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QUASILINEAR ELLIPTICITY
AND JUMPING NONLINEARITIES

LEW E. LEFTON AND VICTOR L. SHAPIRO

ABSTRACT. Let Q C R¥ be a bounded domain with
smooth boundary. Also let

Qu = —D;(a(z,u, Du)Dju) + b(z, u, Du)u.

Under five assumptions on the coefficients of @ (Caratheodory,
symmetry, growth, ellipticity, and monotonicity) existence
and nonexistence results for weak solutions to the generalized
Dirichlet problem

Qu(z) = f(z,u) + t®(x) + h(z) for z € Q;
u(z) =0 for z € 0N

are established subject to jumping nonlinearity assumptions
on f(z,u) where t € R, h € L®(Q), and ® € L>®(Q) is
positive a.e. on .

1. Introduction and statement of result. This paper will
demonstrate some existence and nonexistence results for a quasilinear
Dirichlet problem under Ambrosetti-Prodi, Berger-Podolak, Kazdan-
Warner type assumptions (see [1, 2 and 6 Theorems 3.4-3.8]). Let (2
be a bounded domain in R" with smooth boundary denoted by 0.
Unless otherwise noted, all function spaces such as L%, W12, and H}
will have domain 2. We define the quasilinear operator

Qu = —D;(a" (-,u, Du)Dju) + b(+, u, Du)u

and study the existence and nonexistence of weak solutions to the
generalized Dirichlet problem

(Qu)(z) = f(z,u(z)) +t2(x) + h(z), z €Q

(1-1) u(z) =0, x € 0N.
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(Note. The summation convention is employed in the definition of @
and the sequel.) We make the following assumptions.

(Q1) The coefficients of Q; a®, i,j = 1,... ,N; and b are defined for
(z,2,p) € 2 x R x RN and satisfy the usual Caratheodory conditions
of measurability and continuity. (That is, they are measurable in  for
all (z,p) € R x RN and continuous on R x R¥ for a.e. = € Q.)

(Q2) a¥(z,z,p) = a’(z,z,p) for i,5 = 1,2,... ,N; for all (z,p) €
R x RY; and for a.e. z € Q.

(Q3) The functions a¥(z, z,p) and b(z, z,p) are in L= (Q x R x RY).

(Q4) There are positive constants aj,as such that 0 < a;|¢]? <
a'(z,2z,p)&;& < aslé]? holds for a.e. z € Q, for all (2,p) € R x RV,

and for all ¢ € RY; thus Q is uniformly elliptic. (Note. |€]* = SN | €2.)

(Q5) [a(z,z,p)p; — a" (x,2,p')p}l(pi — pi) > 0 for a.e. z € Q, for
all z € R, and for all p,p’ € RN with p # p'.

Definition 1.1. A function u € Hj will be called a weak solution of
(1.1;) if the form defined on H} x H}! x H} by

q(w,u,v):/aij(-,w,Dw)DjuDiv—i—b(-,w,Dw)uv
Q

satisfies q(u,u,v) = [, [f(-,u) + t® + h]v, for all v € Hy.

In order to formulate the hypotheses on the right hand side of
(1.1;), we first consider a related linear elliptic problem. Define
H' = {ve W2 :v=u+ M for some u € H} and M € R}. Observe
H} C H' ¢ L?. To each v € H' we associate the linear, self-adjoint
elliptic operator

Q"u = —D;(a" (-,v, Dv)D;u) + b(-, v, Dv)u.

Let A1 (v) and ¢¥ be the first eigenvalue and eigenfunction, respectively,
corresponding to the Dirichlet problem for Qv i.e.,

(1.2) Q"¢Y = Mi(v)¢] and ¢y € Hy.

It is well known [5, p. 214] that ¢} can be chosen so that it is positive
on Q and satisfies ||¢%]|2, = 1. We let

Ay =inf{\(v):v € H'} and Ay =sup{\(v):ve HY,
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and observe that —oo < A; < Ay < co. Indeed, from the variational
characterization of A;(v), hypotheses (Q3) and (Q4) and the Poincaré
inequality, k1 ||u||z2 < ||Dul|z2, we obtain for all v € H!

