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NILPOTENCE OF PRODUCTS OF
NONNEGATIVE MATRICES

RAFAEL BRU AND CHARLES R. JOHNSON

ABSTRACT. Given m nonnegative n-by-n matrices A1, Az,
..., A, we consider the circumstances in which the prod-
uct A1 Az ... Ay, is nilpotent and also the stronger condition
that A, Aa,..., Ap are simultaneously permutation similar
to strictly upper triangular matrices. These eventualities co-
incide in the case of a single matrix, but they differ for several
matrices and are each characterized in a variety of ways.

1. Introduction and notations. We consider the question of
which sequences of m nonnegative n-by-n matrices have a nilpotent
product. This problem comes to our attention from the study of the
structural properties of discrete time positive periodic linear systems.
Given a discrete-time periodic linear system

(1) 2(k +1) = A(k)z(k) + B(k)u(k)

in which A(k) and B(k) are nonnegative N-periodic matrices of sizes n-
by-n and n-by-p, respectively, we consider the n discrete time invariant
linear systems associated with (1)

(2)  zs(k+1) = Aszs(k) + Bsus(k), s=0,1,... ,N - 1.

Recently, in [1], there appeared a characterization of positive control-
lability of (1) in terms of positive controllability of the systems (2);
more precisely, it was shown that “The positive periodic system (1) is
completely positive orthant controllable at s if and only if the positive
invariant system (2) corresponding to index s is completely positive
orthant controllable, s = 0,1,...,N — 1.” Further, it is known (see
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6 R. BRU AND C.R. JOHNSON

[2]) that the invariant system (2), for a fixed s, is completely positive
orthant controllable if and only if the set of states x that are reachable
in finite time with nonnegative inputs u, is R’} and the matrix A; is
nilpotent. Moreover, this matrix is the monodromy matrix ® 4 (s+ N, s)
at s of (2), which is defined as

(3) A;=P4(s+N,s)=A(s+N-1)A(s+ N —2)--- A(s).

Thus, it is of interest when A; is nilpotent, or, in other words, when
the product of m nonnegative matrices is nilpotent. We note that this
is a purely combinatorial property depending only upon the nonzero
patterns of the factors in order. Thus, our results will be described in
combinatorial terms.

Let A be an n-by-n matrix. We denote its entries by a;;, 1 <1, j <n,
and by G(A) its directed graph, that is G(A) = {V, E} where V = (n)
is the set of vertices {1,2,... ,n} and E = {(i,j) € V x Vl]a;; # 0}
is the set of edges. We denote an edge from vertex i to vertex j
by (4,7). A path (of length k) from ¢ to j is a sequence of edges
(,41), (i1,%2)y ... , (ik—1,7) In G(A). A path from ¢ to j is called a
circuit if i = j, and a circuit is a cycle if it has no repeated (interior)
vertices.

We denote the transitive closure of G(A) by G(A); this is just the
graph that has an edge from ¢ to j if there is a path in G(A) from 3
to j. If Gy = {V1, E1} and Go = {Va, Ex} are two directed graphs, by
G1UG2 we just mean the directed graph {V; UVs, E; U E5}; thus, if the
two vertex sets are the same (as will be the case in this note), then the
union of two graphs is just the superposition of their edges. If A is a
nonnegative matrix note that G(A) is just the same as G(A+ A% +-- -+
A™) or G(A)UG(A?)U---UG(A™). Given several n-by-n nonnegative
matrices Ay, As, ..., Am, we shall wish to consider the union of their
directed graphs, but at the same time remember from which matrices
each edge came. Thus, we define the joint graph G(Ay, As, ..., Ay,) as
G(A1)UG(A2)U- - -UG(A,,), in which, additionally, each edge is labelled
(“colored”) with a subset of {1,2,...,m} depending upon which of the
graphs G(A41),G(A42),...,G(Ap) includes that edge. It is clear that
G(A; + Az) = G(A1) UG(As) for n-by-n nonnegative matrices A; and
Ay. Thus, there is an edge in G(A; + A2) if and only if there is an edge
in G(A;, Ay) labelled 1 or 2.
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The graph of the product of two nonnegative n-by-n matrices A; and
Ay is the graph G(A;A4,), and it is readily observed that (i,7) is an
edge of G(A;A4,) if and only if there is a vertex k, 1 < k < n, such
that (i,k) € G(A;) and (k,j) € G(Az2). Equivalently, there is a path
in G(A1, Az) of length 2 colored 1, 2 in order.

