k)g(b,s) > 0 on (a,b).

As a consequence, the following terms are certainly finite numbers:

lysll = sup [gi(®)/z:(@)], [yl = max |ly]].
te(a,b) i=1,...,m

Since the assumption that z(t) € K° for t € (a,b) implies that
z;(t) = |4 (t)|d;, it follows that

Ol = Y [ ot )ai(s)us(s)ds
<> [ ol 9lai o) las ) (sl e (5 s

sz/Wmemwmw
=3 [ ot 9)as (908:352,(5)5; dsll|
/NMMMMWML
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The last term is strictly less than ||y|| for all ¢ € (a,b). This fol-
lows since for ¢ € (a,b), p;(¢t) and z;(¢t) are of the same sign due
to the fact that both p(t) and z(t) are in K°. If i ¢ M, then
a simple application of L’Hospital’s rule (if necessary) assures that
(pi/x;)(a+) = 1. If i ¢ N, then also (p;/x;)(b—) = 1. If i € M, then
(pi/z:)(a+) = piF(a) /=™ (a) # 0. Also, i € N implies (p;/z;)(b—) =
pl(-"fk)(b)/acgnfk)(b) # 0. Thus, it follows that the term in front of
[ly|| in (10) is bounded strictly away from 1 on (a,b). It can then be
concluded that ||y;|| < |ly|| for ¢ = 1,... ,m. Thus, ||y|| < |ly||. This
contradiction then establishes the theorem.

The case n = 2 is certainly the most important. For this case, one
can say considerably more than Theorem 1. Suppose, for example,
that z(a) € K°. If now z(b) ¢ K, then z(¢) must have left K°, and
therefore, by continuity considerations, x(t) must have one component
that vanishes. Thus, one can assume that z(b) € K°. But for n = 2,
the components of the interpolating polynomial p(t) are simply linear
functions; thus, the assumption that x(a) and z(b) both are in K°
automatically implies that p(t) € K for all ¢ € [a,b]. Then Theorem 1
assures that one component of z(¢t) must vanish on (a,b). If, for some
@, z,(a) = 0, then, in the terminology of Theorem 1, p € M. If p €I
and one assumes that z,,(b) > 0, then necessarily pj,(a) > 0, since p,(t)
is a linear function. If u € J and one assumes that z,(b) < 0, then
necessarily pj,(a) < 0. Thus, it has been established that under certain
conditions p € M = 6,p,,(a) > 0. The following corollary has thus
been established, where ¢; ;1 (a) has been set equal to c(a) since there is
only one possible type of conjugate point when n = 2.

Corollary 2. Ifn =2 and c¢(a) = b and z(t) is a solution of (1) with
z(a) € K° or if z(a) = 0, then 2'(a) € K°, then z(t) has a component
that vanishes on (a,b].

Recall that the solution z;(t) to the second order self-adjoint example
given in the introduction for which z5(a) € K° but only one component
of z(t) vanished on (a,c(a)). Consider also the solution z§(t) =
(t 4 sin/2t, —t + sin/2t). Then one sees that z4(t) € K° in some
right deleted neighborhood of 0, since x4(0) € K° and that the second
component vanishes on (0, 7/+/2) but that the first component does not
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vanish after ¢ = 0. Thus, one realizes that in general the conclusion in
Corollary 2 cannot be strengthened.

An analogous corollary can be given for general n if & = n — 1.
But first a more general result can be given based on the observation
that for certain boundary conditions the interpolating polynomial is
automatically in K for all t € (a,b), just as was observed for the n = 2
case. The following is such a result.

Corollary 3. Suppose that c ,—r(a) = b and that z(t) is a solution
of (1) with @ (t) € K° in some right deleted neighborhood of a for
i=0,...,k—1, and (—1)*z(t) € K° in some left deleted neighborhood
of b fori=1,... ,n—k—1. Then x(t) has a component that vanishes
on (a,b|.

To prove the corollary, notice that the hypothesis assures that z(t) €
K? for t sufficiently close and to the right of a. Thus, if z(b) ¢ K°, then
x(t) must have left K° and, therefore, by continuity considerations, z(t)
must have one component that vanishes. Thus, one can assume that
z(b) € KY.

Let p(t) be the unique interpolating polynomial for (2). Then it will
be shown that p(t) € K° for all ¢t € (a,b). Assume i € {1,...,m} has
been given and that ¢(t) denotes p;(t). Consider the case that i € I,
the other case being similar.

