METRIC SPACES AND MULTIPLICATION OF BOREL SETS

ROY A. JOHNSON, ELIZA WAJCH AND WŁADYSŁAW WILCZYŃSKI

ABSTRACT. Let us say that the Borel sets of spaces X and Y multiply if each Borel set in the product space $X \times Y$ is a member of the product σ -algebra generated by Borel rectangles. We show that the Borel sets of a space X and a metric space Y multiply if and only if the Borel sets of X and D multiply, where D is a discrete space having the same weight as Y.

1. Introduction. The Borel sets $\mathcal{B}(X)$ of a topological space X are the smallest σ -algebra containing the open sets of X. If X and Y are topological spaces, then $\mathcal{B}(X) \times \mathcal{B}(Y)$ denotes the smallest σ -algebra on $X \times Y$ containing sets of the form $E \times F$, where E and F are Borel sets of X and Y, respectively. Always $\mathcal{B}(X) \times \mathcal{B}(Y) \subset \mathcal{B}(X \times Y)$; if $\mathcal{B}(X) \times \mathcal{B}(Y) = \mathcal{B}(X \times Y)$, we say that the Borel sets of X and Y multiply. Notice that the Borel sets of X and Y multiply if and only if each open set in $X \times Y$ is a member of $\mathcal{B}(X) \times \mathcal{B}(Y)$.

Lemma 1.1. If Z is a subset of Y and $\mathcal{B}(X \times Y) = \mathcal{B}(X) \times \mathcal{B}(Y)$, then $\mathcal{B}(X \times Z) = \mathcal{B}(X) \times \mathcal{B}(z)$.

Proof. (Compare with [6, Theorem 7.1].) It is easily seen that since $\mathcal{B}(X) \times \mathcal{B}(Z)$ is a σ -algebra of subsets of $X \times Z$, the family

$$\mathcal{M} = \{ M \subset X \times Y : (X \times Z) \cap M \in \mathcal{B}(X) \times \mathcal{B}(Z) \}$$

forms a σ -algebra of subsets of $X \times Y$. If $U \times V$ is an open rectangle in $X \times Y$, then $(X \times Z) \cap (U \times V) = U \times (Z \cap V)$ is an open rectangle in $X \times Z$, so $U \times V \in \mathcal{M}$ and, consequently, \mathcal{M} contains $\mathcal{B}(X) \times \mathcal{B}(Y) = \mathcal{B}(X \times Y)$.

Now suppose W^* is open in $X \times Z$. There exists an open subset W of $X \times Y$ such that $W^* = (X \times Z) \cap W$. Since $W \in \mathcal{M}$, we have that $W^* \in \mathcal{B}(X) \times \mathcal{B}(Z)$. This implies that $\mathcal{B}(X \times Z) = \mathcal{B}(X) \times \mathcal{B}(Z)$.

Copyright ©1992 Rocky Mountain Mathematics Consortium

Received by the editors on February 11, 1990 and, in revised form, on November 12, 1990.

Lemma 1.2. If Y is the union of a sequence of Borel subsets Y_n , then $\mathcal{B}(X \times Y) = \mathcal{B}(X) \times \mathcal{B}(Y)$ if and only if for each n, $\mathcal{B}(X \times Y_n) = \mathcal{B}(X) \times \mathcal{B}(Y_n)$. Hence, if Y is the union of a finite family of Borel sets Y_i , then $\mathcal{B}(X \times Y) = \mathcal{B}(X) \times \mathcal{B}(Y)$ if and only if for each i, $\mathcal{B}(X \times Y_i) = \mathcal{B}(X) \times \mathcal{B}(Y_i)$.

Proof. Necessity follows from Lemma 1.1. To prove sufficiency, suppose $W \in \mathcal{B}(X \times Y)$. Then $W = \bigcup (W \cap (X \times Y_n))$. For each n, the set $W \cap (X \times Y_n) \in \mathcal{B}(X \times Y_n) = \mathcal{B}(X) \times \mathcal{B}(Y_n) \subset \mathcal{B}(X) \times \mathcal{B}(Y)$. Hence, $W \in \mathcal{B}(X) \times \mathcal{B}(Y)$.