M) = inf % > inf a1'| ‘ﬁ”“ bl
wEH} u u
(13) u€;£00 L2 ue;éOO

> a1ki = [[bl[ec > —00

and
A1(v) = inf alv,u, u) < mf a2|| ullz + [|b]|co = k2 < 0.
wemy |[ull [lull72
u#0 u;éO

Now we assume the following about the right hand side of (1.1;).
(f1) f(z,2) € C°(Q x R).

(f2) lim, 4o (f(z,2)/2) exists uniformly for z € Q. We denote
these uniform limits by f'(z,+00), respectively. Also, there are real
constants denoted f’(d00) such that

—o0 < fl(xa_oo) S fl(_oo) < Al S A2 < f’(+00) S f,(wa +OO) < +oo

holds for all z € Q.

(R) t e R, h € L™, and & € L*> where ® has the additional property
that & > 0 a.e. on Q.

The hypothesis (f2) is a generalization of the usual hypothesis that f
“Sumps” across the first eigenvalue. We are now able to state the main
result.

Theorem. Under the hypotheses (Q1)-(Q5), (f1), (£2), and (R),
there ezists a T € R such that (1.1;) has no weak solutions for t > T
and at least one weak solution fort < T.

Our results were motivated by those of Chabrowski and the theorem
we prove here strictly contains some of his results, i.e., Theorems 1
and 2 in [3]. (There are many other theorems and results in this
interesting paper.) We employ the method of upper and lower solutions
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described in [4] to prove existence. However, we have replaced the
use of G-convergence used in [3] with a simplified Harnack inequality
argument. Furthermore, Chabrowski considers the problem (1.1;) when
the operator @ is simplified by taking b = 0 and allowing a*/ to depend
only on z and w. In this setting the monotonicity hypothesis (Q5) is
easily seen to be satisfied by the ellipticity (Q4). Indeed,

[ (2, 2)p; — a¥ (x, 2)p}](pi — p}) = 0 (z,2)[(p; — ) (pi — P})]
> aqlp—p'|*>>0

for a.e. z € , for all z € R, and for all p,p’ € RN with p # p'. It
is by carefully exploiting the monotonicity assumed in (Q5) that we
are able to extend to the case where the coefficients also depend on
Du. Moreover, since we define Ay and As by taking the infimum and
supremum over v € H' (instead of v € L2, as in [3]), our interval
[A1,As] is possibly smaller than that of Chabrowski and hence the
class of nonlinearities which satisfy our hypotheses is possibly larger.
The results presented here are the first jumping nonlinearity results we
know of where the coefficients are allowed to depend on Du.

Also, combining the techniques to be presented here with those of
Chabrowski concerning the operator T} in class (S5) [3, p. 362], a result
for the existence of multiple solutions where the coefficients depend on
Du can easily be obtained. We leave the details for the interested
reader.

2. Example. In the following example we exhibit a general class
of nonlinearities which is beyond the scope of [3] but which can be
treated by our theorem. Let g; be any increasing bounded continuous
function on [0, +00) with g;(0) > 0. Extend g; to (—oo,+00) so that
g1 is even (i.e., g1(—z) = g1(x)). Construct functions g2, gs,... ,gn in
the same way as g;. It is not difficult to verify that for p € R™ and
i =1,2,...,n fixed, the function g;(p;)p; is an increasing function of
p;- In particular, then [g;(s)s — gi(t)t](s —t) > O for all s # t. Suppose
a'(x) € L are the coefficients of a linear, strictly elliptic, self-adjoint,
partial differential operator. Define a%(z,z,p) = o' (z) + 8;;9:(p:)
where §;; is the Kronecker delta. Assume b(z, z,p) is any nonnegative
L (QxRxRYN) function satisfying the Caratheodory conditions. Then
the corresponding operator @ satisfies (Q1)—(Q5).
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Clearly (Q1)-(Q3) are valid. Also, by the nonnegativity of g;, we
have (Q4); that is,

a¥(z,2,p)&i&; = (¥ () + 0ij9i(pi)&i&j > anl€]® + gi(pi) €] > enlE]?
holds when o, is the ellipticity constant for the a/(x). The upper
bound in (Q4) is clear from the boundedness of a*/ and each g;.