By a word in a set of factors { Ay, As, ... , Ay}, we mean an arbitrary
(with respect to order, length and repetition) product built from
these factors. For example, A?A4,A3A3A5 and A; A2A; are words in
{A, A, A3}. The length or degree of a word is just the total number
of factors. For example, A?A;A3A3A3 has degree 12.

As usual, we use p(A) to denote the spectral radius (maximum of
the absolute values of the eigenvalues) of a square matrix A. If A is
nonnegative, p(A) is itself an eigenvalue of A by the Perron-Frobenius
theorem.

The remainder of this note is organized as follows. We first collect
several useful characterizations of nilpotence for a single nonnegative
matrix in the next section and then observe in Section 3 a variety of
facts to be used later. This allows us to give a simple characterization,
via the joint graph, of when a product of several nonnegative matrices
(in a given order) is nilpotent in Section 4. This characterization
parallels one of the characterizations of nilpotence for a single matrix
in terms of the usual graph.

If n-by-n nonnegative matrices Aj, As,..., A, are strictly upper
triangular, then any product (including repetitions) from among them
is nilpotent. The links between these two phenomena are studied in
Section 5.

2. Characterization of nilpotence for a single nonnegative
matrix. For convenience, we record here, with proof, several useful
characterizations of nilpotence for an individual nonnegative matrix.
Most of these are widely known.

Theorem 0. For an n-by-n nonnegative matriz A, the following
statements are equivalent:

i) there exists a permutation matriz P such that PT AP is strictly
upper triangular;



8 R. BRU AND C.R. JOHNSON

i) p(4) =0
) A™ =0 (A is nilpotent);
iv) G(A) has no loops;
) A* has all diagonal entries equal to zero, for all k =1,2,...;
vi) G(A) is acyclic;
vii) G(A) has no circuits; and

) the vertices of G(A) may be labelled 1,2,... ,n, so that every
edge (i,7) is such that i < j (ordered labelling).

Proof. 1) — ii). The eigenvalues of a triangular matrix appear on the
diagonal.

ii) — iii). Use the Jordan form of A.
iii) — iv). If G(A) had a loop (say the i*}), then there would exist a

positive integer k, 1 < k < n, such that al(f) > 0. Here, A% = (agf))'

Then ag-lk) would be positive as well, contradicting A™ = 0.
iv) — v). Obvious.

v) — vi). Suppose G(A) has a cycle of k < n edges containing vertex
k
i«

vi) — vii). If G(A) had a circuit (i1,%2), (i2,3),..., (ik,?1), either
this circuit is a cycle or we may pick the first subscript j such that
i; = in, with b < j. Then (in,in41),. .., (¢j—1,%;) would be a cycle in
G(A).

vii) — viii). There must be a vertex such that no edge emanates from
it; for, if not, a circuit could be constructed. Choose such a vertex; label
it n and delete it (and any incoming edges) from G(A). The resulting
graph is still acyclic. Choose a vertex in it, with the same property, to
label (n — 1). Continuing in this manner produces an order labelling.

1. Then a calculation shows that a;,’ would be positive.

viii) — i). This implication is clear by using the permutation matrix
associated with the assumed relabelling. O

We note that statements ii) and iii) are equivalent to nilpotence
for general matrices. The remaining statements are all sufficient for
nilpotence for general matrices, but rely upon the nonnegativity of A
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for equivalence to nilpotence (i.e., they are entirely graph theoretic).

Given a nonnegative n-by-n matrix A, we define the transitive closure
of Aas A=A+ A% + .-+ A", It follows from Theorem 0 that

Corollary 1. A nonnegative n-by-n matriz A is nilpotent if and only
if each diagonal entry of its transitive closure A is 0.

3. General facts. Consider m nonnegative n-by-n matrices
Ay, As, ..., A,,. The following facts are basic to what follows and,
though simple, may be of independent interest.

Lemma 2. There is an edge from i to j in G(A1As---Ap) if
and only if there is a path of length m from i to j in the joint graph
G(Ay, A, ..., Ay) colored with 1,2, ... ,m, in that order.

