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TOEPLITZ OPERATORS ON THE DISK
WITH LOCALLY SECTORIAL SYMBOLS

ALBRECHT BOTTCHER

1. Introduction. Let D denote the open unit disk in C, and
let A%(D) be the Bergman space of square-integrable holomorphic
functions in D. For a € L™ := L*°(D), the Toeplitz operator T'(a)
on A?(D) is defined by T'(a)p = P(ay) (¢ € A?(D)), where P is the
orthogonal projection of L?(D) onto A%(D). The function a is usually
referred to as the symbol of the operator T'(a).

The Fredholm properties of Toeplitz operators on A?(D) were studied
by Venugopalkrishna [15] and Coburn [7] for symbols in C(D) (the
functions continuous on the closed disk D), by McDonald [10] (and also
in [8]) for symbols in C(D)+ H*°(D), and by McDonald and Sundberg
[12] for symbols in alg HL>(T), the smallest closed subalgebra of L>
containing the bounded harmonic functions. Note that all these symbol
classes are subalgebras of the algebra BC' of all bounded continuous
functions on D.

Symbols which are not in BC' were considered by Luecking [9] and
McDonald [11]. Luecking established an invertibility criterion for 7T'(a)
in case a > 0 a.e. on D. McDonald proved a Fredholm criterion for
T'(a) in the case where a belongs to HC(D), the set of all functions
a € L with the following property: for each 7 € T := 0D there exists
aset Uy :={z € D:|z— 7| <e} and a straight line containing 7 and
dividing U, into two subsets U, and U such that a|U> and a|U; are
uniformly continuous.

We remark that a major part of the aforementioned papers actually
deal with Toeplitz operators on the ball {z € C™ : |z| < 1} or on more
general (and even exotic) domains. In addition to the works already
cited, we refer in this connection to [1] and [3].

The present note concentrates on Toeplitz operators whose symbols
are locally sectorial in some sense. Assume, for example, A, u,v are
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three distinct points on T and a € L* is zero on the triangle A made
by A, p, v and takes on constant values «, 3, € C on each of the three
segments of D\A. We shall show that 7'(a) is Fredholm on A%*(D) if
only the origin is not located on the periphery of the triangle spanned
by a,(,7. The approach employed here relies heavily on ideas from
the circle-case, i.e., for Toeplitz operators on the Hardy space H?(D),
and it is to a large extent originated by the papers [14] and [4] (also
see the book [6]).

2. Locally sectorial functions. Recall that L*> stands for L*°(D),
and let L° be the set of all a € L™ such that esssup {|a(z)|:7 < |z| <1}
— 0 as r — 1. We denote by X the maximal ideal space of L*°. Since
L& is a closed ideal of L™, there is a closed subset X of X such
that L§° = {a € L™ : a|0X = 0}, and, consequently, L>°/L° may be
identified with C'(0X). In what follows we shall make no distinction
between the coset a™ := a + L§® € L*°/L§° and its Gelfand transform
a™ € C(0X).

Let B be any C*-subalgebra of L containing the constants (in that
case we say that B is a C*-algebra between C and L*°). Then B+ L
is also a C*-subalgebra of L>. The quotient algebra (B + L3)/L is
isometrically star-isomorphic to B/(B N L) and is a C*-subalgebra
of L>*/L¥ = C(0X). For B in the maximal ideal space Mp of
(B+ L§)/L§°, we define the fiber X3 as

0Xp={xc0X:b"(x) =b"(pB) for all b € B}.

The partition X = Ug0Xp is a partition of 0X into pairwise distinct
nonempty compact subsets.

A function a € L* is said to be locally sectorial over a C*-algebra
B between C and L* if for each 8 € Mp the origin does not belong
to conva™(0Xg), the closed convex hull of the set a™(0X3). The set
a™(0X) coincides with the spectrum of a™ in L*°/L5°. If conv a™(0X)
does not contain the origin, then a is called globally sectorial.