Lemma 1.3. Let $f: X \to X'$ and $g: Y \to Y'$ be Borel measurable functions, and let $(f \otimes g)$ be defined on $X \times Y$ by $(f \otimes g)(x,y) = (f(x), g(y))$. Then $(f \otimes g)^{-1}(M) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ for each $M \in \mathcal{B}(X') \times \mathcal{B}(Y')$.

Proof. Because $(f \otimes g)^{-1}$ preserves countable unions and complements, we see that

$$\mathcal{M} = \{ M \in \mathcal{B}(X') \times \mathcal{B}(Y') : (f \otimes g)^{-1}(M) \in \mathcal{B}(X) \times \mathcal{B}(Y) \}$$

is a σ -algebra of subsets of $X' \times Y'$. Because \mathcal{M} contains each Borel rectangle in $X' \times Y'$, we have $\mathcal{M} = \mathcal{B}(X') \times \mathcal{B}(Y')$, which completes the proof. \square

Lemma 1.4. If Z is second countable and $\mathcal{B}(X \times Y) = \mathcal{B}(X) \times \mathcal{B}(Y)$, then $\mathcal{B}(X \times (Y \times Z)) = \mathcal{B}(X) \times \mathcal{B}(Y \times Z)$.

Proof. Suppose G is open in $X \times (Y \times Z)$ and that $\{W_n\}$ is a countable base for Z. For each n and for each open set U in X, let

$$V(n,U) = \bigcup \{V: V \text{ is open in } Y \text{ and } U \times (V \times W_n) \subset G\}.$$

Then each V(n, U) is open in Y, and

$$G = \bigcup_{n} \bigcup_{U} U \times V(n, U) \times W_{n}.$$

For each n, let

$$H_n = \bigcup_U U \times V(n, U).$$

Since H_n is open in $X \times Y$, we have $H_n \in \mathcal{B}(X) \times \mathcal{B}(Y)$ by hypothesis. Hence, $H_n \times W_n \in \mathcal{B}(X) \times \mathcal{B}(Y \times Z)$. Because $G = \bigcup_n H_n \times W_n$, we see that $G \in \mathcal{B}(X) \times \mathcal{B}(Y \times Z)$.

Lemma 1.5. $\mathcal{B}(X \times \prod_{i=1}^{\infty} Y_i) = \mathcal{B}(X) \times \mathcal{B}(\prod_{i=1}^{\infty} Y_i)$ if and only if $\mathcal{B}(X \times \prod_{i=1}^{n} Y_i) = \mathcal{B}(X) \times \mathcal{B}(\prod_{i=1}^{n} Y_i)$ for each positive integer n. Hence, $\mathcal{B}((\prod_{i=1}^{\infty} Y_i) \times X) = \mathcal{B}(\prod_{i=1}^{\infty} Y_i) \times \mathcal{B}(X)$ if and only if $\mathcal{B}((\prod_{i=1}^{n} Y_i) \times X) = \mathcal{B}(\prod_{i=1}^{n} Y_i) \times \mathcal{B}(X)$ for each positive integer n.

Proof. Necessity follows from Lemma 1.1. We prove sufficiency. For each $n \in \mathbb{N}$, define

$$f_n((x,(y_1,y_2,\dots))) = ((x,(y_1,\dots,y_n)),(y_{n+1},y_{n+2},\dots))$$

and

$$\mathcal{A}_n = \left\{ A \in \mathcal{B}(X) \times \mathcal{B}\left(\prod_{i=1}^n Y_i\right) : f_n^{-1}\left(A \times \prod_{i=n+1}^\infty Y_i\right) \in \mathcal{B}(X) \times \mathcal{B}\left(\prod_{i=1}^\infty Y_i\right) \right\}.$$

Using standard computations, one easily checks that \mathcal{A}_n is a σ -algebra containing all open rectangles $U \times V$ where $U \subset X$ and $V \subset \prod_{i=1}^n Y_i$. Since $\mathcal{B}(X \times \prod_{i=1}^n Y_i) = \mathcal{B}(X) \times \mathcal{B}(\prod_{i=1}^n Y_i)$, we obtain that $\mathcal{A}_n = \mathcal{B}(X \times \prod_{i=1}^n Y_i)$ for any n. Let W be open in $X \times \prod_{i=1}^\infty Y_i$. For each $n \in \mathbb{N}$, put

$$W_n = \bigcup \bigg\{ U \subset X \times \prod_{i=1}^n Y_i : U \text{ is open and } U \times \prod_{i=n+1}^\infty Y_i \subset f_n(W) \bigg\}.$$

