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UNIFORM DENTABILITY, UNIFORM SMOOTHABILITY
AND APPROXIMATIONS TO CONVEX SETS

DARYL TINGLEY

ABSTRACT. Uniform versions of dentability and smootha-
bility are introduced, and shown to be dually related. It is
shown that convex sets in spaces satisfying these properties
can be approximated by the convex hull of a set of uniformly
sharp corners in the former case and by the intersection of
uniformly flat cones, generated by a point and the set, in the
latter case.

Introduction. The notion of dentability in Banach spaces was
introduced by Rieffel [8] and has been studied extensively since that
time. One of the central results is that of Lindenstrauss (cf. [7]) which
shows that if every bounded closed convex set in a Banach space X
is dentable (the Radon-Nikodym property, abbreviated RNP), then
every bounded closed convex set in X is the closed convex hull of its
extreme points (the Krein-Milman property). This result was extended
by Phelps [7] who showed that “extreme point” could be replaced by
strongly exposed point. Loosely speaking, these results say that if X
has the RNP, then a closed bounded convex set is the closed convex
hull of its corners.

In [5], Finet defines a modulus of strong extremality for points of the
unit ball which “measures how much a point is a strong extreme point
of the unit ball.” (See [9] or [5] for the definition of a strong extreme
point.) It is then shown that the unit ball of a super-reflexive space
can be approximated (arbitrarily close, using the Hausdorff metric)
as the closed convex hull of a subset of the set of strong extreme
points of the unit ball. The modulus of strong extremality for the
points of this subset are uniformly bounded from below. (The bound
depending on the closeness of the approximation.) Thus, thinking of
the strong extreme points as corners, this says that the unit ball of a
super-reflexive space can be approximated as the closed convex hull of
a set of corners that are uniformly “sharp.”
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In Section 2 of this paper we consider spaces that satisfy a uniform
version of the RNP, called uniform dentability, and show that any closed
bounded convex set in these spaces can be approximated as the closed
convex hull of a set of uniformly sharp corners (with an altered notion
of a corner).

The concept of smoothability was introduced by Edelstein [3], and
later reformulated by Kemp [6]. These papers show that dentability
and smoothability are, to a certain extent, dually related. In [1] a
stronger form of smoothability, called strong smoothability, was intro-
duced. It was shown that for a Banach space X to be strongly smooth-
able (i.e., every convex body is strongly smoothable) is equivalent to
X being an Asplund space. Since X is an Asplund space if and only if
X* has the RNP, it follows that X is strongly smoothable if and only
if X* has the RNP.

With this in mind, it is natural to ask whether there is a uniform
version of smoothability that is dual to uniform dentability. In Section
1 we define both uniform dentability and uniform smoothability, as well
as weak™ versions, and in Sections 3 and 4 we prove duality results.

While proving these duality results another approximation to certain
convex sets is established, this time valid in uniformly smoothable
spaces. This second approximation, not surprisingly, is in some dual to
the previously mentioned approximation. Loosely speaking, it shows
that a convex set with nonempty interior in a uniformly smoothable
space can be approximated as the intersection of quite flat cones. (See
the next section for definitions.) The distance from the vertex of each
cone to the set is bounded from below. (Indeed, the bound only depends
on the largest ball that fits inside the set and the norm of the space.)
The measure of this second approximation is not, unfortunately, the
Hausdorff metric. It is the radius of the largest ball that fits between
the set and the approximating set.

The results in this paper concerning uniform dentability and uniform
smoothability (in particular, Theorems 3.6, 3.7, 4.9 and 4.10) remain
valid if the uniformity is dropped—indeed, the proofs would be shorter
and less technical. However, we would then be considering the duality
between strongly smoothable spaces and spaces with the RNP, which
is investigated in [1].
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1. Definitions and elementary properties. Throughout this
paper, X denotes a Banach space with dual X* and K C X will be a
closed convex set in X. For 2 € X and r > 0, B(z, ) is the closed ball
about z of radius r, B(X) the closed unit ball of X and S(X) the unit
sphere of X. When no confusion arises, we use B instead of B(X).

Let f € X* and a > 0 be given. The set S(f,a,K) = {z €
K : f(z) > sup f(K) — a} is called a slice of K. The diameter
of S(f,a,K) is sup{||lz — y|| : z,y € S(f,a, K)} and is denoted
by diameter S(f,«, K). By the depth of S(f,a, K) we shall mean
a/||f]|- Unfortunately, the depth depends not only on the point set
S(f,a,K), but also on f and «. (It may be that S(f1,a;,K) and
S(f2, a0, K) are the same set for different, indeed independent, f;
and fo.) If S(f,a,K) # K, it is reasonable to define the depth by
sup{'/||f'l| - S(f',a,K) = S(f,a, K)}. This is clearly independent
of f and a. (However, if S(f,a,K) = K this approach leads to an
infinite depth.) Our results could be modified to use such a definition,
but to avoid unnecessary complications, we do not do so.

The set K C K is said to be dentable (weak* dentable) if for every
e > 0 there is f € X* (f weak* continuous) and a > 0 such that
diameter S(f,a, K) < e. The space X is said to have the Radon-
Nikodym property (abbreviated RNP, (weak* RNP)), or is said to
be dentable (weak* dentable), if every closed (weak* closed) bounded
convex set in X is dentable (weak* dentable). We say that X is
uniformly dentable (weak* uniformly dentable) if there is a function
A(g), 0 < € < 2, such that A(e) > 0 and for every closed (weak*
closed) convex set K C B(X) and every ¢, 0 < ¢ < 2, there is a slice
of K (weak* slice of K) with depth A(e) and diameter at most €. The
function A(e) is called a modulus of dentability (modulus of weak*
dentability) for X. Note that the diameter of a slice S(f,a, K) for
which f=!(a) N K # @ is at least as great as the depth, so A(e) < e.

For z € X ~ K and K C X let k(z, K) be the closure of {\(y — z) :
y € K,\ > 0}. The set k(z, K) is called the cone of K with respect to
z. If K is convex, then so is k(z, K).