It remains to verify the monotonicity condition (Q5). Since the
gi(pi)p: are increasing functions, we obtain, by the earlier remarks,
for p,p’ € R™ with p # p/,

(a’ij(mv Zap)p] - a’ij(xa zap’)p;)(pl - pi)
= a'(z)(p; — p) (i — P}) + (gi(pi)pi — 9:(07)p7) (P — 1)
> aylp —p'|* > 0.
Some concrete examples of g;’s which satisfy the conditions described

above, are as follows. For t € R we may choose g(t) = |t|/V1+t2,
g(t) = [t/(L+[t]), g(t) = (1 +12)/(2+ 1))/, etc.

3. Preliminaries. In what follows, we shall assume without loss of
generality that

b(z,z,p) >0 forae. z€Q and V(z,p) € R xRN,

If this is not the case, we can add the quantity yu to both sides of (1.1;)
with v > ||b||c and obtain the equation

QU = —Di(aij('vua DU)DJU’) + E(‘,’U/, DU)U = f(’u) +1® + h

where b(-,u, Du) = b(-,u, Du) + v and f(-,u) = f(,u) + yu. This
new equation still satisfies (Q1) through (Q5), (f1) and (R). To verify
hypothesis (f2), we observe that A; associated with Q satisfies A; =
Ai+~ for i =1,2 and f'(z, +00) = f'(x, +00) + 7; thus f satisfies (f2)
if and only if f does. Also, if we have b(z,z,p) > 0, we see from an
argument similar to that given in (1.3) that A; > 0. Hence, from now
on, we assume that A; > 0.

The following estimates for f will be useful in the sequel. There are
positive constants c; and ¢ such that

(3.1) |f(z,2)| < eilz] + e2 VzeR and forzec Q.
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Further, there exist 61, 62 and C, all positive constants, such that
0< (51 < A1 < A2 < (52, and both

(3.2) f(z,2) > 6z—C
and
(3.3) f(z,2) > 22 — C

hold for z € Q and for all z € R. All three of these estimates are direct
consequences of the hypotheses (f1) and (£2).

We complete this section by proving the following results which will
be needed in the sequel.

Lemma 3.1. Suppose (vy) is a sequence of elements in H'. Let ¢**
be defined by (1.2). In particular, ¢\ € Hy and ||¢}*||r2 = 1. Suppose
further that ¢}* — ¢1 weakly in H}. Then there exists a subsequence

vy, of the original sequence such that (bll)kj — ¢1 weakly in HY, strongly
in L?, and a.e. in Q. Furthermore, ¢1 > 0 a.e. on Q.

Proof. The existence of the subsequence converging as described
follows from standard arguments. We observe that (¢]*) is bounded in
H} norm. Indeed, from (Q4) and (1.2) we have

1 ..
( / |D¢1“) < = [ o DDy D
Q a1 Jo
Vi Vi
2o Go0) - 2100 [ g < 22 <oc,
Q

aq aq aq

1672
(3.4)

IN

We then make use of the fact that a norm bounded set in H} has
a weakly convergent subsequence [5, Theorem 5.12], and that H} is
compactly imbedded in L? [5, Theorem 7.22].

To prove ¢1 > 0 a.e. on §2 we first observe that ¢; > 0 a.e. on € since
qﬁ:kj > 0 on  for all vy, € H' and qﬁfki — ¢1 a.e. on Q. Furthermore,
L? convergence guarantees ||¢1||2 = 1 since the same is true for each
4511”9". Hence, for some gy > 0, we can find B C B C Q with |B| > 0
and such that ¢;(z) > e¢ > 0 for all z € B. Here |- | denotes Lebesgue
measure.
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Using Egorov’s theorem, we choose a measurable £ C ) such that
|E| < |B|/2 and ¢,"7 — ¢, uniformly in Q\E. Notice

B
|(Q\E)mB\:\B\_|EmB|>%>o.