Without any difficulties one can show that $W = \bigcup_n f_n^{-1}(W_n \times \prod_{i=n+1}^{\infty} Y_i)$. Since $W_n \in \mathcal{A}_n$ for each n, we see that $W \in \mathcal{B}(X) \times \mathcal{B}(\prod_{i=1}^{\infty} Y_i)$, which completes the proof. \square

2. Main Theorem. In this section we prove the following main theorem.

Theorem 2.1. Let X be a space, and let Y be a metrizable space with weight κ . Then $\mathcal{B}(X \times Y) = \mathcal{B}(X) \times \mathcal{B}(Y)$ if and only if $\mathcal{B}(X \times D) = \mathcal{B}(X) \times \mathcal{B}(D)$ for the discrete space D of cardinality κ .

We shall, in fact, prove in Theorem 2.5 that the conclusion of Theorem 2.1 holds for a slightly larger class of spaces called quasi-developable spaces.

Definition 2.2. (Compare with [4, Definition 8.1, 12, Definition 3].) A collection $\mathcal{G} = \bigcup_n \mathcal{G}_n$ of open sets in Y is a θ -base if and only if for each open set V and each $y \in V$, there exist n and $G \in \mathcal{G}_n$ such that $y \in G \subset V$ and such that y belongs to only finitely many members of \mathcal{G}_n .

Definition 2.3. (Compare with [1, Definition 2.1, 4, Definition 8.4].) A space Y is said to be *quasi-developable* if and only if there exists a sequence $\{\mathcal{G}_n\}$ of collections of open sets such that for each open set V and each $y \in Y$, there exists n such that $y \in \bigcup \{G \in \mathcal{G}_n : y \in G\} \subset V$.

Remark 2.4. (Compare with [2, Theorem 8].) A space Y has a θ -base if and only if Y is quasi-developable.

Theorem 2.5. Let X be a space, and let Y be a quasi-developable space with weight κ . Then $\mathcal{B}(X \times Y) = \mathcal{B}(X) \times \mathcal{B}(Y)$ if and only if $\mathcal{B}(X \times D) = \mathcal{B}(X) \times \mathcal{B}(D)$ for the discrete space D of cardinality κ .

Proof. Let $\mathcal{G} = \bigcup_n \mathcal{G}_n$ be a θ -base for Y. For each pair of natural numbers n and m, let

 $G_{n,m} = \{ y \in Y : y \text{ belongs to at least } m \text{ distinct members of } \mathcal{G}_n \}.$

It is easy to see that each $G_{n,m}$ is open. Let $Y_{n,m} = G_{n,m} \setminus G_{n,m+1}$. Notice that

 $Y_{n,m} = \{ y \in Y : y \text{ belongs to exactly } m \text{ distinct members of } \mathcal{G}_n \},$

and notice that $Y_{n,m}$ is a Borel set since it is the difference of two open sets. Because $\mathcal{G} = \bigcup_n \mathcal{G}_n$ is a θ -base, we see that $Y = \bigcup_{n,m} Y_{n,m}$. For

each pair of natural numbers n and m, let $\mathcal{V}_{n,m}$ be the trace in $Y_{n,m}$ of the family of all intersections of m distinct sets in \mathcal{G}_n . Equivalently, for each $y \in Y_{n,m}$, let $V_{y,n,m} = \bigcap \{G \in \mathcal{G}_n : y \in G\} \cap Y_{n,m}$, and let $\mathcal{V}_{n,m}$ be the family of all sets of the form $V_{y,n,m}$ for some $y \in Y_{n,m}$. Notice that the members of $\mathcal{V}_{n,m}$ are relatively open sets in $Y_{n,m}$ and that $\mathcal{V}_{n,m}$ is a partition of $Y_{n,m}$. Let $\pi_{n,m}$ be the quotient mapping of $Y_{n,m}$ onto the quotient space $D_{n,m}$ obtained by identifying the points belonging to the same $V \in \mathcal{V}_{n,m}$. Of course, $\pi_{n,m} : Y_{n,m} \to D_{n,m}$ is continuous and, thus, Borel measurable. Because the weight of Y equals κ , each \mathcal{G}_n and, hence, each $\mathcal{V}_{n,m}$ has cardinality less than or equal to κ . Hence, each $D_{n,m}$ has cardinality less than or equal to κ .