A set K C X is said to be strongly smoothable (weak* strongly
smoothable) (cf. [1]) if for every £, 0 < € < 1 there is f € S(X*)
(f weak* continuous with norm 1) and = ¢ K such that {y € B(X) :
f(y) > €} C k(z,K). Note that {y € B(X) : f(y) > ¢} = S(f,1—
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g, B(X)). If every closed (weak* closed) convex set in X with nonempty
interior is strongly smoothable (weak* strongly smoothable) we say
that X is strongly smoothable (weak* strongly smoothable). A Banach
space X is uniformly smoothable (weak* uniformly smoothable) if there
is a positive function X(g), 0 < € < 1, such that for every closed (weak*
closed) convex set K C X, K # X, with B(X) C K thereis z € X
and f € S(X™*) (f weak* continuous with norm 1) with the interior
of B(z,%(¢)) not intersecting K and S(f,1 — ¢, B(X)) C k(z, K).
Letting d(z, K) = inf{||z — y|| : y € K}, the interior of B(z,X(¢))
not intersecting K is equivalent to d(z, K) > ¥(¢g). The function X(e)
is called a modulus of smoothability (weak* modulus of smoothability)
for X.

Remark 1.1. If A(e) is a modulus of dentability for X and A’
is a function with 0 < A’(e) < A(e), 0 < € < 2, then for any
closed convex set K C B(X), S(f,A'(e),K) C S(f,A(e), K). Thus,
diameter S(f,A’(¢), K) < diameter S(f,A(e),K) < ¢, so A'(e) is
also a modulus of dentability for X. Also, if X(g) is a modulus of
smoothability for X and 0 < ¥'(g) < X(¢) for 0 < € < 1, then ¥'(¢) is
a modulus of smoothability for X.

Lemma 1.2. If X has one of the properties: uniform dentability,
weak® uniform dentability, uniform smoothability or weak™ uniform
smoothability, then any space isomorphic to X also has this property.

The following three results concern uniformly convex spaces (cf.
[2, page 145]) and uniform dentability. Similar results for uniformly
smooth spaces (cf. [2]) and uniform smoothability could be obtained.
However, since the dual of a uniformly convex space is uniformly
smooth, the duality results that we establish later would make such
results redundant. Since uniformly convex and uniformly smooth
spaces are reflexive (cf. [2]) weak* versions are irrelevant.

Lemma 1.3. Suppose that X is uniformly convex with modulus of
convezity 6(e). Then for any f, ||f|| =1, diameter S(f,d(¢), B(X)) <
€.
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Theorem 1.4. Uniformly conver Banach spaces are uniformly
dentable. Furthermore, if §(¢) is the modulus of convexity, then A(g)
can be taken to be any function with A(e) < §(e).

Proof. Let X be a uniformly convex Banach space with modulus of
convexity d(g). Let K C B = B(X) be closed and convex, r € S(X)
be arbitrary, but fixed, and Ay = sup{\ : K + Ar C B}. Note that
K + \or C B.

Let i > 0 be arbitrary. Then for some y € K, y + (Ao + p)r ¢ B.
Let z = y + Aor and choose f € S(X*) to support B(X) at z/||z||.
Consider S(f,d(¢), B) N (K + Apr). By Lemma 1.3 this has diameter
no greater than €. Now S(f,d(¢),B) N (K + Xor) = S(f,d(s) — (1 —
sup f(K+MAor)), K+Aor) and 1—sup f(K+Aor) < 1—f(2) = 1—]|z|| <
o= purl || [21] < [[orl] = po. Thus, $(F,6(2), BYWEK+Nor) 2 S(f,6(e)—
w, K+ Xor) = S(f,6(e) — p, K)+ A7 so diameter S(f,d(e) —pu, K) < e.
Since this is true for all g > 0, the continuity of f and the convexity
of K show that diameter S(f,d(g), K) < e. Thus, if A(e) < §(¢), then
diameter S(f, A(e), K) < diameter S(f,d(¢), K) < e. u]

Corollary 1.5. Super-reflexive Banach spaces are uniformly dentable.

It is natural to ask whether or not super-reflexivity is equivalent
to uniform dentability (or uniform smoothability). We are unable to
answer this question. Of course, if so, the duality results that follow
would be obvious.

Theorem 1.6. Let X be a Banach space.
(1) If X* is weak* uniformly dentable, then X* is uniformly dentable.

(2) If X* is uniformly smoothable, then X* is weak* uniformly
smoothable.

Proof. (1) Let X* have weak* modulus of dentability A(e), let
K C B(X*) be closed and convex, and let ¢, 0 < ¢ < 2, be fixed.
If K is the weak* closure of K , there is a weak™ continuous functional

fon X*, f € S(X*), such that diameter S(f,d(¢), K ) < e. Since
sup f(K”) = sup f(K), S(f,A(),K’) > S(f,A(c), k) and hence



1570 D. TINGLEY

diameter S(f,A(e),K) < e. Thus, X* is uniformly dentable with
modulus A(e).

(2) Let X* have modulus of smoothability X(g), let K C X*
be an arbitrary weak* closed convex set with B(X) C K and let
€ > 0 be given. Then there is g € S(X**) and # € X* with
S(g9,1 —€/3,B(X*)) C k(z,K) and d(z,K) > X(¢/3). Using the
separation principle, let f € S(X**) be weak* continuous and such that
inf f(K) > f(x). By (the proof of ) [1], Lemma 2.7, S(f, 1—¢, B(X™*)) C
k(z, K), showing that X* is weak* uniformly smoothable with modulus
Y(e/3). O

Before concluding this section, we introduce some notation that will
be used later. Let K C X and g ¢ K. Define

g, K)=cl{(1-A)g+Az:A>1and z € K}.

The set I(g, K) is a subset of k(g, K)+q: those points of k(g, K)+¢ that
have a point k£ € K between them and ¢q. For the sake of consistency
it would have been nice to either use I(g, K) — ¢ instead of (g, k) or
k(q, K) + q instead of k(gq, K); however, to be consistent with [1] and
to not always be writing [(q, K) + ¢, we prefer this notation.

Lemma 1.7. Let K C X be closed and convex with B(X) C K and
let ¢ K. Then

(a) l(g, K) is convex and B(X) C l(q, K).
(b) Ifz €l(q,K), then x — A\g € I(q, K) for any A > 0.
Equivalently, if x ¢ (¢, K), then x + Aq ¢ l(¢q, K) for A > 0.