Therefore (Q\E) N B # @ follows immediately from [E| < |B]|/2

since B ¢ E. Because convergence is uniform, qﬁ;)kj (x) > eo/2 for
all z € (Q\E) N B for large enough j. Let Q' be an arbitrary compact
subset of Q such that Q' C (Q\E) N B. By Harnack’s inequality, [5,
Corollary 8.21], there exists a constant C' > 0 which can be taken
independent of j such that

0< 2 < sup (f)ll)kj () < C inf (f)ll)kj () < C(bll)kj (z)
2 zeQ! zeQ!

holds for each z € Q' and all large j. Thus ¢;(x) > &¢/(2C) > 0 for
a.e. ¢ € . Since ' is arbitrary, we conclude ¢1(z) > 0 for a.e. z € Q.
o

Lemma 3.2. Suppose (uy) is a sequence of weak solutions of (1.1;,)
where (t,) is any bounded sequence of reals. Let uw € H} be such that
u, — u weakly in HY, strongly in L?, and a.e. in Q. Then there exists
a subsequence (uy, ) such that Duy, — Du a.e. in Q.

Proof. We first show that there exists a subsequence (u,, ) such that
(3.5) [a (-, uny,, Dny, ) Djtn, —a" (-, un, , Dw) Dju](Ditty,,, — Dyut) — 0

a.e. in ) as k — +o0o. To demonstrate (3.5), it is enough to show
(3'6) / [aij(-,un,Dun)Djun - aij('aunaDu)Dju](Diun - Dzu) —0
Q

since the integrand is positive a.e. by (Q5) and L' convergence implies
a.e. convergence of a subsequence. Using (3.1) and the fact that w, is
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a weak solution of (1.1; ), we obtain

‘ / aij(-,un,Dun)Djun(Diun — D;u) + b(+, wp, Dy )t (U, — )
Q
< [ 1) + 180+ ) =

< /(cl|un| oot |tn® + h)]um — 4l
Q

< K||up, — ul|ge-

Note that K can be taken independent of n since ||u,||z2 is uniformly
bounded and (¢,,) is a bounded sequence. Thus, L? convergence of (u,)
implies q(up, tn, un —u) — 0. Similarly, [¢, b(-, tn, D)ty (up —u) — 0
since b € L= (Q x R x RY). Hence,

/ aij(-,un,Dun)DjunDi(un —u) = 0.
Q
Since u,, — u weakly in H}, we can rewrite this as

(37) / [aij('vunaDun)Djun - aij(_’ un,Du)Dju]Di(un - ’LL)
Q

+ / (@ (-, tp, Du) — a"¥ (-, u, Du)| DjuD;(u, — u) — 0.
Q

Note that the second term of (3.7) approaches 0 as n — +oo since
a’ (-, up, Du)Dju — a"(-,u, Du)Dju in L? (by (Q1), (Q3) and dom-
inated convergence) and ||D;u,||r2 is uniformly bounded. Thus (3.6)
holds and by the preceding remarks, so does (3.5).

Now choose @' C Q with || = || and such that (3.5), (Q4)
and (Q5) hold for every =’ € €. Also choose Q' so that wu,, (z'),
u(z"), Dup, (z'), and Du(z’) are finite valued for all ' € ' and so
that u,, — u everywhere in Q. We first show that for «’ € Q/,
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lim sup |Duy, (z')| < co. From (Q4) and (3.5), we have, on (',

a1|Duy, |* < a (-, up, , Dun, ) Djun, Ditin,
= [a”('vunk’Dunk)Djunk
— a" (*,up,,, Du)Dju] Dy (uy,, — u)
+ aij(-,unk,Dunk)DjunkDiu
+ a" (-, un, , Du)DjuD;(up, — u)
< 0(1) + ||| |oo| Djtin,, || Diul
+ |la]|co| Djul (| Dittny | + [Diul)
< o(1) + Ki|Duy, ||Du| + Ka|Dul?.

This shows that lim sup |Du,, (z')| < co for all 2’ € Q.

Suppose the conclusion of the lemma is false. Passing to a further
subsequence if necessary, we consequently have an =’ € Q' such that
Duy, (z') — & € RYM and Du(z') = £ € RN with & # & If we
evaluate (3.5) at this particular =’ and let [ — 400, we find

[a¥ (2", u(z"), €€} — a” (2’ u(a"), £)&](€; — &) = 0.