Proof. Since each of Ay, A, ..., A, is nonnegative, there is an edge
(i,7) in G(A1Az2---Ay,) if and only if there are the following edges
(’i, kl) S G(Al), (k‘l, kg) S G(AQ), . ,(km_l,j) S G(Am) These edges
are colored 1,2,... ,m, in order in G(A;, Aa, ..., An). o

Corollary 3. There is a path in G(A1Ay---Ay) of length k if
and only if there is a path of length km in G(A1, Aa, ..., Ay) colored
1,2,...,m,1,2,... ,m,...,1,2,... ;m, in order.

Corollary 4. There is a circuit of length km in G(A1,As,... , Ap)
colored 1,2,... ,m,1,2,... . m,...,1,2,... . m, in order if and only if
there is a circuit in G(A1As -+ Ay,) of length k.

Lemma 5. There is a circuit in the joint graph G(Ay, As, ..., An)
in some colored order if and only if there is a circuit in G(A1)UG(A2)U
-+ UG(Ay,) in which consecutive edges occur in different G(A4;).

Proof. Suppose that the circuit in G(A;, As,...,An) is colored
€1,€2,+-- ,Cly... ,Ck, in order. Corresponding to each color there is
an edge in G(A,). If two or more, say p;, consecutive colors are equal,
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then there is an edge in G(AZ') and hence that edge is in G(A,,). Thus,

there is a circuit in G(A4;) UG(A2)U---UG(A,,) in which consecutive
edges occur in different G(A,,).

Conversely, suppose there is a circuit in G(41)UG(A2)U---UG(A,)
in which no two consecutive edges are in the same G(4;). Fixing each
edge in the corresponding graph G(A’c’ll), then by Lemma 2 there is a
path of length p; in G(A,,, A¢,,---,A,,). The concatenation of these
paths yields a circuit in G(Ay, As, ... , Ay,) in some colored order. |

In the following, we abbreviate the repetition of the label, ¢;, p; times
(pi > 1) as .

Lemma 6. There is a circuit of length py +p2 + - - - + pg in the joint
graph G(Ay, Ay, ..., Ay,) labelled &t 52, ... cb* in order if and only
if ALYAL2 ... AP* has a nonzero diagonal entry.

Proof. Suppose that the i*" diagonal entry of the matrix AP AP2 ... APk
is nonzero, so that the edge (i,7) is in G(AP* AP2 ... APx). By Corol-
lary 4 there is a circuit of length k in G(AR, AP2,... AP*) la-
belled c¢j,c2,...,c, in order, and hence there is a circuit of length
p1+p2+ -+ pr in G(Ay, Az, ..., Ap) labelled ', ch?,... ,cbF in
order.

Conversely, suppose there is a circuit of length p; + p2 + - + pg in
G(A1, Az, ..., Ay) labelled ¢, ch?,. ..,k in order. By Corollary 3
applied to every subpath of length p; labelled ¢y, ... , ¢ of the circuit,
there is a path of length 1 in G(AZ'). The concatenation of these edges
gives a circuit of length k in G(AP*, AP2, ..., AP¥)labelled ¢y, ¢, ... ,Cp
in order. Then by Corollary 4 there is a circuit of length 1 in
G(APrAP2 ... APr) and hence the word AP AP2... APk has a nonzero

diagonal entry. O

Remark. The “if” part of each of the last three results remains
valid if we replace circuit by cycle. However, the “only if” part
does not remain valid as the following example shows. Suppose that
G(Al) = {(152)a(355)a(455)}7 G(AQ) = {(253))(552)} and G(A3) =
{(2,1),(2,3),(3,4)}. Then to the cycle (1,4),(4,3),(3,1) of G(A14243)
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corresponds the circuit (1,2),(2,3),(3,4),(4,5),(5,2),(2,3),(3,5),(5,2),(2,1),
colored 1,2,3,1,2,3,1,2,3, which has necessarily interior vertices and col-
ored edges repeated.

4. Characterization of the nilpotence of a product of non-
negative matrices. Now we may simply give a characterization of
the nilpotence of a product, which, for the joint graph, parallels that
of one of the characterizations of nilpotence for a single matrix.

Theorem 7. Given m nonnegative n-by-n matrices Ay, Aa, ..., Am,
the product A1 As - - Ay, is nilpotent if and only if there exists no circuit
of length km, 1 < k < n, in G(A1, As, ... ,Ap,) whose edges are colored
L,2,.... m12 ...,m,...,1,2,... ,m, in order.