Suppose now that W is open in $X \times Y$. For each $V \in \mathcal{V}_{n,m}$, let U_V be the union of all open sets U in X such that $U \times V \subset W$. In other words, U_V is the largest open set in X such that $U_V \times V \subset W$. Let $W_{n,m} = \bigcup \{U_V \times V : V \in \mathcal{V}_{n,m}\}$, and let

$$W_{n,m}^* = \bigcup_{V \in \mathcal{V}_{n,m}} U_V \times \{\pi_{n,m}(V)\}.$$

Clearly, $W_{n,m}^*$ is open in $X \times D_{n,m}$. Hence, $W_{n,m}^* \in \mathcal{B}(X) \times \mathcal{B}(D)$ by hypothesis. Because $W_{n,m} = (\delta \times \pi_{n,m})^{-1}(W_{n,m}^*)$, where δ is the identity mapping, we have $W_{n,m} \in \mathcal{B}(X) \times \mathcal{B}(Y_{n,m}) \subset \mathcal{B}(X) \times \mathcal{B}(Y)$ by Lemma 1.3. That $W \in \mathcal{B}(X) \times \mathcal{B}(Y)$ follows from the fact that W is a countable union of the sets $W_{n,m}$.

Since the weight of X equals κ , at least one $\mathcal{V}_{n,m}$ has cardinality κ . The corresponding set $Y_{n,m}$ thus contains a discrete subspace with cardinality κ , and necessity follows from Lemma 1.1. \square

As an immediate consequence of Theorem 2.5, we obtain

Corollary 2.6. (Compare with [11, Théorème 1].) Let $\kappa \leq 2^{\omega}$. The following conditions are equivalent:

- (i) $\mathcal{B}(D \times D) = \mathcal{B}(D) \times \mathcal{B}(D)$ for the discrete space D of cardinality κ .
- (ii) $\mathcal{B}(X \times Y) = \mathcal{B}(X) \times \mathcal{B}(Y)$ for each pair of quasi-developable spaces X and Y of weight $\leq \kappa$.
- (iii) $\mathcal{B}(X \times Y) = \mathcal{B}(X) \times \mathcal{B}(Y)$ for each pair of metrizable spaces X and Y of weight $\leq \kappa$.

- (iv) $\mathcal{B}(X \times X) = \mathcal{B}(X) \times \mathcal{B}(X)$ for every quasi-developable space X of weight $\leq \kappa$.
- (v) $\mathcal{B}(X \times X) = \mathcal{B}(X) \times \mathcal{B}(X)$ for every metrizable space X of weight $\leq \kappa$.

In Corollary 2.6, condition (i) is clearly the same as the statement that $\mathcal{P}(D \times D) = \mathcal{P}(D) \times \mathcal{P}(D)$ if D has cardinality κ . This equation holds if $\kappa \leq \omega_1$ ([8, Theorem 12.5(ii), 9, Theorem 2]), does not hold if $\kappa > 2^{\omega}$ ([8, Lemma 12.2(ii), 10]), and depends on one's set theory if $\omega_1 < \kappa \leq 2^{\omega}$ ([8, Theorem 12.8]). Assuming Martin's Axiom, Theorem 2.5 tells us that if X is any quasi-developable space with weight less than c and Y is any quasi-developable space, then $\mathcal{B}(X \times Y) = \mathcal{B}(X) \times \mathcal{B}(Y)$. This follows from Lemma 1.3 and the fact that under Martin's Axiom, $2^{\kappa} < c$ whenever $\kappa < c$.

We caution that quasi-developability (or something similar) is needed in Theorem 2.5 and Corollary 2.6. That is, it is possible that $\mathcal{B}(D \times D) = \mathcal{B}(D) \times \mathcal{B}(D)$ for a discrete space D with cardinality equal to weight of X even though $\mathcal{B}(X \times X) \neq \mathcal{B}(X) \times \mathcal{B}(X)$.