(¢) If z € (k(¢, K) + q) ~ l(¢q, K), then k(z,K) = k(z,l(¢q,K)) and
d(z, K) = d(z,1(g; K)).

(To prove parts b and c, consider the two-dimensional plane contain-
ing 0, z and q.)

Section 2. In this section (in Theorem 2.2) we approximate convex
sets in uniformly dentable spaces as the closed convex hull of uniformly
“sharp” corners. By a corner of K we mean a slice of K, or we could
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just as well mean the slice intersected with the boundary of K. By
the sharpness of the corner we mean the ratio of the depth of the slice
to the diameter. We actually show more than this, as the “sharpness”
of the corners used to obtain a given closeness for the approximation
depends only on the space X (and the norm) and the radius of the set
to be approximated. Furthermore, the corners chosen are disjoint.

The closeness of the approximation will be given by the Hausdorff
metric (cf. [4]). For two sets A and K, we let H(A, K) denote the
Hausdorff distance between the sets. If A C K, the situation here,
H(A,K) < ¢ is equivalent to d(z, A) < e for all z € K.

The following lemma is a uniform version of that of Phelps ([7,
Lemma 4]).

Lemma 2.1. Let X be a uniformly dentable Banach space with
modulus of dentability A(e). Let € > 0 be given and define

5(e) = A<§<l+ §>2>

Let ¢ € S(X*), K C B(X) and a, |a| < 1 be given. Define
C={zeK:g(x)>a} Ifsupg(K) > a+e, then there is f € S(X*)
such that S(f,0(¢), K) C C and diam S(f,d(¢), K) < e.

Proof. Let t € B(X) satisfy g(t) = a. Let Ko = 1/2(K —t) and let
Cy = 1/2(0 — t). Then Kg C B(X), Cy = {l’ € Ky : g(l’) > 0}, and
sup g(Cp) = sup g(Kp) > /2. To prove the lemma, it is sufficient to
find f € S(X*) such that S(f,d(¢)/2,Ko) C Cp and has diameter at
most £/2.

Choose z € Cj such that g(z) > ¢/2. Foreachp € D (de) Kong=1(0),

define T, : X — X by Tp(y) = v — 2(9(y)/9(2))(z — p). (Ip is
reflection along z — p through the hyperplane g~1(0).) Then ||T,|| <
1+ (2/g9(2)llz = pll < 1+4/e, T;' = T, Tpz = 2p — 2, and for each
peD,p==z/2+T,(2)/2.

Let C1 = €6(UpepT,(Co) U Cp), where ¢6 means the closed convex
hull. Suppose that € UpepTp(Cy) U Cy. Then, either x = T,(y) for
some p € D and y € Cy, or x € Cy. If z € Cy, then ||z|| < 1, since
Co C B(X). If z = T,(y), then ||z]| < ||Tp||||lyl| £ 1 + 4/e. Thus,
Cy C (1+4/e)B(X).
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Since X is uniformly dentable, with modulus A(g), there is a slice
S(f1,6(g),C1/(1 + (4/¢))) of diameter at most e(1 + 4/¢)2/2, where
fie€ S(X*)

Letting p = (1 + 4/¢)d(e) it follows that diameter S(f1,p,C1)
(€/2)(1 4 4/¢). Choose y € UpepT,(Co) U Cy such that sup f1(C1)
fily) + p/2.

Case 1. y € Cy. Let f = f;. It is straightforward to show that
S(f,u,C1) D S(f,1/2,Cp). We wish to show that S(f, /2, Ky) =
S(f,1/2,Cp). If not, there is x € Ky ~ Cy (so g(z) < 0) with
f(z) > sup f(Cy) — p/2. There is also w € Cy (so g(w) > 0) with
f(w) > sup f(Co) — u/2. Thus, there is ¢, between z and w, with

<
<

g€ DNS(f,1/2,Co) C S(f,p,Cr).

However, ¢ = 2/2 4 T,(z)/2 so, since both z and Tj,(z) are in Ci,
either z or T,(z) is in S(f,u,Cy). Now ||z —q|| > |g(z — q)] > €/2
and ||T,(2) — q|| = |/2¢ — z — ¢|| > €/2 so either of g or T;(z) being in
S(f,u,C1) contradicts diameter S(f,u,C1) < e(1+4/e)71/2 < g/2.
Thus, S(f,n/2,Ko) = S(f,1/2,Co). Noting that §(¢) < p and
e(1+4/e)"1/2 < /2, the lemma is complete.

Case II. y ¢ Cy. Then y € T,(Cy) for some p € D and as above,
S(f1,,C1) D S(f1,1/2,T,(Co)) so the latter slice has diameter at
most (1+4/e)71/2. Asin Case I (for T),(Cy) and T, (Kp) rather that Cy
and Kj) it can be shown that S(f1, /2, T,(Co)) = S(f1,1/2, Tp(Ky)).
Thus, by [7, Lemma 3],

S<T;f1,%,Ko> =Tp1<5(f1,§,Tp(Ko)>> = S<T;f1,g,00> c Co

and has diameter at most ||T, || diameter S(f1,u/2,T,(Co)) since
T,' =T, and ||T)]| <1 +4/€, diameter S(T}; f1, /2, Ko) < €/2. Let
f=(T; f1/IIT; f1l])- Then, since ||T;|| <1+ 4/e,

ep M _ p 5(¢)
S<Tpf17§7K0> —S<f,m,K0> 35<faTaK0>-

Thus, S(f,d(¢)/2, Ky) C Cy and has diameter at most £/2, completing
the lemma. u]
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Theorem 2.2. Let X be a uniformly dentable Banach space. Given
e > 0, there is §(e) > 0 such that for every closed convez set K C B(X)
there are functionals {fo} C S(X*) such that the slices S(fu,d(e), K)
are pairwise disjoint and

H(@o(US(fard(e), K))) < e.