This fact contradicts the monotonicity hypothesis given in (Q5) and
thus the lemma is established. ]

Lemma 3.3. Let v =inf g [, B¢} where ¢} € Hj with ||¢}]|2 =
1 is defined by (1.2) and ® € L satisfies ® > 0 a.e. on Q. Then
v > 0.

Proof. Let (v;) C H' be a minimizing sequence such that Jo @Ok —
v. Note by the estimate in (3.4) that (47*) is a bounded sequence in
H}. Hence there exists a subsequence which we continue to label ¢7*,
and a function ¢, € H{, satisfying the hypotheses and conclusion of
Lemma 3.1. Consequently, ¢} — ¢1 in L? and ¢1 > 0 a.e. on . Hence
we obtain 0 < [, ®¢1 = limy, [, PPT* = 7. mi

4. Proof of the theorem.

Lemma 4.1. Suppose v is from Lemma 3.3. Let |Q] denote the
Lebesgue measure of ). Then the problem (1.1;) has no weak solutions
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fort >t = (1/9)[C|Q|Y2 + ||h||p2] where C is defined in (3.2) and
(3.3).

Proof Suppose u is a weak solution of (1.1;). Then g(u,u, ¢}) =

Jo(f(,u) +t@ +h)¢Y. But q(u,u, ¢}) = q(u, ¢F, u) by (Q2); therefore,
Jo(f( u) +t@+h)oY = [ Ai(u)dfu. From (3.2) and (3.3), we obtain

w) /Q bt > /Q (Bru— C)g% + (12 + h)4Y,

and

u) /Q St > /Q (62u— C)6Y + (t© + )@Y

@y e f @or< [ ) -aetus [ (€ mer
and
an [ oot < [ -setur [ (€= wat.

From this and the fact that §; < A;(u) < §3 we can conclude

(4.3) t/ﬂ@ﬁg/ﬂ(c’fh) 1

because if [, ¢fu > 0 we use (4.2), otherwise we use (4.1). Finally,
(4.3) yields the desired conclusion via the Cauchy Schwarz inequality,
namely, ¢ <7 = (1/9)[CIQY% +hllz2]. O

Definition 4.2. A function v € W12 is said to be a weak lower
solution of (1.1;) if u™ = max(u,0) is in H} and

(4.4) 4,0, ) < / () + 1D + h)

holds for all ¢ € H} with ¢ > 0 in Q. Similarly, v € W'? is said to
be a weak upper solution of (1.1;) if v~ = min(v,0) is in H} and (4.4)



QUASILINEAR ELLIPTICITY 1395

holds, with u replaced by v and with the inequality reversed, for all
¥ € H} with ¢ > 0 in Q.

To demonstrate the existence of weak solutions of (1.1;), we employ
the following result from [4].

Theorem 4.3 (Deuel-Hess). Suppose (1.1;) satisfies (Q1)—-(Q5),
(f1), (f2), and (R). If (1.1;) has a weak lower solution u € W% and
a weak upper solution v € W12 with u < v in Q, then (1.1;) admits a
weak solution.

In the course of showing the existence of weak upper and lower
solutions, we must be able to find a weak solution for the equation

when h € L%, and 0 < §; < A;. The standard Schauder fixed point
argument normally used for a step of this nature does not seem to
work when the coefficients of @ depend on Du. To show that (4.5)
does indeed have a weak solution for any he L?, we invoke

Theorem 4.4 (Leray-Lions). For any h € L? there is at least
one weak solution of (4.5) in H} provided Q satisfies the hypotheses

(Ql)—(Q5), and 0 < 6, < Ay.
This result follows from Theorem 2 in [7] once we establish the
coercivity condition

Q(ua u, U’) - 51 fQ u2

[lul g

(4.6) —o00 as |[ul|g — oco.

Suppose to the contrary that there exists K; € R and a sequence (uy,)
in Hy such that |Jup||gz — oo and

q(unaunu un) - (51 fQ ui

wn |

(4.7) < K.

Then one of the following two cases must hold, each of which leads to
a contradiction.
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Case 1. There exists a subsequence (un,) such that ||u,,||3./
|[tn, ||z — co. Then dividing

(Al _51)/ uTZIk S q(unkaunkaunk) _61/ uik
Q

Q
by ||tn, ||z contradicts (4.7).