Theorem 1. A function a € L* is locally sectorial over a C*-algebra
B between C and L*° if and only if a is of the form a = bs + d, where
d € Ly, s € L™ is globally sectorial, and b is a function in B such that
b™ is invertible in (B+ Ly¥)/L§°.
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Proof. The “if” part is trivial for, if 5 € Mg, then a™(0Xg) =
b™(B)s™(0Xg). So suppose a is locally sectorial over B. Then a™(z) #
0 for all z € 0X, and so there is a function u € L satisfying
u™(z) = a"(x)/la™(z)| for all x € 9X. If B € Mg, then the set
u™(0Xp) lies on some open half-circle, and hence there is a cg € C
such that |u™(z) — cg| < 1 for all # € 9Xg. Using a theorem by
Glicksberg (see [4] or [6]), we now infer that there exists a function
b € B with |u™(z) — b™(z)| < 1 for all x € 0X. Since u™ is unimodular
on 0X, we have |1 —b"(z)/u"(x)| < 1 for all x € X. Consequently,
Re (b™/u™) > 0, and thus also Re (a™/b™) = Re (|a™|u" /b™) > 0 on 0X.
Let s be any function in L* such that s™(z) = a™(z)/b" (z) for z € 0X.
Then s is globally sectorial and d := a — bs € L§°. Finally, since
b™ € (B+ L)/ Lge is invertible in L>* /L and (B+ Ly°)/L&° is a C*-
subalgebra of L>°/Lg°, it follows that b” is invertible in (B+ L°)/Ls°.
O

For 7 € T, let U, be the family of all sets of the form {z € D :
|z — 7| < e}. Given a € L*® and U € U,, we denote by Ry(a) the
essential range of a on U, and we let R,(a) = NRy(a), the intersection
over all U € U,. The maximal ideal space of (C(D)+Lg°)/LE = C(T)
is homeomorphic to T, and so 0X = U{0X, : T € MC(D)} is a fibration
over T. We have a™(0X,) = R,(a), and hence a is locally sectorial

over C'(D) if and only if 0 ¢ conv R, (a) for all 7 € T.

If a € HC(D), there is a natural definition of the one-sided limits
a(r £+ 0) at each point 7 € T, and a is locally sectorial over C(D) if
and only if 0 ¢ [a(T — 0),a(r + 0)] for all 7 € T.

Let B be a C*-algebra between C(T) and QC(T) := L*°(T) N
VMO(T). We denote by Hb the harmonic extension of a function
b e L(T) into D. Then HB + L := {Hb+d:be B,d e L} is a
C*-subalgebra of L*, and since

(HB+ L) /L = HB/(HBN L) = HB/{0} = B,

M3+ Lg is homeomorphic to the maximal ideal space Mp of B. By
resorting to results of [13] and [5], one can show that if a € BC and
B € Mp, then a™(0Xg) is equal to the cluster set
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Cl(a,B) ={A€C:Ve >0 Vbe B 3ze D such that
[(Hb)(z) — b(B)| < 1 and |a(z) — A| < €}.

Hence, a function a € BC' is locally sectorial over HB 4+ L{° if and only
if 0 ¢ conv Cl(a,3) for all B € Mp.

Finally, let B be any C*-algebra between C(D) and L*°, and let
a € L. If, for each 7 € T, there exist a function b, € B and a set
U, € U, such that 0 ¢ Ry, (b;) and 0 ¢ conv Ry, (bra), then a is
clearly locally sectorial over B.