Proof. Let 6(¢) be defined from a modulus of dentability for X as
in Lemma 2.1. We now fix ¢, let § = d(¢) and fix a closed convex set
K C B(X). Consider the collection F of all sets F C S(X*) such that
{S(h,é(¢),K) : h € F} are pairwise disjoint and each has diameter at
most €. Order the collection F by inclusion. It is easily seen that UF,
is an upperbound for any chain {F,} in F. Thus, by Zorn’s lemma,
there is a maximal member F' € F. Let K’ = ¢6(UperS(h,d, K)) and
suppose that H(K',K) > e. Then there is x € K with d(z,K') > ¢
and so there is g € S(X*) that strictly separates B(z,e) and K'. We
may assume that sup g(K') < inf g(B(z,¢)). If a is between sup g(K"')
and inf g(B(z,¢€)), then |a| < 1 and sup g(K) > g(x) > a+e¢. Thus, we
may apply Lemma 2.1 to find f € S(X*) such that S(f,d,K) C {z €
K : g(z) > a} and hence S(f,d, K) is disjoint from S(h,d, K) for any
h € F. Then FU{h} is in F, contradicting the maximality of F.

Section 3. In this section we prove that if X is uniformly dentable,
then X* is weak* uniformly smoothable. To prove that if X* is weak*
uniformly dentable, then X is uniformly smoothable is similar, so the
proof will be omitted.

The following lemma is one of the crucial steps in our argument.
Notice that it, as well as results 3.2 and 3.3, do not involve any notion
of dentability or smoothability, but simply concern certain sets and
their duals.

Lemma 3.1. Let K C X be a closed convex nonempty set and let
f € X* satisfy sup f(K) > 1. Then I(f,K°) = S(f,sup f(K) —1,K)°.

Proof. Let L = I(f,K°), S = S(f,sup f(K)—1, K) and suppose that
g€ L. Then g = (1—\)f + Ah for some A > 1 and h € K. Let x € S.
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Then f(z) > 1 and h(z) < 1. Thus, since 1 — X <0,
g@) =1 -=Nf(z)+ M (z) <1-A4+A=1

showing that g € S° and, since g € L was arbitrary, that L C S°.

Now suppose that g € S°. To show that g € L, we need to show that
for some h € K® and A > 1, g = (1 — A)f + Ah. This is equivalent to
showing that for some o, 0 < a < 1, ag+ (1 —a)f € K°, which is how
we proceed. Note that K° C L.

The first case we consider is that of g = cf for some c. If ¢ > 0, we
have sup g(K) = csup f(K) = csup f(S) =supg(S) <1,s0 g€ K° C
Landifc<0,then1/(1—c) <1land (1/(1—¢))g+(1—-1/(1—¢))f =
0 € K% so once more g € L.

We now assume that f and g are independent and g ¢ K°. Let
Y =f11)ng 1) Ifz € K either f(z) <1 (z ¢ S) or g(z) <1
(if z € S). Thus, it follows that ¥ does not intersect the interior of
K. A consequence of the Hahn Banach Theorem, ([2, Theorem I, 6.2]),
shows that there is a functional h € K° such that Y C h='(1).

Fix yg € Y. Since the kernels of f,g, and h all contain Y — yp, a
subspace of X having codimension 2, and since f and g are independent,
it follows that h = ag + (1 — a)f for some a € R. Choosing s € S
with f(s) > 1 and noting that g(s) and h(s) are at most 1, we see that
a > 0. Since g € SO\K?, there is € K with g(z) > 1 and f(z) < 1
from which it follows that @ < 1. Hence g € L, completing the proof.
]

Corollary 3.2. With f and K as in Lemma 3.1

k(f, K°) = k(f,S(f,sup f(K) — 1, K)°).

Lemma 3.3 relates the size of a slice from a set K to the smoothness
of K©.

Lemma 3.3. Suppose that @ # K C B(X) and f € X* are such that
sup f(K) > 1 and diameter S(f,u, K) < € where p = sup f(K) — 1.
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Then ||f — hl| > u for all h € S(f,u, K)° D K°. Also, for any
z € S(f,nK),

S(=a, llzll = (e + ), B(X™)) C k(f, K°).

Proof. The proof of the first part is straightforward. Thus, fix
z €S =5(f,uK)and let h € S(—=z,||z|| — (¢ + n), B(X*)). Then
h(z) < —(e + p). For any y € S,

(f +h)(y) = f(y) + h(z) + h(y — 2)
<14p—(e+p)+|ly—z
<1

Thus, f +h € S°so h € S° — f C k(f,5°) = k(f, K°) by Corollary
3.2, completing the lemma. ]

Lemma 3.4. Let X be a uniformly dentable Banach space with
modulus of dentability A(e), and let §(e) be defined as in Lemma 2.1.
Let K C B(X) be closed and convex with sup ||K|| = 1. Then, given ¢,
0 <e<1/3, there is f € S(X*) such that sup f(K) > (6(g)/e)(1 - 3e),
diameter S(f,d(¢), K) < e and inf||S(f,0(¢), K)|| > 1 — 3e.

Proof. Let § = §(¢) and A = ¢o(K U—K). By Theorem 2.2 there are
functionals {f,} C S(X*) such that H(co(US(fx,0,4)),A) < ¢ and
diameter S(fy,d, A) < ¢ for each a. If S(f,,9,A) C (1 —2¢)B for all
then To(US(fu,d,A) C (1 —2¢)B and so A C (1 — £)B, contradicting
sup ||K|| = 1. Thus, choose a such that sup ||S(fa,d, A)|| > 1 —2¢ and
let S =S5(fu,9,A).

Now diameter S < ¢, so clearly inf ||S|| > 1 — 3¢. Since ¢ < 1/3, this
shows that 0 ¢ S and since 0 € A, it follows that sup fo(A) > § and
hence fo(x) > 0 for all  in S.

Let x € S be arbitrary. Since 0 € A convexity shows that
((sup fo(A) — 6)/fa(z)) - € S. Thus, as diameter S < ¢,

- (=pmtaet),

_ sup fa(A) =46
fa(z)

sZHx - T
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Since this is true for all € S, inf||S|| > 1 — 3¢, and sup f(4) =
sup f(S), then € > (§/ sup fo(A))(1—3e), so sup fo(A) > (6/e)(1-3¢).