Case 2. There exists K5 such that Hun||2L2/||unHHé < K> for all n.
Then (4.7) implies (q(un, Un, un))/||tn||gp < K1+ 01K>.

By (Q4), we have that

< 4(tn, tn, un)

a1||un||Hé = ||u ||H1 §K1+61K2)
ity

contradicting the fact that [[u,|[z; — oo. Hence, the coercivity
condition (4.6) must hold.

We now proceed to demonstrate the existence of weak lower solutions
and weak upper solutions.

Lemma 4.5. For any real number t, (1.1;) has a weak lower solution
u satisfying u < 0 a.e. in Q.

Proof. Choose C so large that
te+h<C a.e. in

and (3.2) holds. We let v € H} be a weak solution of Qu =
01u — C + t® + h. The existence of u follows from Theorem 4.4. We
claim u is a weak lower solution of (1.1;). Indeed,

a(u, u,9) < / (F(u) + 1@ + R)

Q
follows from (3.2) for all ¢ € H} with ¢ > 0 in Q. Also, if ut is
not equal to 0 a.e. in €2, then from the definition of Ay, the fact that
01 < Ay and [5, Lemma 7.6], we have

+ ot

§llut2e < q(u,ut, ut) = q(u,u,u’)

= /Q((huf C+t® +h)ut < & |jut|..



QUASILINEAR ELLIPTICITY 1397

This contradiction shows that v < 0 a.e. in {2 and completes the proof.
]

Lemma 4.6. There exists a real number t such that (1.1;) has a
weak upper solution v with v > 0 a.e. in 2.

Proof. For a fixed N > 0, define My by My = ||hllo +
sup{[|f(-,8)||ec : 0 < s < N}. We observe that if g € L"*1 n > 1
is fixed, and w € H} is a weak solution of Qu = Q¥ w = g, then there
exists C1 > 0 and independent of g, such that supg w(z) < Cy||g||pr+1
[5, Theorem 8.16]. Define 6 = (IN/C1My)"*! > 0. Choose open sub-
sets 2, C Q1 C Qy C Qy C Q and satisfying |Q — Q1| < §. Define
H € C°(Q) by the following: H = My on Q — Qy, H =0 on Qy, and
H extends continuously on Qs — €4, such that 0 < H(z) < My for
all z € Q. Now, using Theorem 4.4, let v € H} be a weak solution of
Qv = Q”v = H. Observe that

0 < ay||Dv7|32 < q(v,v,07) = / Hv™ <0
Q

which implies v > 0 a.e. on Q. In particular, v~ € H}. Furthermore, if
t is sufficiently negative to insure My + t® < 0 a.e. in €2, then

(48) ao,v) = (10202 [ty +12
Q Q
holds for all ¢ € H} satisfying ¢ > 0. Now, since

0 < v(z) < C1||H||pnrr < C1My(|Q — Qq|77T) < CL My 67T < N

a.e. in ), we can conclude that h(z) + f(z,v(z)) < My for a.e. z € Q,
and hence, from the estimate in (4.8),

a(v,0,9) > / (F(0) +1® + h)

Q

for all ¢ > 0, 9 € H}. Thus, v is indeed a weak upper solution for
(1.14). o
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From Lemmas 4.5 and 4.6 we see that if ¢y is sufficiently negative
then (1.1;,) has a weak lower solution u and a weak upper solution
v satisfying v < 0 < v. We are now in a position to apply Theorem
4.3, and we conclude that (1.1;) has at least one weak solution for ¢
sufficiently negative.

Lemma 4.7. If there exists a weak solution of (1.1;) for t = ty, then
(1.1;) has a weak solution for all t < tg.

Proof. Let t < to be fixed and let vy € H} be a weak solution of
(1.1¢,). Choose C' so large that

té+h<C a.e. in
and (3.2) holds. Since ¢y >t and ® > 0, we have
(4.9)  f(,v0)+to®+h> f(-,v0) +tP+ h > d1vg — C +t® + h;

thus, ¢(vo,v0,%) > [o(f(-;v0) + t® + h)y holds for all ¢ € Hg with
¥ > 0. Moreover, since vg € H3 implies vy € H}, we conclude vy is a
weak upper solution of (1.1;).