Proof. The matrix A;As--- A, is nilpotent by Theorem 0 if and
only if its graph G(A;As---A,,) has no circuit. By Corollary 4 this
happens if and only if there does not exist a circuit of length km in
G(A1, Ay, ... ,Ay) colored as 1,2,... ,m,1,2,... ,m,...,1,2,... ,m.
O

Note that the product of two nilpotent matrices is not in general
nilpotent as the following example shows:

0 0 0 1
A_[Q 0] and B—[O 0]

are nilpotent, but

0 0
as=[0 )]

is not nilpotent. Further, it should also be noted that products
involving non-nilpotent matrices may be nilpotent. For example, the
product of the following non-nilpotent matrices

2 1 0 0
C—[O 0] and D_[O 1]

is nilpotent, in either order.
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Remark. Note that if the product A;As--- A, is nilpotent, then
any cyclic reordering of it is nilpotent because the spectra of the two
matrix products MN and NM are the same, for square M and N.
Thus, for m = 2 the product of the m given matrices is or is not
nilpotent independent of their order. For m > 3, however, order is very
important. If

0 0O 0 10 0 0O
A;=10 0 1|, A,=1]0 0 0 and A3=|0 0 Of,
0 0O 0 0O 1 00
then A;AAs is nilpotent while A1 A3A5 is not.

Corollary 8. Given m nonnegative n-by-n matrices Ay, Aa, ..., Am,
the product of these matrices in any order is nilpotent if and only if there
exists no circuit of length km, 1 < k <n, in G(A41, As,... ,Ay,) whose
edges in order are colored 1,T(2y,- - s Tim), L, T(2)s -+ s T(m)» - -+ » 1, T(2)s

s Tem) for a permutation T of {2,3,... ,m}.

5. Conditions for simultaneous strict upper triangular form.
Thus far we have considered a product of a given set of nonnegative
matrices multiplied in a specified order. It is not difficult to construct
examples in which a permutation of the order or the allowance of
repeats makes a difference. For example, if + denotes a positive entry
and

+ 0
0 +
0 0
then A;Aj is nilpotent, but the word A; A3 is not. Next we turn our

attention to general products from a given set of factors.

If Ay, As,..., A, are strictly upper triangular, it is clear that any
word in {43, As,..., A} is nilpotent. In a sense our principal result,
which is for products partly parallel to Theorem 0, is a converse to this
observation.

Theorem 9. If Ay, As,..., A, are n-by-n nonnegative matrices,
the following statements are equivalent:

i) every word in {Ay, Aa, ..., An} is nilpotent,
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ii) the joint graph G(Ay, A, ..., Ay) is acyclic;

111

) the joint graph G(Ai, A, ..., Ap) has no circuits;
iv) the matriz Ay + Az + - - - + Ay, is nilpotent;
)

v) A1, As, ..., A, are simultaneously strictly upper triangular; i.e.,
there is a single permutation matriz P such that PTA;P is strictly
upper triangular, 1 < i < m;

vi) every word of degree n in {Ay, As, ..., An} is 0;
vii) the joint graph G(Ay, As, ..., Ay) has an ordered labelling; and

viii) no word in {4y, As,... ,An} has a nonzero diagonal entry.

Proof. i) — ii). Applying Theorem 7 to every word we deduce that
G(Ay, As, ..., Ay) is acyclic.

ii) — iii). Similar to the corresponding proof of Theorem 0.

ili) — iv). G(A1 + Az + --- + A,;,) has no circuits because it has
the same edges as G(41,As,...,A,,) and by Theorem 0 the matrix
Ay + Ay + -+ + A, is nilpotent.

iv) = v). Since A;+As+- - -+ A, is nilpotent, there is a permutation
matrix P such that PT(A;+As+---+A,,)P is strictly upper triangular
by Theorem 0. Then PTA;P is strictly upper triangular as well,
because of the nonnegativity of the A;, 1 < i < m.

v) — vi). Any product of n strictly upper triangular matrices of size
n is 0.

vi) — vii). Since every word of degree n is 0, it follows by formal
expansion that (4; + A2 + -+ + A,,)" = 0. By Theorem 0, A; +
Ay + -+ + A, is nilpotent, and its graph has an ordered labelling.
But G(A; + Ay + --- + A,) and G(Ag, Ag,..., Ay) have the same
edges (ignoring coloring), so that G(A;, As,...,A,,) has an ordered
labelling.

vii) — viii). Since G(Ay, Az, ..., Ay,) has an ordered labelling, it has
no circuits. By Lemma 6 no word has a nonzero diagonal entry.

viii) — i). Suppose that there is a word that is not nilpotent. Then
some power of it has a nonzero diagonal entry, by Theorem 0. But this
power is also a word, which contradicts viii) and completes the proof.
O
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It is natural to ask if statement (i) of Theorem 9 is equivalent to the
formally weaker condition of Corollary 8 in which nilpotence is required
only of all the m! permutations of A;As -+ A,,. We note that this is
not the case, as indicated by the example for m = 2 at the beginning of
this section. By condition (vi) of Theorem 9, words of degree beyond n
need not be considered, and this appears to be the maximal weakening
that is equivalent to statement (i).