Now sup f(A) is the same as either sup f(K) or sup fo(—K). Let
f = fq for the former case and f = —f, for the latter. Then either
S DS(f,0,K)or —S D S(f,d,K) and the lemma follows easily. O

Lemma 3.5. Let X be uniformly dentable. Then for everye, 0 < e <
1, there is 3() > 0 such that if K is closed and convex, @ # K C B(X)
and K # {0}, then there is f € X* such that d(f, K°) > %(¢) and for
each z € S(f,¥(¢),K), S(—z,1 — &, B(X*)) C k(f, KY).

Proof. Define X(¢) = 6(¢/7) where § is as in Lemma 2.1. Fix e > 0
and let A = sup ||K||. Note that 0 < A < 1.

Lemma 3.4 shows that there is an f; € S(X*) such that diame-
ter S(f1,2(e), K/A) < €/7, sup f1(K/X\) > 7(2(e)/e)(1 — 3¢/7) and
inf ||S(f1,2(e), K/N)|| > 1 —3¢/7.

Define fo = fi/(sup f1(K/A) = X(e)). Then S(f1,%(e), K/A) =
S(f2,sup fo(K/A) — 1,K/\) so Lemma 3.3 shows that ||fo — h|| >
sup f2(K/A)—1 > X(¢) forall h € (K/X)° = AK". Thus, d(f2/\, K°) >
Y(g)/A. Since 0 < A < 1, letting f = fa2/A gives d(f, K°) > (¢).

Lemma 3.3 also shows that, for any « € S(f1,X(¢e), K/X), S(—=, ||z||—-
(/7 + sup fo(K/N) — 1), B(X*)) C (f2sAK®) = K(M,AK?) =
k(f, K°).

Now
K sup f1(£)
S“pf2<i> A -
_ 2(e)
~ sup f1(§) —X(e)
g 2(e)
(- ) - 2()
g g
7 4 °3

since 0 < e < 1.
Thus S(—=,||z|| — /3 — /7, B(X*)) C k(f, K°).
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Since inf|[S(f1,X(e), K/A)|| > 1 — 3¢/7, it follows that
S(—z,1—¢, B(X*)) C S(—=z,1— (19/21)e, B(X*)) C k(f, K°)
for all x € S(f1,2(e), K/\), completing the lemma. O

Theorem 3.6. If X is uniformly dentable, then X* is weak"
uniformly smoothable.

Proof. Every weak® closed convex set K C X* with B(X*) C K
satisfies (K)? = K (where K is the prepolar of K) so the proposition
follows directly from Lemma 3.5. (The modulus of smoothability can
be taken to be any function strictly less than the function ¥(e) given
by Lemma 3.5.) o

Theorem 3.7. If X* is weak® uniformly dentable, then X is
uniformly smoothable.

The proof of this follows exactly the same course as the proof of
Theorem 3.6; hence, we do not repeat it. More precisely, weak* and
prepolar versions of Results 2.1, 2.2 and 3.1-3.6 are needed.

Section 4. In this section we show that if X is uniformly smoothable
(X* is weak® uniformly smoothable) then X* is weak® uniformly
dentable (X is uniformly dentable). In the course of doing this,
we establish an approximation to closed convex bodies in uniformly
smoothable spaces (Theorem 4.10).

The section proceeds by first introducing some notation, then pre-
senting a series of technical lemmas that lead up to the main results.
Much of the argument is, in some sense, dual to Sections 2 and 3.

Let X be a Banach space, and let ¢ € X and 0 < r < ||g|| be given.
Let Q = k(0,B(q,7)). Note that Q° = {f € X* : sup f(Q) = 0}. For
h € Q°, define T, : X — X by Th(z) = z — (2h(z)/kh(q)) - q- (Th is
reflection along ¢ through h=1(0).) It is easy to verify that T}, = T}, *
and that [|Th|| < M where M = 1+ 2(||g||/r). Since T}, = T} ',
1/M < ||T0]] < M and 1/M < ||T3]| < M.
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Let © € X ~ @ be fixed, but arbitrary, and let = be the plane
spanned by x and ¢. Then @ N7 is bounded by two rays. At least one
of these rays, call it R, is in the same half plane determined by the line
through ¢ and the origin as z. If ||z|| = 1, by the separation theorem,
let h, € Q° satisfy hy(R) = 0. For z = Ay, A > 0 and |[y|| = 1, let
hy = hy. Thus, h, is defined for all x € X ~ @ in such a way that
hxz = hy for A > 0, h, separates @ and z, and h,(R) = 0. Note that
Ty (z)eQforallz € X ~ Q.

It is not hard to see that {T(z) : h € Q°} is a closed segment
parallel to the vector ¢, and that the endpoint of this segment, at the
end pointing in the same direction as g, is Tj_ (z). (If  lies on the line
through ¢ and 0, the segment is the single point —z.)

Lemma 4.1. Let q,7 and Q be as above and let K be closed and
convex with 0 € K and q ¢ K. Let L =1(q,K). If x € X ~ Q satisfies
either x ¢ L or Ty,(z) ¢ L for some h € Q°, then T, (x) ¢ L.

Proof. If x ¢ L, since Ty (z) = z — 2h,(z)q/hz(q) and h,(x)/h;(q)
< 0, then T}, (x) ¢ L follows from Lemma 1.7(b). If Tj,(x) ¢ L, h € Q°,
then from the above discussion, Ty, (z) = Th(x) + Ag, A > 0, so Lemma
1.7(b) once more shows that T}, (z) ¢ L. O

Lemma 4.2. Let K be closed and convex with B C K C X. Suppose
that ¢ and r are such that d(q,K) > r. Define Q, Th, h, and M
as above. Let L = l(q,K) and define Ly = NpegoTh(L) N L. Then
Ly c M(llg/|+7)B.