Toward finding a lower solution ug with uy < vy in 2, we observe,
using (4.9), that vy is a weak upper solution of Q"°u = dyu—C+tP+h.
Hence, by [5, Theorem 8.15], we see that there exist positive constants
C1 and C5 such that

sup(—wvo) < C1(||vg ||z + Ca|| = C +t® + h||pn+1) = M < 0.
Q
Thus, vg > —M where M > 0. Now solve for w € H} such that

(4.10) / a(-,w — M, Dw)DjwD;th + b(-,w — M, Dw)wp
Q

:/51(w—M)z/1+(fC+t<I>+h)¢
Q
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for all ¥ € H}. We can find such a w by applying Theorem 4.4 with
h=—-6M —C +t® + h. Using v = w' in (4.10) gives

Ay /Q(w+)2 < /Qaij(-,w — M,D(w — M))Djw* D;w™
+b(yw— M,D(w— M))(w")?

/61w M)wt + (=C + t® + h)w™

/61’(1) M +</61

Since §; < Aj, we conclude w < 0 a.e. in Q.~ (Note. Tt is for the first
inequality above that we require the space H'.) Define ug = w — M.
Notice that uf € Hg. Also observe that for all ¢ € H} with ¢ > 0, we
have

q(uo,u0,) =/aij('auo,Duo)DjuoDﬂ/f+b(',U07Duo)uo¢
Q
S/aij(-,uo,Dw)Dijizﬁ—i—b(-,uo,Dw)un/J
Q

S/Q((51uo—0+t<1>+h)¢S/(f(-,u0)+t<1>+h)1/1.

Q

Therefore, ug is a weak lower solution of (1.1;). Furthermore, uy <
—M < wp; hence, Theorem 4.3 implies (1.1;) has a weak solution in
HY. o

Recall that there exists a ¢y such that (1.1;) has a weak solution.
Consequently, from Lemma 4.7 we have that (1.1;) has a weak solution
for all t < ty. Let

T = sup{t: (1.1;) has a weak solution}.

The last step, therefore, in our proof of the theorem is to show (1.17)
has at least one weak solution.

Lemma 4.8. For T defined as above, (1.17) has at least one weak
solution.
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Proof. First observe that T < oo by Lemma 4.1. Let (t,) be
an increasing sequence of real numbers approaching 7" and (u,) the
corresponding sequence of weak solutions of (1.1;,) for n = 1,2,....
We claim that [|un|[z; is bounded independent of n. Once this is
shown, we are done by the following argument.

The boundedness of (u,) in Sobolev norm implies that there exists a
u € H} and a subsequence, which we continue to label u,, such that
u, — u weakly in H}, strongly in L? and a.e. in Q. In particular,
f(,u,) = f(-,u) a.e. by (f1). Also, for any v € H}, we see from (3.1)
that (f(-,un)v)S2; is an absolutely equi-integrable sequence. Hence,
from Egorov, [, f(-,un)v = [ f(-,u)v. Thus, using the identity

q(Up, Up,v) = / f(un)v+ t, ®v + ho, Vo € HE,
Q

we conclude that q(un,un,v) = [(f(-,u) + T® + h)v as n — +oo for
all v € H}.

We complete the argument by showing that, for a subsequence (uy, )
of (u,), we have q(un,,un,,v) = q(u,u,v) for all v € H}. Suppose
v € H}. Observe that

|q(unk ) unk ) ’U) - Q(ua u, ’U)|

< /Q[aij(-, Uny, Dup,) — @' (-, u, Du)|Djuy,, Div
+ /Qa"j(-,u,Du)[Djun,c — Dju|D;v
+ /Q[b('aunkaDu"k) — b(-, u, Du))up, v
+ /Qb(-,u, Du)(up, —u)v|.