Now suppose that j < k — 1 and there exists 7 € (a,b) such that
¢ (7) = 0. Then there exists ¢ € (a,7) such that Ut (c) = 0,
otherwise ¢t (¢t) > 0 on (a,7). This latter fact follows since
j 4+ 1 <k —1 and, therefore, by the hypothesis, U+ (¢) > 0 in some
right deleted neighborhood of a. Then ¢)(t) is strictly increasing on
(a,7). But this is impossible since ¢/)(t) > 0 in some right deleted
neighborhood of a and ¢\9) () = 0.

Now suppose that j < n — k — 1 and there exists 7 € (a,b) such
that ¢\9)(7) = 0. Then there exists ¢ € (7,b) such that ¢U*1(c) = 0,
otherwise (—1)7¢U*D(t) < 0 on (7,b). This latter fact follows since
j41 < n—k—1 and, therefore, by the hypothesis (—1)I+1¢(+1 (h—) > 0
in some left deleted neighborhood of b. Then (—1)7¢W)(t) is strictly
decreasing on (7,b). But this is impossible since (—1)7¢()(7) = 0 and
(=1)7¢W)(t) > 0 in some left deleted neighborhood of b.
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Now assume that K —1 > n — k — 1, the other case being similar.
Suppose that j < n—k—1 and that ¢()(t;) =0 fori = 1,..., p, where
a <ty <---<t,<b. Then, by Rolle’s theorem, #/T1)(¢) has a zero
on each of the intervals (¢;,t;11), for a total of at least p — 1 zeros on
[t1,t,]. But, by the results in the previous two paragraphs, U (1)
has a zero on (a,t;) and also on (t,,b). Thus, ¢+ () has at least
p + 1 zeros on (a,b).

If ¢(¢) has a zero on (a, b) of order exactly one, then ¢(¢) must become
negative on (a, b) and then, since ¢(t) is positive to the right of a and to
the left of b, ¢(t) must have two zeros on (a,b). Then, by the previous
discussion, ¢'(t) must have at least three zeros on (a,b). If, on the
other hand, ¢(t) has a zero of order two or larger at 7 € (a,b), then
this means that ¢'(t) has a zero at 7 € (a,b). Then, by the previous
discussion, ¢'(t) will once again have three zeros on (a,b).

Then ¢ (t) will have at least four zeros on (a,b),..., and ¢(*~*=1)(¢)
will have n — k + 1 zeros on (a,b). Now this is already a contradiction
in the case that k — 1 = n — k — 1, i.e.,, n = 2k, since the degree
of "k~ (t) equals (n — 1) — (n — k — 1) = k, whereas ¢(»~*=1)(¢)
vanishesn —k+1 =2k -k +1=%k+1 times.

So now assume that £k — 1 > n — k — 1. Then, by Rolle’s theorem,
¢~ F)(t) vanishes at least n— k times on (a, b) since it has already been
established that ¢~ *~1)(t) vanishes at least n — k + 1 times on (a, b).
It further follows that ¢("~*)(¢) vanishes between a and the first zero of
¢m=k=1)(¢) since n —k — 1 < k — 1. Thus, ¢(*~*)(t) vanishes n — k + 1
times on (a, b). One can proceed in a similar fashion until one has that
¢*~1(t) vanishes n — k + 1 times on (a,b). But this contradicts the
fact that the degree of ¢*~V(t)is (n —1) — (k—1) =n — k.

It has thus been show that the interpolating polynomials is in K°
for all t € (a,b) and, therefore, from Theorem 1, z({) must have
one component that vanishes on (a,b). This concludes the proof of
Corollary 3.

Returning now to the case that k = n — 1, Corollary 3 leads to the
following result.

Corollary 4. Assume c,_11(a) = b and let z(t) be a solution
of (1) with ) (t) € K° in some right deleted neighborhood of a for
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=0,...,n —2. Then z(t) must have a component that vanishes in

Solutions such as those described in Corollary 4 must exist by the
fundamental existence theory.

Corollary 4 does not allow for the possibility that some x?(¢) are not in
the interior of K in some right deleted neighborhood of a. The following
corollary allows for this possibility and takes a different approach.