Proof. Let x € Ly. If z € Q, then x € LN Q, so ||z|| < ||q|| + .
If « ¢ Q, then T}, () € Q. Since # € Ly, © € Tp, (L) and hence
Ty, () € L. Thus, T (z) € LN Q, and so ||T, (x)|| < ||g|| + . Since
||Th;1|\ < M, ||z|| < M(||g]| + r). Noting that M > 1, the lemma is
complete. u]

Remark . The set L, is to play a role similar to that of the set C; in
Lemma 2.1.
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Lemma 4.3. Let K be closed and conver with B(X) C K C X. Let
qg ¢ K and r > 0 be given with r < ||q||. Let Q = k(0,B(q,7)). If
z € Q and [[z]| < (llgll = 7)/(1+ ), then z € k(g, K) +q.

Proof. 1t is easy to see that @ = k(0,B(qg/(1+ r),r/(1+7))) so
z = Ay for some y € B(q/(1 + r),r/(1 +r)) and A > 0. Since
|lz|l < (lgll =r)/(1+7), 0 <X < 1. Now k(q,K) +q D k(q, B) + ¢ =
k(q,B((g/1 + 7),r/(1 + 1)) +q D B(¢/(1 +r),r/(1 + r)). Thus,
y € k(q,K) + g and since 0 € k(q,K) + ¢, convexity shows that
=My €k(q,K)+q.

Lemma 4.4. Let K C X be closed and convex with B(X) C K. If
0 < A <1 and Az is not in the interior of K, d(z,K) > (1 — X\)/\. If
Az ¢ K, then d(z, K) > (1 — \)/A.

Lemma 4.5. Let R > 1 be given, and let o be the positive
solution to (1 +x)> +x = R. Let K C X be closed and convez
with inf|| ~ K|| = 1. Then there is u €~ K such that d(u, K) > «,
1+ a <|jul| < (1+a)? and if Q@ = k(0, B(u,a)) and = € Q satisfies
||z|| > R, then d(z,K) > (||z||/R) — 1.

Notation. The following notation will be used for the remainder of
this section. Let a be the positive solution to (1 + z)? + z = 1.25,
r=2a/((1+a)? —3a) =2a/(1.25 — 4a), B = 2(1 + a)?/(1 — 2a) and
M=1+28/r (a = .081,r ~ .175,8 ~ 2.79, M ~ 32.8).

We will be working in a uniformly smoothable Banach space, with
modulus of smoothability (). Thus, for 0 < € < 1, define

(572)
20 (M(B+7)+ Z(f))

0'1(5) =

and o(¢) = min{oi(g),.2}. (Notice that X(e/M?) is defined for
0<e<1ando(e) < X(e/M?)).

Lemma 4.6. Let K C X satisfy inf|| ~ K|| = 1. Then there is
g €~ K with ||q|| < 8 and d(q, K) > r such that if Q@ = k(0,B(g,7))
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and © € Q has ||z|| < 2 then z € k(q,K) + q. Furthermore, for any
z € Q with ||z|| > 1.5, d(z, K) > .2.

Proof. By Lemma 4.5 (with R = 1.25) there is u €~ K such that
du,K) > a, 1 + a < |[u]]| < (1 + a)? and if Q1 = k(0, B(u,)) and
x € @ satisfies ||z|| > 1.25, then d(z, K) > (||z||/1.25) — 1. Thus, if
[|z|| > 1.5, then d(z, K) > .2.

Let A = 2/(||u|| — 3a) and ¢ = Au. Then ||¢|| < B and since X > 1
(indeed A > 2) and 0 € K,

d(q, K) > d(q,A\K) = Md(u, K) > Aa > r.

Now Q; = k(0, B(g, Aa)) so Lemma 4.3 shows that if z € Q; satisfies
[lz]| < (]lg]] — Aa)/(1 + Aa) = 2, then z € k(q, K) + g. Since Q C @1,
the lemma is complete. O

The following lemma contains the crucial steps in proving the main
results in this section—Theorems 4.9 and 4.12. The proof is somewhat
dual to Lemma 2.1, and the result is similar in that it gives us some
control over where K is smoothable. Lemma 4.11 is another such result.

Lemma 4.7. Let X be a uniformly smoothable Banach space with
modulus X(g). Define o(g) as in the notation before Lemma 4.6. Then,
for every closed convex set K with inf|| ~ K|| = 1 and for every
e, 0 < e <1, thereis p ¢ K and f € S(X*) with |p|]|] < 2,
o(e) <d(p,K) < 20(e), and S(f,1 —¢,B) D k(p, K).

Proof. Let a,r,3,M, o1, as well as o be defined as in the notation
before Lemma 4.6. Let g and @ be as in Lemma 4.6 and define
L = Il(q,K). Let T} and h, be defined as in the discussion at the
beginning of this section (using the above ¢ and 7). Let ¢,0 < € < 1,
be fixed but arbitrary. We caution the reader that, since T}, = 1}, LT,
appears where one might expect T}~ L

As in Lemma 4.2, define L1 = NpegoTx(L) N L. Since HTh_IH < M,
(1/M)B C Ty(B) for all h € Q°, and hence (1/M)B C L;. Since
X is uniformly smoothable with modulus X(¢), there is y; € X and
g € S(X*) such that d(y;, ML) > %(e/M?) and S(g,1—(¢/M?), B) C
k(y1, MLy). (Since M > 1, %(e/M?) is defined.)
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Letting yo = (y1/M) it is not hard to show that k(y;, ML;) =
k(y2,L1) and d(y2,L1) > X(¢/M?)/M. Now, since 0 € Ly, there is
v, 0 < 4 < 1, such that if y = yys, then d(y,L;) = Z(¢/M?)/M.
Note that k(y, L1) D k(y2,L1) D S(g,1 — (¢/M?), B). Furthermore,
Iyl > 1/M + X(e/M?) /M.

Let A =1— X(e/M?%)/(2M]|y||)- Then 0 < A < 1 and ||y — \y|| =
Y(e/M?)/2M < d(y,L1) so Ay ¢ L;. We now have two cases to
consider: that of Ay € @ and that of Ay ¢ Q. If Ay € Q, it follows that
Ay ¢ L, for otherwise Lemma 1.7 (b) would show that T, (\y) € L for
all h € Q°, so for h € Q° \y = T}, Ti,(\y) € Tr(L) and hence Ay would
be in L;. We will not pursue this case further as from this point it is
similar to the case Ay ¢ Q. (Simply use I instead of T" below. The
inequalities will not be sharp but will be satisfied.)