3. Toeplitz operators with locally sectorial symbols. The
Hankel operator H(a) : A%(D) — L?(D) generated by a function
a € L™ is the operator acting by the rule H(a)p = (I — P)(ay)
(p € A%(D)). The question on the compactness of Hankel operators is
of great relevancy in the Fredholm theory of Toeplitz operators. Axler
[2] showed that if a € H*>* (D), then H(a) is compact if and only if a is in
the “little Bloch” space. Only recently Zhu [16] succeeded in describing
the set of all @ € L for which both H(a) and H(a) are compact. This
set will here be denoted by QC (because it may be regarded as a disk
analogue of Sarason’s algebra QC(T)) and it consists of all a € L™ for

which
1
lim —/
l2l=1 [Sz| Js,

where dA = (1/m)rdrdf is normalized area measure on D and, for
ze€D, S, ={weD:|w > |z, laagw — argz| < 1 — |z|} and
|S2] = (14 |2])(1 — |2])? is the measure of S,.

For z € D, the normalized reproducing kernel k, € A%(D) is defined
by

dA(w) =0,

1
a(w) — m/S a(u) dA(u)

E.(w) = (1—[2]*)/(1 — zw)?, w e D.

If a € L™, then the function

i2):= [ a(lk()dAw), =z €D,
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belongs to BC'. It is called the Berezin symbol of a. Also, for z € D,
let
C.={weD:|w|>|z],|argw — arg 2| < (1 — |2])/2}

and given a € L™, define ¢ € BC' as

a —L a(w w z
a(z)—Cz|/cz (w)dA(w),  z€D,

Note that the maps a — a and a — a of L* into BC are linear,
contractive, and order-preserving.

A function a € BC is said to be bounded away from zero if a™ is
invertible in L>°/L§°, or equivalently, if there exists an 7 € (0, 1) such
that inf|a(z)| > 0 on the annulus r < |z| < 1. In this case the winding
number (index) about the origin of the restriction of a to the circle
|z| = pis independent of p € (r,1) and it will be denoted by ind (a|0D).

Theorem 2 (Zhu [16] and [17]). For a function b € L™ the following
are equivalent:

(i) beQC;
(i) [B” - 7~ € L&
(i) B2 — 821" € L&
(iv) (ba)~ —ba € L for all a € L>;
(v) (ba)" —ba € L for all a € L.
If b € QC, then T(b) is Fredholm on A%(D) if and only if b

(equivalently, b) is bounded away from zero; in this case, the Fredholm
indezx of T(b) is given by

Ind T'(b) = —ind (b|0D) = —ind (b|0D).

Theorem 3. Let a € L™ be locally sectorial over a C*-algebra B
between C and QC. Then T(a) is Fredholm on A%(D), the functions a
and a are bounded away from zero, and

IndT'(a) = —ind (@|0D) = —ind (4|0D).
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Proof. It suffices to prove the theorem for B = QC. Theorem 1
provides a representation a = sb + d, where d € Lg°, s € L™ is
globally sectorial, b € QC and b™ is invertible in (QC + Lg°)/ L.
From Theorem 2(iv) we deduce that b is bounded away from zero, and
since § is obviously so, we obtain, again by Theorem 2(iv), that a is
bounded away from zero. We have

T(a) = T(s)T(b) + H*(5)H(b) + T(d),

and since T'(s) is Fredholm of index zero and T'(d) and H(b) are
compact and, once more by Theorem 2, T'(b) is Fredholm with index
—ind (b|0D), it follows that T'(a) is Fredholm and that

Ind T'(a) = Ind T'(b) = —ind (b|6D)
= —ind (b|0D) — ind (5]0D) = —ind (b5|6D)
= —ind (bs|8D) (Theorem 2(iv))
= —ind (bs + d|0D) = —ind (@|0D).

It can be shown analogously that @ is bounded away from zero and that
IndT'(a) = —ind (4|0D). O

The preceding theorem yields in particular a result which was essen-
tially established by McDonald [11]. Namely, if a € HC(D), then the
following are equivalent:

(i) T(a) is Fredholm on A?(D);
(ii) a is locally sectorial over C(D);

(iii) @ is bounded away from zero;

(iv) 0¢ a” := U erla(t —0),a(r +0)];
and if T(a) is Fredholm, then Ind7T(a) equals minus the winding
number about the origin of the naturally oriented curve a#. Indeed, the
equivalences (ii) < (iii) < (iv) are (almost) obvious, the implication
(ii) = (i) and the index formula follow from the theorem, and, once

the index formula is available, the implication (i) = (ii) can be proved
by an index perturbation argument.