Example 2.7. Let X be the set of ordinals less than or equal to the first uncountable ordinal ω_1 , and let X have the order topology. Clearly the weight of X equals ω_1 . By the remarks following Corollary 2.6, $\mathcal{B}(D \times D) = \mathcal{B}(D) \times \mathcal{B}(D)$ if D is a discrete space with cardinality ω_1 . However, $\mathcal{B}(X \times X) \neq \mathcal{B}(X) \times \mathcal{B}(X)$ (cf. [6, Theorem 2]).

It is interesting that Theorem 2.1 has a fairly easy proof in terms of a universal metric space. We close with that proof.

Alternate Proof of Theorem 2.1. The most familiar universal metrizable space is the product of countably many copies of the hedge-hog space $\mathcal{J}(\kappa)$ of spininess κ (cf. [3, Example 4.1.5 and Theorem 4.4.3]). Since Y is topologically equivalent to some subspace of $\mathcal{J}(\kappa)^{\omega}$, it suffices by virtue of Lemma 1.1 to prove that $\mathcal{B}(X \times \mathcal{J}(\kappa)^{\omega}) = \mathcal{B}(X) \times \mathcal{B}(\mathcal{J}(\kappa)^{\omega})$.

Since there exists a point $z_0 \in \mathcal{J}(\kappa)$ such that $\mathcal{J}(\kappa) \setminus \{z_0\}$ is homeomorphic to $(0,1] \times D$, it follows that each $\mathcal{J}(\kappa)^n$ can be expressed as

the union of finitely many Borel sets Y_i , where for each Y_i , there exists $m \leq n$ such that Y_i is homeomorphic to $\{z_0\}^{n-m} \times ((0,1]^m \times D^m)$. Because $[0,1]^m$ is second countable and D^m is a discrete space of cardinality κ , we have $\mathcal{B}(X \times Y_i) = \mathcal{B}(X) \times \mathcal{B}(Y_i)$ by Lemma 1.4. Then Lemma 1.2 says that $\mathcal{B}(X \times \mathcal{J}(\kappa)^n) = \mathcal{B}(X) \times \mathcal{B}(\mathcal{J}(\kappa)^n)$ for each positive integer n. Lemma 1.5 implies that $\mathcal{B}(X \times \mathcal{J}(\kappa)^\omega) = \mathcal{B}(X) \times \mathcal{B}(\mathcal{J}(\kappa)^\omega)$.

Because a metrizable space Y contains a discrete subspace whose cardinality equals the weight of Y [5, Theorem 8.1(d)], necessity follows from Lemma 1.1.

REFERENCES

- 1. H.R. Bennett, On quasi-developable spaces, Topology Appl. 1 (1971), 253-262.
- **2.** H.R. Bennett and D.J. Lutzer, A note on weak θ -refinability, Topology Appl. **2** (1972), 49–54.
- 3. R. Engelking, General topology, PWN-Polish Scientific Publishers, Warsaw, 1977.
- 4. G. Gruenhage, Generalized metric spaces, in: K. Kunen and J.E. Vaughan, eds., Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, 423–501.
- 5. R. Hodel, Cardinal functions I, in: K. Kunen and J.E. Vaughan, eds., Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, 1–61.
- 6. R.A. Johnson, On product measures and Fubini's theorem in locally compact spaces, Trans. Amer. Math. Soc. 123 (1966), 112-129.
 - 7. J.L. Kelley, General topology, Van Nostrand, New York, 1955.
- $\bf 8.~K.~Kunen,~\it Inaccessibility~\it properties~of~\it cardinals,~Ph.D.~Thesis,~Stanford~Univ.,~Palo~Alto,~August,~1968.$
- 9. B.V. Rao, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc. 75 (1969), 614-617.
 - 10. ———, On discrete Borel spaces, Acta Math. Hungar. 22 (1971), 197–198.
- 11. M. Talagrand, Est-ce que ℓ^{∞} est un espace mesurable?, Bull. Sci. Math. (2) 103 (1979), 255–258.
- 12. J.M. Worrell, Jr. and H.H. Wicke, Characterizations of developable spaces, Canad. J. Math. 17 (1965), 820-830.

DEPARTMENT OF MATHEMATICS, WASHINGTON STATE UNIVERSITY, PULLMAN, WA 99164-3113, USA

Institute of Mathematics, University of Lódź, ul Banacha 22, 90-238 Lódź, POLAND

Institute of Mathematics, University of Lódź, ul Banacha 22, 90-238 Lódź, POLAND