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METRIC SPACES AND MULTIPLICATION
OF BOREL SETS

ROY A. JOHNSON, ELIZA WAJCH AND WLADYSLAW WILCZYNSKI

ABSTRACT. Let us say that the Borel sets of spaces X
and Y multiply if each Borel set in the product space X x Y
is a member of the product o-algebra generated by Borel
rectangles. We show that the Borel sets of a space X and
a metric space Y multiply if and only if the Borel sets of X
and D multiply, where D is a discrete space having the same
weight as Y.

1. Introduction. The Borel sets B(X) of a topological space X are
the smallest o-algebra containing the open sets of X. If X and Y are
topological spaces, then B(X) x B(Y) denotes the smallest o-algebra
on X X Y containing sets of the form E x F, where ¥ and F' are Borel
sets of X and Y, respectively. Always B(X) x B(Y) C B(X xY); if
B(X) x B(Y) = B(X xY), we say that the Borel sets of X and Y
multiply. Notice that the Borel sets of X and Y multiply if and only if
each open set in X x Y is a member of B(X) x B(Y).

Lemma 1.1. If Z is a subset of Y and B(X xY) = B(X) x B(Y),
then B(X x Z) = B(X) x B(z).

Proof. (Compare with [6, Theorem 7.1].) It is easily seen that since
B(X) x B(Z) is a o-algebra of subsets of X x Z, the family

M={MCXxY:(XxZ)nMeB(X)x B(Z)}

forms a o-algebra of subsets of X x Y. If U x V is an open rectangle
in X xY, then (X xZ)N (U xV) = U x(ZNYV) is an open
rectangle in X x Z, so U x V € M and, consequently, M contains
B(X)xB(Y)=B(X xY).

Now suppose W* is open in X x Z. There exists an open subset W
of X x Y such that W* = (X x Z) N W. Since W € M, we have that
W* € B(X) x B(Z). This implies that B(X x Z) = B(X) x B(Z). O
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Lemma 1.2. If Y is the union of a sequence of Borel subsets Y,
then B(X xY) = B(X) x B(Y) if and only if for each n, B(X xY,) =
B(X) x B(Y,). Hence, if Y is the union of a finite family of Borel
sets Y;, then B(X xY) = B(X) x B(Y) if and only if for each i,
BX = Y;) = B(X) x B(Y).

Proof. Necessity follows from Lemma 1.1. To prove sufficiency,
suppose W € B(X xY). Then W = J(W N (X xY,)). For each
n, the set WN (X xY,) € B(X xY,) =B(X)xB(Y,) C B(X) xB(Y).
Hence, W € B(X) x B(Y). O

Lemma 1.3. Let f: X — X' and g : Y — Y’ be Borel measurable
functions, and let (f ® g) be defined on X xY by (f ® g9)(z,y) =
(f(x),9(y)). Then (f @ g)~1 (M) € B(X) x B(Y) for each M €
B(X') x B(Y").

Proof. Because (f ® g)~! preserves countable unions and comple-
ments, we see that

M={M e B(X')xBY'): (f®g)""(M) € B(X) x B(Y)}
is a o-algebra of subsets of X’ x Y’'. Because M contains each Borel

rectangle in X’ x Y’ we have M = B(X') x B(Y"), which completes
the proof. a

Lemma 1.4. If Z is second countable and B(X xY) = B(X)xB(Y),
then B(X x (Y x Z)) =B(X) x B(Y x Z).

Proof. Suppose G is open in X x (Y x Z) and that {W,,} is a countable
base for Z. For each n and for each open set U in X, let

V(n,U) = U{V :VisopeninY and U x (V x W,,) C G}.
Then each V(n,U) is open in Y, and

¢ =JUU xv(n,U) x w,.
n U
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For each n, let
H, = U xV(n,U).
U
Since H,, is open in X XY, we have H,, € B(X) x B(Y) by hypothesis.
Hence, H, x W, € B(X) x B(Y x Z). Because G = |J,, H, x W, we
see that G € B(X) x B(Y x Z). o

Lemma 1.5. B(X x [[2,Y;) = B(X) x B(I[[;2,Y:) if and only
if B(X x [1.,Y:) = B(X) x B([[;_,Y:) for each positive integer
n. Hence, B([I:2,Y:) x X) = B([1[2,Y:) x B(X) if and only if
B((IT, Yi) x X) = B(I1, Yi) x B(X) for each positive integer n.