Given a function a € L*(T) and an open arc V C T, let Ry(a)
denote the essential range of the restriction of a to V. For 7 € T,
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define R,(a) = NRy(a), the intersection over all open arcs V C T
containing 7.

A function a € L°(T) is said to be locally normal (over C(T)) if, for
each 7 € T, the set R, (a) lies on some straight line (possibly depending
on 7). Note that real-valued as well as piecewise continuous functions
are locally normal. A generalization of two main results of McDonald
and Sundberg [12] is as follows. If a € L°°(T) is locally normal, then
the following are equivalent:

(i) T(Ha) is Fredholm on A%(D);
(ii) Ha is locally sectorial over C(D);
(iii) Ha is bounded away from zero;

(iv) the Toeplitz operator T'(a) is Fredholm on the Hardy space
2

if T'(Ha) is Fredholm, then
IndT(Ha) = —ind (Ha|0D) = Ind T'(a).

Note that Theorems 1 and 3 give the implications (ii) = (iii), (ii)
= (i), and the first index formula. For the implications (iv) = (ii),
(iii) = (iv), and the second index formula, see [14] and [5] (or [6]).
Finally, the implication (i) = (ii) can be again established by an index
perturbation argument. We remark that the equivalence (i) = (iv) in
conjunction with the Widom-Douglas theorem on the connectedness of
the essential spectrum of Hardy space Toeplitz operators implies that
the essential spectrum of T'(Ha) is connected whenever a € L*(T) is
locally normal. Notice that the same conclusion may also be drawn
from the equivalence (i) = (iii) along with the fact that the set

{A e C: (Ha— )" is not invertible in L*>/L°}
= [ Ha){zeD:r <z <1})

re(0,1)

is connected for every a € L>(T).

4. Locally subsectorial symbols. Let G be any measurable subset
of D. We denote by Xg the characteristic function of G and define X¢g
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and X¢ as in Section 3. Note that X(z) is just the measure of the set
®,(G), where

®,:D—D, D, (w) =(z—w)/(1l - zZw).
Recall the definition of U, (Section 2) and put U = U crld.

Theorem 4 (Luecking [9]). For a measurable set G C D the
following are equivalent:

(i) T(xg) is invertible on A%(D);
(ii) there exists a constant C > 0 such that

/|f\2dA§C’/|f|2dA for all f € A%(D);
D G

(iii) inf{Xg(z): 2z € D} > 0;
(iv) inf{Xg(z): 2z € D} > 0;
(v) inf{|GNU|/|U|I:U €U} > 0.

We call a set G satisfying one (and thus all) of these conditions a
Luecking set. We emphasize that the property of being a Luecking set
is a condition on the behavior of the set near the boundary of D. In
particular, (iii) is equivalent to the requirement that 5(7(; be invertible in
L*>* /L and (v) may be replaced by the condition that, for any ¢ > 0,

inf{|GNU|/|U|: U € U,|U| <&} > 0.

As an example, we remark that if A C D is any convex polygon (whose
vertices are allowed to be located on T), then D\A is a Luecking set.

A function @ € L* is said to be globally subsectorial if there are
A €T, e >0, and a Luecking set G C D such that Re (Aa) > 0 almost
everywhere on D and Re (Aa) > € almost everywhere on G.