By appealing to transitive closure, simpler characterizations of simul-
taneous strict upper triangularity may be given.

Theorem 10. If A and B are n-by-n nonnegative nilpotent matrices,
then there is a permutation matriz P such that PTAP and PTBP are
strictly upper triangular if and only if AB is nilpotent.

Proof. 1f PTAP and PTB_P ’ are strictly upper triangular, then PTAP
and PTBP are also; thus, A B is nilpotent.

Conversely, if G(A, B) has a cycle, then G(A, B) must have one with
alternating colors. Since G(A) is transitively closed, there must then
be an alternating cycle in G(A, B) whose length is a multiple of 2; then

A B is not nilpotent by Theorem 7. u]

Corollary 11. If G(A) and G(B) are transitively closed, then AB
is nilpotent if and only if A and B are simultaneously strictly upper
triangular.

Note that the length of the cycle in G(A, B) used in the proof of
Theorem 10 is a multiple of 2 (the number of matrices). This fact
plays a fundamental role in the above characterization. Since in the
general case such a cycle need not occur, we should not expect to
have a natural and simple extension of this result. Indeed, in order to
establish an analogous theorem for m nonnegative matrices, m > 2, call
amap f:(p) = (p) locally distinguishing if f(i) # f(i +1),1<i<p,
(here p + 1 is identified with 1 and (p) means the set {1,2,...,p}).

Theorem 12. Let Ay, Ao, ..., An be n-by-n nonnegative nilpotent
matrices. There is a permutation matriz P such that PA;P is strictly
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upper triangular, 1 < i < m, if and only if Zf(l)Zf@)---Zf(k) 18
nilpotent for all k < n and all locally distinguishing maps f.

Proof. If there is a permutation matrix P such that PT A; P is strictly
upper triangular, 1 < i < m, then PTA;P is as well, 1 < i < m,
and hence Zf(l)Zf@) .- -Zf(k) is nilpotent, 1 < k < n, for all locally
distinguishing maps f.

Conversely, suppose that G(Ajy, As, ..., A;) has a cycle labelled in
some order. Then by Lemma 5 (and the Remark following) there is a
cyclein G(A;)UG(A2)U- - -UG(Ay,) in which consecutive edges occur in
different graphs; thus this cycle is in G(A;, As, ... , Ay,). Suppose that
the length of this cycle is £ < n (and, without loss of generality, that
it involves at most Ay, Ay, ..., A) and that the locally distinguishing
map f : (k) — (k) is defined by its labels (i.e., f(j) is the label of
the j*® edge). Therefore, the joint graph G(Zf(l),zf(z),... ,Zf(k))
has a cycle of length k colored f(1),f(2),...,f(k) in order, and
Zf(l)Zf(z) . -Zf(k) is not nilpotent by Theorem 7. ]

Finally, we note a characterization of the uniqueness of the permuta-
tion matrix P for which PT AP is strictly upper triangular.

Theorem 13. Let A be an n-by-n nilpotent matrix. There is a unique
permutation matriz P such that PTAP is strictly upper triangular if
and only if G(A) has a path of length n — 1.

Proof. For the reverse implication, note that the assumed path of
length 7 — 1 must contain all the vertices 1,2,... ,n or else A would
contain a cycle and not be nilpotent. It is then clear that the only
permutation P for which PT AP is strictly upper triangular is the one
that places the edges of the path of length n — 1 on the super-diagonal.

For the forward implication, assume that G(A) does not have a path
of length n—1 and that P is a permutation matrix such that P AP; is
strictly upper triangular. Then P AP; must have at least one 0 along
the super-diagonal, say in the ¢ — 1, 7 position. If ) is the transposition
permutation matrix that interchanges i — 1 and i, then PJ AP, is also
strictly upper triangular for P, = P;Q. mi
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