The second and fourth terms on the right hand side above approach
0 as k — oo because u,, — u weakly in H} and strongly in L2
From Lemma 3.2 we see that there exists a subsequence u,, such
that Du,, — Du a.e. in . Hence, from hypotheses (Q1l) and (Q3),
we conclude that a™(-,u,,, Du,,)Div — a%(-,u, Du)D;v in L* by
dominated convergence. Similarly, b(:, uy, , Dun,)v — b(-,u, Du)v in
L?. Since we are assuming (u,) is uniformly bounded in H}, we



QUASILINEAR ELLIPTICITY 1401

conclude from Hélder’s inequality that the first and third integrals on
the right hand side above approach 0 as k — co. Hence, if ||un||g1 is
uniformly bounded, « is a weak solution of (1.17).

Suppose [|uy||f1 is not uniformly bounded. Then there exists some
subsequence (without loss of generality (uy,) itself) such that [[uy||m1 —
+00. We observe from (Q4) and (3.1) that

al/ |Dun|2 < q(Un, Un, up) = / fun)un + (En® + h)u,
Q Q

< / e1ltn? + Caltin] + (En® + B)|un]
Q
< exllunlZs + Bl s

where é; = sup,, ||c2 + t,® + h||L2 < co. Whence ||uy, ||z — +oo. We
also observe that the above estimate shows that v, = w,/||un||g2 is
bounded in H§ norm. Thus there exists a v € H} and a subsequence,
which we take to be the full sequence, such that v,, — v weakly in Hj,
strongly in L? and a.e. on Q. Clearly, ||v||z2 = 1.

We now proceed to show v = 0 a.e. This contradiction implies
that ||up||g2 is uniformly bounded and completes the proof. Consider

q(Up, Up, @) where ¢ = @7 is the first eigenfunction of Q%~. Note
that

(4.11)  q(un,vn,67) = /ﬂ I, un)i + (0n + h)$Y

[|un]| L2

But
(412) gm0, 67) = aluns 67, 00) = M) [ 6T
Q
Now since 0 < Ay < Aj(un) < Az < 0o, we can choose a subsequence,

without loss of generality (u,) itself, such that Aj(u,) — A as
n — —+o00. Furthermore,

o / D2 < glum, 7, 67) = s () / (67)? < As.

Therefore, (¢7) is bounded in Hj norm and there exists a ¢; € H} and
a subsequence (once again labelled (u,)) such that ¢} — ¢; weakly in
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H}, strongly in L? and a.e. in Q. By Lemma 3.1, ¢; > 0 a.e. on (.
Using (4.11) and (4.12), we conclude

f LU )T /(t¢+h¢" )\1/¢71v
Q

[|un]| L2 [lun |2

However, [,(t,® + h)¢T/||un||L2 = 0 so we are left with

f y Un ¢1 Y
(413) / |unHL2 )\1/5;(1)11}.

We write @ = Q; U Qs U Q3 where Q3 = {z € Q : v(z) > 0},
QD ={reQ:v() <0} and Q3 = {x € Q: v(z) = 0}. On Q,
Un = ||[un]|2vn — +o00 pointwise as n — +oo. Thus, by Egorov’s
theorem and absolute equi-integrability of ((f(-,un)/||un||L2)dT) we
obtain

[ Ay [ St
Q1

VP — f'(+, +o0)vey.
Tunllee 0 = Jo, " O f, T o)

Similarly,
f ( B un)

@, [[unllL2

o — / £, —o0)udh.

Finally, we observe by (3.1) that

, U ) PY co |}
Qs IIUnIILz Qs s |[unllr2
62|Qg|1/2
s eallenllaecan + 7, i
n

Since v, — 0 in L?(Q3) and ||u,||z2 — oo we conclude that

— 0.
Qs Hunl\m

Therefore
/ 2 Un ¢n —>/ o 4o0)ut + f(-, —co)v T )¢y.
Q

Muallze
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Combining this with (4.13) gives the equation

(4.14) /Q (F/(-, +00) —5\1)v¢1+/ (F/ (-, —00) — A )véy = 0.

Q2

Recall that ¢; > 0 a.e. in Q by Lemma 3.1. Also f'(,+00) — AL >0
and f/'(-,—00) — A1 < 0 since A; < A1 < Az and f satisfies (f2).
Thus, both terms in (4.14) are nonnegative. We therefore conclude
that [, v¢1 = 0and [, vé: =0 and hence v = 0 a.e. Thus, ||ua||g2
must be uniformly bounded. This completes the proof of the lemma,
and hence the theorem. O
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