Theorem 5. If a € L*™ is globally subsectorial, then T(a) is
invertible on A%(D).
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Proof. Let Rea > 0 on D and Rea > € > 0 on some Luecking set
G. Then there is a constant C' > 0 such that ||f|]2 < C||Xaf]|2 for all
f € A%2(D). Put 6 = ¢/(C?||al|%,). If f € A*(D) and ||f||2 = 1, then

/D(Rea)|f|2dAZ/G(Rea)\f|2dA

> 2dA

_6/G|f\

> (/C?) / FPdA =e/C?,
D

whence
(I = 6T(@)) I3 < /D 11— dal?|f[2dA
:/(1—25Rea+52\a|2)\f|2dA
D

<1_ 25/ (Rea)| f|2 dA + 6%||a])%
D

13
<1 —255 + 62||a|2,

e 1y
C*llall2,

which implies that T'(a) is invertible. O

A function a € L* is called locally subsectorial if there is a function
d € L§P such that b := a — d has the following property: for each 7 € T
there exist \; € T, e, > 0, U, € U,, and a Luecking set G, such
that Re (A;b) > 0 almost everywhere on U, and Re (A\;b) > e, almost
everywhere on U, N G,.

Theorem 6. A function a € L> is locally subsectorial if and only
if it can be written in the form a = cs + d, where ¢ € C'(D) is bounded
away from zero, d € L§®, and s € L™ 1is globally subsectorial.

Proof. The “if” part is obvious. So suppose a is locally subsectorial.
With each U, = {# € D : |z — 7| < §,;} we associate the arc
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Ve:={t € T:|t— 7| <.} Thereis a finite number V,,...,V,,
of these arcs such that each ¢ € T belongs to at least one and to at
most two of them. We also may assume that the corresponding numbers
Aryy -« Ar, have the property that A\;, # —A,, whenever V,, NV, # @.

Choose r € (0,1) so that U, U---UU,, contains W := {z € D :
r < |z| <1} and put W; = {z = pe’® € W : € C V,;}. Then
Re (Ar;b(2)) > 0 for z € W and Re (A\r,b(2)) > € := min{e,,... ,e.,}
for z € W;NG,;. Let ¢1,..., 9, be a continuous partition of unity on
W such that each ¢; is constant along the radii {z € W : arg z = const }
and

Zgoj:l on W, 0<p; <1 on Wy, supp p; = W;.

Define ¢(z) = > Ar,;¢;j(2) for z € W. Then clearly Re(¢b) > 0 on
W. It is easily seen that G := U}_;(W; N G,) is a Luecking set and
that Re (¢b) > ¢ on G. We claim that ¢(z) # 0 for all z € W. Assume
there is a z € W such that ¢(z) = 0. Then there exist ¢ # j such that
z € W; N W;, whence

)“l’i‘pi(z) + )\Tj(pj(z) =0, Lp,(z) + (Pj(Z) =1,

which is impossible, since ¢;(z) and ¢;(z) are real numbers, |\,,| =
|Ar;| = 1, and A, # —A;;. Thus, ¢ does indeed not vanish on .

Now put 9(z) = 0 for z € D\W and 9(z) = ¢(z) for z € W, and
let s(z) = ¥(2)b(z) for z € D. Then, by construction, s is globally
subsectorial and s — b belongs to L§°. Since v is bounded away from
zero on W, there is a function ¢ € C'(D) such that cyp — 1 € L. It
follows that

cs—b=c(s—9Yb)+ (cy —1)b € Lg°,

and because a — b € L§®, we arrive at the desired representation. |
Theorem 7. If a € L™ is locally subsectorial, then T'(a) is Fredholm
on A%(D), the functions & and a are bounded away from zero, and

IndT'(a) = —ind (a|0D) = —ind (a4|0D).