Corollary 5. Suppose cn,_1,1(a) =b and let z(t) be a solution of (1)
such that

z(a) =¢% € KO,
a2 (1P A 12 i L

Then z(t) has a component that vanishes in (a,b|.

To prove the corollary, define the (n — 1)-degree polynomials ¢;(¢),

j=0,...,n—2, by

i [0 ifi#y,

¢f(a)_{1 ifi= g,
and

¢;(b) = 0.
Also define
t—a
¢n 1 (b >

These polynomials are unique [3] and are positive on (a,b). If ¢(¢)
is a polynomial of degree (n — 1) with prescribed values for ¢(®)(a),
i=0,...,n—2, and ¢(b), then ¢(¢) can be written uniquely as

n—2

o(t) =Y ¢ (a)i(t) + p(b)pn-1(t)-

=0

If z(b) ¢ K°, then by continuity one component of z(¢) must vanish
on (a,b]. Assume then that z(b) € K°. Let i € I, the case i € J
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being similar. Let p(¢) be the interpolating polynomial for (1) and let

pi(t) = 6(t). Define -
=c(j=2)

where ¢ = (0. Notice that

r(j)(a):(—1)j(n_1)"'(n_j)g, =1 -2

b —a)
and, therefore,
r(t) = (o(t) + 22 rP(a)e;(t).
Then ~
H(t) (1) =:§j 9000 - (-0 = =D oy )+ 6(0)00 10

and this term is positive on (a, b] by hypothesis, the assumption that
#(b) = z;(b) > 0, and the fact that ¢o(t),... , pn—1(t) are all positive on
(a,b), while ¢g(t), p1(¢), ... , dn—2(t) are zero at t = b and ¢,,—1(b) = 1.
Thus, ¢(t) > 0 on (a,b] and Theorem 1 assures that x(t) has a
component that vanishes on (a, b].

3. A general second order system. In this section a separation
theorem is given for the second order differential equation

(11) (r(t)a') +q(t)z =0,

where r(t) is an m x m matrix of continuous functions on [a, b], r(t) and

fat r~1(s) ds are both nonsingular for all ¢ € [a,b]. It is also assumed
that r~!(t) satisfies the “positivity” condition

r7Ht): K — K, t € [a,b],
which is the same condition satisfied by ¢(¢). Furthermore, define the

sets K; and D; by
t
K= ([ i) ),

-1

o= ([ r0as) ),
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and assume throughout the rest of this paper that
K, C Ky, DyC D; forallté€ (a,b].

For more details on these conditions, see [6]. Considered here will be
only how such conditions can easily be checked. For simplicity, consider
the case m = 2 and K the positive first quadrant. Then the boundary
of K; is Composed of the two rays determined by f r- )ds)z and

f r~1(s)ds) ], and these vectors are just the columns of f r~1(s)ds.
Using these two vectors, one can easily determine if the cone K;, which
is a subset of the cone K, is in Kj for all ¢ € (a,b]. Ina similar fashion,

the boundary of D; is determined by the columns of f r~1(s)ds)!
Using these two column vectors one can easily determine if the set Dy,
which contains the cone K, contains Dy for all ¢ € (a, b].

Consider now the differential operator
Dya(t) = —(r(t)a' (1))’
subject to the conjugate point boundary condition
(12) z(a) = z(b) = 0.

It is easy to see that the Green’s matrix for this differential operator
subject to the conjugate point boundary conditions given above is given
by

(13)

G(t 5) _ {ftb T_l(g) df(f; T_l(f) df)_l fas 7“_1(5) dé‘, a<s<t<b
) fat rfl(g) df(f; 7-71(6) df)*l fsb ril(f) d€, a<t<s<b.

Thus, y(t) is a solution of (11) and satisfies (12) if and only if

) = / G(t, 5)a(s)y(s) ds

The following separation theorem can now be given for (11).

Theorem 6. Ifc(a) = b and z(t) is a solution of (11) with z(t) € K°
in some right deleted neighborhood of a, then x(t) has a component that
vanishes on (a,b].
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The proof of this theorem is the same as the proof of Theorem 1,
once one realizes that the assumptions K; C K, and D, C D; for all
t € (a, b] implies that

G(t,s): K - K

for all s,t € [a,b]. This has been established in [6].

There is no other separation theorem in the literature for the differ-
ential equation (11) in the case that r(t) is not the identity matrix.
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