Suppose that Ay ¢ Q. Since Ay ¢ L;, Lemma 4.1 shows that
Th,(Ay) ¢ L. (Recall that, by definition, hy = hy,.) Let T =
Th,. Lemma 4.4 shows that d(T'(y),L) > (1 - A)/A > 1 - X =
Y(e/M?)/(2M]||y||). Lemma 4.2 shows that L; C M(||q|| + r)B so,
since d(y, L) = X(e/M?)/M, ||y|| < M(8 +r) + %(¢/M?)/M, hence
d(T(y), L) > o1(e).

Let p1 = T(y) and f = T*g/[[T"g||. Since ||g|| =1, [[T"g|| = 1/M
and since y ¢ @, T(y) = p1 € Q (cf. the discussion at the beginning of
this section). Now

g
S<ga]- - W’B> C k(yaLl)

SO

Also,
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D{me%B:f(x)>M}

= %S(f,l —¢,B).

Thus, S(f,1—¢,B) C Mk(p1,L) = k(p1,L). Define

! if [|pa|| < 1.75
p2= 1.75% otherwise.

Note that p; € Q and k(p1,L) C k(p2,L). Lemma 4.6 shows that
p2 € k(g,K) + ¢, hence Lemma 1.7 (c) shows that S(f,1 —¢,B) C
k(ps2, L) = k(p2, L) = k(p2, K). Now

d(pr, L) if [|p|| < 1.75
d(p2, L) = d<1'75p_1|’ L> otherwise.

[lp1

However, Lemma 4.6 shows that d(1.75(p1/||p1]|),L) > .2. Since
d(p1,L) > o1(¢), it follows that

d(p2, L) > min{oy (), .2} = o(e).

Lemma 1.7 (c) shows that d(p2, K) = d(p2,L) > o(g). For any A,
0 < XA <1, such that A\ps ¢ K, k(Ap2, K) D k(p2, K) D S(f,1 —¢,B).
Thus, letting p = Aps, for a suitable choice of A, will give o(g) <
d(p, L) < 20(e), llpll < llp2|l < 1.75 <2, and 5(f,1 — ¢, B) C k(p, K).
O

Lemma 4.8. Let K C X, f € X* and p > 0 be given. Suppose
that 0 < X\ < 1 and diameter S(f,u,(1/A\)K) < €. Then diameter
S(faﬂv K) <e.

Proof. Let m > 0 be arbitrary, but fixed. Let xz,y € S(f,pu —
(1/m),K) be arbitrary. Choose z € (1/A)K such that f(z) >
(1/N)sup f(K)—(1/m) andlet ' =z+(1—N)zand ¢ = y+ (1 —N)z.
Then 2z’ and y' are in S(f,u, (1/AN)K) so ||2' — || < e. How-
ever, ||’ — ¢'|| = ||z — yl|| so ||z — y|| < e. Hence, diameter



UNIFORM DENTABILITY AND SMOOTHABILITY 1583

S(f,u— (1/m),K) < e. Since this is true for all m > 0, diameter
S(f,u, K) <e. m

We are now prepared for the main results of this section.

Theorem 4.9. If X is uniformly smoothable, then X* is weak*
uniformly dentable.

Proof. Suppose that X has modulus of uniform smoothability ¥(e),
0 < € < 1. Define ¥'(¢) = min{X(¢), Me}. Then ¥'(¢) < X(e),
so it too is a modulus of smoothability for X. Define o(e) as in
the notation before Lemma 4.6, using ¥'(¢) rather than ¥(e). Then
ole) <X'(e/M) <e.

Let K C B(X™*) be weak* closed and convex. We first consider the
case that sup || K|| = 1.

Fix €, 0 < &€ < 1. Let A be the convex hull of K U (—K) and note
that A is weak® closed. Then A C B(X*), (40)° = 4, 4y D B(X),
sup ||4|| = 1, and inf|| ~ Ay|| = 1. Lemma 4.7 shows that there is
p € X ~ Apand f € S(X*) with ||p|]| < 2, o(e) < d(p,4y) < 20(e),
and S(f7 1- EvB(X)) - k(pa AO)

Since d(p, Ag) > o(g), there is a g € X* that strictly separates
B(p,0(e)) and Ap. Since 0 € Ay, it may be assumed that sup g(4p) <
1 < infg(B(p,0(e))) so g € (4o)" = A.

Consider S = {h € X* : suph(4p) <1 < h(p)} = S(p,supp(4) —
1,A). Then g € S and supp(A) —1 > p(g) =1 > 1+ ||g|lo(e) = 1 =
llg|lo(e). Now ||p|| < 2 and g(p) > 1 so |lg|| > 1/2. Hence,
supp(A)—1 > o(e)/2. The depth of the slice S is (1/||p||)(supp(4)—1),
which is more than o(¢)/4.

Next we wish to find an upperbound for the diameter of S. Since
S((f/e),(1/e)—1,B) = S(f,1—¢,B) C k(p, Ap) and ||f|| = 1, Lemma
3.1 shows that k(p, 40)° C I((f/e), B(X*)). Also, [1, Lemma 2.4]
shows that k(0,5) = k(p, 40)?, so S C k(0,S) C I((f/e), B(X*)) C
k((f/e), B(X*)) + (f/e) = k(f,eB(X*)) + (f/¢). From k(0,5) C
k(f,eB(X*))+(f/¢), it follows that z —(f/Ae) € (1/N)k(f,eB(X*)) =
k(f,eB(X*)) for all A > 0 and z € S. Letting A\ — oo shows that
z € k(f,eB(X*)) and hence S C k(f,eB(X™)).
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Lemma 2.6 of [1] shows that
diameter S < 8¢||p|| + 2(supp(A) — 1) < 16e + 2(supp(A) — 1).

Since d(p, Ag) < 20(¢), there is ¢ € Ay with ||g — p|| < 20(¢). Thus,
since A C B(X"), supp(A) < sup(p — q)A+supg(4) <|jp gl + 1.
Thus, supp(A)—1 < 20(e). Hence, diameter S < 16e+40(¢). Recalling
from the beginning of this proof that o(¢) < e, we have diameter
S < 20e.