Proof. Write a = sc+ d as in Theorem 6. So T'(a) = T(s)T(c)+ a
compact operator, and since T'(s) is invertible (Theorem 5) and T'(c
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is Fredholm of index —ind (¢|0D), it results that T'(a) is Fredholm and
that Ind T'(a) = —ind (¢|0D). If Res > 0 on D and Res > ¢ > 0 on
some Luecking set G, then

(Red)(z) > ¢ /G e (w) 2 dA(w) = X (2)

and, hence, by Theorem 4, Re s is bounded away from zero. Because
¢s — ¢5 € L§® (which can be verified by elementary estimation or can
also be deduced from Theorem 2), we conclude that @ is bounded away
from zero and that —ind (¢/0D) = —ind (@|0D). In the same way one
can show that & is bounded away from zero and that —ind (c|[0D) =
—ind (a|0D). o

5. Real-valued symbols. Let a € L* be real-valued. Put
m = essinf a, M = esssup a, and let spess T'(a) and sp T'(a) refer to the
essential spectrum and the spectrum of T'(a) on A?(D), respectively.
McDonald and Sundberg [12] proved that

SPess T(a) = Sp T(a’) = [mv M]
in case a is harmonic. All we can say in the general case is that
SPess T'(a) C spT'(a) C [m, M].

The question of whether m or M belong to spT'(a) was answered by
Luecking [9]: m ¢ spT(a) (respectively, M ¢ spT(a)) if and only
if there are an ¢ > 0 and a Luecking set G such that a > m + ¢
(respectively, a < M — ¢) on G. The following theorem provides
additional information about spess7'(a) and sp T'(a).

Theorem 8. Let a € L™ be real-valued, and denote by T the set of
all points 7 € T such that a™(0X;) = R.(a) is a singleton, {a(7)}. If
T is not empty, then

inf T(a).
[nf a(r), 5up a(7)] C spess T(a)

Proof. Put o = inf{a(r) : 7 € T} and B = supf{a(r) : 7 € T}
Assume first that o = 8 =: A\. Then a(7) = A, and hence R,(a — \) =
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{0} for all 7 € T. Fix any 7 € T and choose any sequence {¢,}5 ; of
functions ¢, € C(D) such that ||¢n|[c0 < 1, pn(7) =1, and p,(2) =0
for |z — 7| > 1/n. Then ||¢n(a — A)||oc = 0 as n — co. Denote by K
the ideal of compact operators on A%(D) and define the essential norm
of an operator T' on A%(D) by

T ]Jess = inf {||T + K]|| : K € K}.

From [7] we know that ||7(f)[less < |[f]|oo for every f € L> and that
T (f)less = [|f|T]|oo for f € C(D). It follows that ||T(on)|less = 1
and

T (pn)T (@ = Nless = [|T(pn(a@ = A))lless
<[pn(a—A)llc =0(1) asn— oo,

which implies that T'(a) — A\I = T'(a — A) is not Fredholm and proves

the theorem in case o = (5.

Let now a < B and A € (a,8). We must show that T'(a) — AI =
T(a — A) is not Fredholm. Contrary to what we want, assume that
T(a — ) is Fredholm.

We have a+ 6 < A < 8 — 9§ for some ¢ > 0. By our hypothesis, there
are distinct 7,7 € T such that a(m1) < a +0/3 and a(m2) > 5 — /3,
and therefore we can find U; € U,, and Uy € U,, such that

a—A<a+20/3-A<—-§/3 ae. onlU,
a—A>p—-25/3—X>4/3 a.e. onUs.

For ¢ € R\{0}, define (a — A\). € L as follows:

(a—Ne(z) :=a(z) = A+ ice for argm < argz < argTe,
(a—Ne(z) :i=a(z) = A —ic for argTo < argz < argm + 2m.

The function (@ — A) is clearly locally sectorial, and so Theorem 7 (or
Theorem 3 with B = C(D)) entails that

IndT((a — A)e) —IndT((a — A)_c)| = 2.
However, if € is small, we must have

IndT((a—A)e) =IndT((a — A)—c) =IndT(a — A).
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This contradiction completes the proof of the theorem. ]
The following result is an immediate consequence of Theorem 8.

Corollary (“Two Peninsulas Theorem”). Let G be a measurable
subset of D and suppose there are Uy, Uy € U such that Xg|Uy = 0 and
Xg|U1s = 1. Then

SPess T(XG) = Sp T(XG) = [O, 1]
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