Proof. Necessity follows from Lemma 1.1. We prove sufficiency. For
each n € N, define

fn((xv (ylay2a .. )) = ((CE, (yla v ,yn)), (yn+1;yn+27-- ))

and

s~ twen([17) st (1 1 v)e 0 <(f)}

i=n+1

Using standard computations, one easily checks that A, is a o-algebra
containing all open rectangles U x V where U C X and V C [[, Yi.
Since B(X x [[i~,Y;) = B(X) x B(I[_, Yi), we obtain that A, =
B(X x [[;-,Y;) for any n. Let W be open in X x [[°,Y;. For each
n € N, put

Wn:U{UCXxﬁYi:Uisopenande 1"_0[ YZCfn(W)}

i=1 i=n+1

Without any difficulties one can show that W = |, fi'(W, x
I1:2 ole). Since W,, € A, for each n, we see that W € B(X) x
B(]];Z, Yi), which completes the proof. o

2. Main Theorem. In this section we prove the following main
theorem.
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Theorem 2.1. Let X be a space, and let Y be a metrizable space
with weight k. Then B(X xY) = B(X) x B(Y) if and only if
B(X x D) = B(X) x B(D) for the discrete space D of cardinality k.

We shall, in fact, prove in Theorem 2.5 that the conclusion of
Theorem 2.1 holds for a slightly larger class of spaces called quasi-
developable spaces.

Definition 2.2. (Compare with [4, Definition 8.1, 12, Definition 3].)
A collection G = Un G, of open sets in Y is a 6-base if and only if for
each open set V' and each y € V, there exist n and G € G,, such that
y € G C V and such that y belongs to only finitely many members of
Gn-

Definition 2.3. (Compare with [1, Definition 2.1, 4, Definition 8.4].)
A space Y is said to be quasi-developable if and only if there exists a
sequence {G,} of collections of open sets such that for each open set V'
and each y € Y, there exists n such that y € J{G € G, :y € G} C V.

Remark 2.4. (Compare with [2, Theorem 8].) A space Y has a 6-base
if and only if Y is quasi-developable.

Theorem 2.5. Let X be a space, and let Y be a quasi-developable
space with weight k. Then B(X xY) = B(X) x B(Y) if and only if
B(X x D) = B(X) x B(D) for the discrete space D of cardinality k.

Proof. Let G = |J,, Gn be a 6-base for Y. For each pair of natural
numbers n and m, let
Gnm = {y € Y : y belongs to at least m distinct members of G, }.

It is easy to see that each G, ., is open. Let Y, = Grm\Gnm+1-
Notice that

Y..m ={y €Y : y belongs to exactly m distinct members of G, },

and notice that Y}, ,,, is a Borel set since it is the difference of two open
sets. Because G = J,, Gn is a 6-base, we see that Y =J,, ,,, Yn,m. For
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each pair of natural numbers n and m, let V), ,,, be the trace in Y, ,,, of
the family of all intersections of m distinct sets in G,,. Equivalently, for
eachy € Yy, m, let Vy o =({G € G 1 y € G}NY, 1, and let V,, , be
the family of all sets of the form V, ,, ,,, for some y € Y;, ,,. Notice that
the members of V,, ,,, are relatively open sets in Y, ,, and that V,, ,,, is a
partition of Yy, .. Let m, ,, be the quotient mapping of Y,, ,, onto the
quotient space Dy, ,, obtained by identifying the points belonging to
the same V' € Vy, . Of course, Ty, m : Yn,m — Dn,m is continuous and,
thus, Borel measurable. Because the weight of Y equals k, each G,
and, hence, each V, ,, has cardinality less than or equal to x. Hence,
each D, ,,, has cardinality less than or equal to .