Now A is the convex hull of K U (—K). Thus, supp(A) is either
supp(K) or supp(—K). Assume the former, the latter case being
similar.  (Simply replace p by —p.) Since supp(K) = supp(4),
S(p,sup p(K) —1, K) has the same depth as S—more than o(g)/4 and,
since K C A, diameter S(p,supp(K) — 1, K) < diameter S < 20¢.

Define A(e) = (1/4)0o(e/20). Then it follows from the above that for
every set K C B(X*) with sup||~K]|| = 1, and every &, 0 < £ < 2,
there is p € S(X) (obtained by normalizing the above choice for p)
such that diameter S(p, A(e), K) <e.

To complete the theorem, we need to consider the case that sup || K| <
1. Let £, 0 < € < 2 be given and let A = sup ||K||. Then, by the above,
there is p € S(X) such that diameter S(p,A(e),(1/A)K) < e and
Lemma 4.8 shows then that diamter S(p, A(e), K) < e. O

Theorem 4.10. If X* is weak* uniformly smoothable, then X is
uniformly dentable.

Proof. The proof of this is much the same as the proof of Theorem
4.9, so it shall not be repeated, but we shall comment on the one
major change that is necessary. In the introduction to this section, the
transformations T}, are defined for h € Q°. To prove Theorem 4.10 we
would, of course, use only those h in @, the prepolar of @. The set Q
is k£(0, B(g, 7)) for some ¢ € X, 0 < r < ||g||, and this is a weak* closed
set. For z ¢ @, we considered the plane 7 spanned by ¢ and = and let R
be a ray bounding ) N7 that is in the same half plane of 7 determined
by g and the origin as . Then h, was defined to be a function in Q°
such that h;(R) = 0. Unfortunately, we cannot necessarily choose h,
to be in Q.
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The properties of h, that are needed for Theorem 4.9 appear only
in Lemmas 4.1, 4.2 and Proposition 4.7. The functional h, is such
that T} (z) € Q and for K a closed convex set with B(X) C K,
q¢ K and L =1(q,K), if z ¢ L or Ty(z) ¢ L for some h € Q°, then
Ty, (xz) ¢ L. It was not necessary that h, be chosen independent of
K. Using the separation principle it is possible to choose h, € Q¢ with
these properties, although the choice may depend on the set K. ]

Lemma 4.11. Let X be uniformly smoothable with modulus X(¢)
and let K C X satisfy BC K. Letq ¢ K ande >0, 0 < e < 1, satisfy
d(q,K) > € (or equivalently B(q,e) N K = &). Then there isp ¢ K
and f € S(X*) such that (¢/4)o(e) < d(p, K) < (1/2)0(e) (where o(¢)
is defined in the notation before Lemma 4.6), S(f,1 —¢,B) C k(p, K)
and B(q,g) ¢ k(p',K) +p' for any p’' € X ~ K with ||p — p'|| < (¢/2).

Proof. Let A =sup{\ € (0,1) : B(XNgq, (1/4)(1— XN +¢&)X)) C K} and
let s = (1/4)(1 — A+ ¢€X). Note that 0 < A < 1, /4 < s < 1/4 and,
since K is closed, B(\Ag, s) C K. By the choice of A, B(\q,s') ¢ K for
s’ > s. Hence, inf|| ~ ((1/5)(K — Aq))|| = 1. Applying Lemma 4.7 to
the set (1/3)(K — Aq) shows that there is p ¢ K and f € S(X*) with
[lp—Agl| < 2s, (¢/4)o(e) < so(e) < d(p, K) < 2s0(e) < (1/2)o(e), and
8(f71 _EvB) - k(paK)

Now p = A((¢/4s)(p—Aq) +q) + (1= A)(p— Aq) /4s, (¢/4s)(p— Aq) +4q
is in the interior of B(q,&/2), and (p — Aq)/4s is in the interior of B/2.
Thus, p is in the interior of AB(g,&/2) + (1 — \)(B/2) = B(Aqg, 2s).
Suppose that p" € X ~ K has ||p’ — p|| < &/2 < 2s. Then p' is in the
interior of B(\g,4s). If B(q,e) C k(p', K)+p’, then, since k(p’, K)+p’
is convex, B C K C k(p', K) +p' and AB(q,¢) + (1 — A\)B = B(\qg, 4s),
p’ would be an interior point of k(p’, K) + p’, a contradiction. O

The following theorem is the second approximation to convex sets
that was promised (Theorem 2.2 being the first).

Theorem 4.12. Let X be a uniformly smoothable Banach space with
modulus X(g) and define o(e) as earlier. Let e, 0 < ¢ < 1, be given.
Then for every closed convezx set K C X, with B C K there are pairs
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(pi, fi), pi € X ~ K, f; € S(X*) and i in an index set I such that

1
Za(g) < d(pi, K) < 50(0),
g

for alli,j € I and (N;(k(p;, K) + pi)) ~ K contains no balls of radius
€.

Proof. Consider the collection F of all sets F = {(p; fi) :
i in an index set} where (¢/4)0(¢) < d(pi, K) < (1/2)o(¢), ||lpi —pjl| >
e/2 (i # j) and S(f;,1 —¢,K) C k(p;, K), ordered by inclusion. The
union of any chain is easily seen to be an upper bound for that chain
so, by Zorn’s lemma, let F' be a maximal element for 7. We claim
that the pairs (p;, f;) € F are as desired. It remains only to show that
(Np,erk(pi, K) + p;) ~ K contains no balls of radius e.

To do this, suppose that B(q,e) C (Nk(p;, K)+ p;) ~ K. By Lemma
4.11, there are p € X and f € S(X*) with (¢/4)o(e) < d(p, K) <
(1/2)0(c), S(,1 - &, K) C k(p, K) and Blg,e) ¢ (o', ) +p' for any
p’ with ||p — p'|| < (¢/2). But then F U {p} isin F and F U {p} > F,
so this contradicts the maximality of F'. o

Corollary 4.13. With K and (p;, fi), © € I as above, Nl(p;, K) ~ K
contains no balls of radius €.

Proof. This follows immediately since

KCl(pz,K)Ck(pz,K)-f-pz ]
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