Suppose now that W is open in X x Y. For each V' € V,, ,, let Uy
be the union of all open sets U in X such that U x V' C W. In other
words, Uy is the largest open set in X such that Uy x V C W. Let
Wym =U{Uv xV:V €V, 1}, and let

Wem= U U x{mm()}
VEVnm
Clearly, W, ,, is open in X X Dy ,,. Hence, W € B(X) x B(D)
by hypothesis. Because Wy m = (6 X Tn,m) "' (W ,,), where § is the
identity mapping, we have Wy, ,,, € B(X) x B(Yy,;m) C B(X) x B(Y') by
Lemma 1.3. That W € B(X) x B(Y) follows from the fact that W is a
countable union of the sets W, p,.

Since the weight of X equals k, at least one V), , has cardinality
k. The corresponding set Y,, ,,, thus contains a discrete subspace with
cardinality x, and necessity follows from Lemma 1.1. O

As an immediate consequence of Theorem 2.5, we obtain

Corollary 2.6. (Compare with [11, Théoréme 1].) Let k < 2“. The
following conditions are equivalent:

(i) B(D x D) = B(D) x B(D) for the discrete space D of cardinality

(ii) B(X xY) = B(X) x B(Y) for each pair of quasi-developable
spaces X and 'Y of weight < k.

(i) B(X xY) = B(X) x B(Y) for each pair of metrizable spaces X
and Y of weight < k.
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(iv) B(X x X) = B(X) x B(X) for every quasi-developable space X
of weight < k.

(v) B(X x X) = B(X) x B(X) for every metrizable space X of
weight < K.

In Corollary 2.6, condition (i) is clearly the same as the statement
that P(D x D) = P(D) x P(D) if D has cardinality . This equation
holds if kK < w; ([8, Theorem 12.5(ii), 9, Theorem 2]), does not
hold if k > 2¥ ([8, Lemma 12.2(ii), 10]), and depends on one’s set
theory if wy < k < 2% ([8, Theorem 12.8]). Assuming Martin’s
Axiom, Theorem 2.5 tells us that if X is any quasi-developable space
with weight less than ¢ and Y is any quasi-developable space, then
B(X xY)=B(X) x B(Y). This follows from Lemma 1.3 and the fact
that under Martin’s Axiom, 2" < ¢ whenever k < c.

We caution that quasi-developability (or something similar) is needed
in Theorem 2.5 and Corollary 2.6. That is, it is possible that B(D x
D) = B(D) x B(D) for a discrete space D with cardinality equal to
weight of X even though B(X x X) # B(X) x B(X).

Example 2.7. Let X be the set of ordinals less than or equal to
the first uncountable ordinal w;, and let X have the order topology.
Clearly the weight of X equals w;. By the remarks following Corollary
2.6, B(D x D) = B(D) x B(D) if D is a discrete space with cardinality
w1. However, B(X x X) # B(X) x B(X) (cf. [6, Theorem 2]).

It is interesting that Theorem 2.1 has a fairly easy proof in terms of
a universal metric space. We close with that proof.

Alternate Proof of Theorem 2.1. The most familiar universal metriz-
able space is the product of countably many copies of the hedge-
hog space J(k) of spininess & (cf. [3, Example 4.1.5 and Theorem
4.4.3]). Since Y is topologically equivalent to some subspace of J ()%,
it suffices by virtue of Lemma 1.1 to prove that B(X x J(k)¥) =
B(X) x B(J(k)¥).

Since there exists a point zp € J (k) such that J(k)\{z0} is homeo-
morphic to (0,1] x D, it follows that each J (k)™ can be expressed as
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the union of finitely many Borel sets Y;, where for each Y;, there exists
m < n such that Y; is homeomorphic to {2} ™ x ((0, 1]™ x D™). Be-
cause [0, 1]™ is second countable and D™ is a discrete space of cardinal-
ity k, we have B(X xY;) = B(X) x B(Y;) by Lemma 1.4. Then Lemma
1.2 says that B(X xJ (k)™) = B(X)xB(J(k)") for each positive integer
n. Lemma 1.5 implies that B(X x J(k)¥) = B(X) x B(J(k)*).

Because a metrizable space Y contains a discrete subspace whose
cardinality equals the weight of Y [5, Theorem 8.1(d)], necessity follows
from Lemma 1.1. O
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