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UNITARY UNITS IN GROUP RINGS
OF GROUPS OF ORDER 16

M.M. PARMENTER

Let U(ZG) be the group of units of an integral group ring ZG and
U1(ZG) the subgroup of units of augmentation 1. Ritter and Sehgal
[8] have shown that the bicyclic and Bass cyclic units generate a
subgroup of finite index in U(ZG) for many nilpotent groups G. The
restrictions are on the 2-Sylow subgroups of G. They also showed
that the first difficulties arise with nonabelian groups of order 16 and
that the result is false for P = (a,b | a* = 1 = b* ba = a®b) and
Q16 = {a,b | a® = 1,a* = b%,ba = a"b), but true [9] for the dihedral
group Dig = (a,b | a® = 1 = b2, ba = a"b). It was later shown [5, 6]
that Dj¢ is the only indecomposable group of order 16 for which this
result holds.

The notion of unitary units in group rings was first studied system-
atically by Bovdi [1] and Bovdi and Sehgal [2] characterized those
groups G with the property that all bicyclic units in ZG are uni-
tary. It turns out that there are five non-Hamiltonian groups of or-
der 16 which satisfy this property—namely Dig, P,Q16, D = (a,b,c |
a? = b = c* = 1,ac = ca,bc = cb,ba = c*ab) and Dg x Cy where
Dg = (a,b| a* =1 = b?,ba = a®b) and Cy = {1,c} is the cyclic group
of order 2.

In this note we show that if G is one of the five groups just listed,
the Bass cyclic and unitary units will together generate a subgroup of
finite index in U(ZG@). In fact, we prove that when G is one of P, D or
Dg x Cy, there is a torsion-free normal complement for G in U (ZG)
which consists entirely of unitary units satisfying v = uf. It follows
that, in each of these cases, a finite set of unitary units plays the same
role that the bicyclic units play in ZDg [3, 7] and ZSs5 [4].

1. Preliminaries. Throughout, we will follow the notation of [11].

We will need the following easily proved observation.
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Lemma 1. Let H be a finite normal subgroup of G. If u is a unit
in Z(G/H) and u can be written in the form 1 + |H|B, B € ZG, then
u can be lifted to the unit 1 + HB in ZG, where H denotes the sum of
all elements of H.

It may be interesting to note that a weaker version of Lemma 1 applies
to all units in Z(G/H) whenever G is finite.

Lemma 2. Let H be a normal subgroup of a finite group G. If u is
a unit in Z(G/H), then there exists a natural number n such that u™
can be lifted back to a unit in ZG.

Proof. Let e denote the idempotent H/|H| in the group algebra QG.
Note that

ZG CZGedZG(1 —e) CQGed QG(1 —e) = QG.

Also note that ZGe = Z(G/H). Letting a be any preimage of u in
Z@G, this isomorphism identifies u with ae. Now ae® 1 — e is a unit in
ZGe®ZG(1—e). But it follows from [11] that U(ZG) is of finite index
in U(ZGe ® ZG(1 — ¢)), so a™e @ (1 — e) is in ZG for some natural
number n. The result follows. ]

Lemma 2 has the following corollary. The “central” case was also
proved in [10], but using a different argument. The case where
“central” is not assumed can also be obtained directly from Higman’s
theorem.

Corollary 3. Let H be a normal subgroup of a finite group G.
If Z(G/H) contains a nontrivial (central) unit, then ZG contains a
nontrivial (central) unit.

Proof. Recall [11] that if Z(G/H) contains a nontrivial (central) unit,
then it contains a nontrivial (central) unit of infinite order. The result
then follows immediately from Lemma 2. O

Next we recall some basic definitions and results about bicyclic and
unitary units.
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For an element a € G of finite order n, writea =1+a +---+a™ L.
If a,b € G, o(a) < oo, then ugp = 1+ (1 — a)ba is a unit with inverse
1 — (1 —a)ba. The elements u,; are called the bicyclic units of ZG.

If f: G — U(Z) = {£1} is a homomorphism, for each z = ) a9
in ZG we put ¥ = > a,f(9)g~!. A unit u in ZG is called f-unitary
if u! = uf or w! = —uf. Note that the group of f-unitary units
always contains £G and is equal to =G when f is trivial.

The following theorem of Bovdi and Sehgal [2] gives necessary and
sufficient conditions for a group G to have the property that all of the
bicyclic units in ZG are f-unitary for some f. Since all of our groups
will be finite, we specialize their theorem to that case.

Theorem 4. Let A be the kernel of a nontrivial orientation homo-
morphism f : G — {£1}, where G is finite. The bicyclic units of ZG
are all f-unitary if and only if either G s Hamiltonian or G is a non-
Hamiltonian group which contains an element b # 1 such that one of
the following conditions is fulfilled:

1) A is an abelian group, the order of b divides 4 and bab~' = a~*!
group, f

for all a € A.

(2) A is a Hamiltonian 2-group, b*> = 1, G is the semidirect product
of A and (b), and every subgroup of A is normal in G.

(3) A is a Hamiltonian 2-group, b is of order 4 and G is the direct
product of a Hamiltonian 2-subgroup of A and (b).

Corollary 5. If G is one of Ds, Dyg, P,Q16, D or Dg x C5, then
there exists an orientation homomorphism f : G — {£1} such that
every bicyclic unit in ZG is f-unitary.

Proof. For Dg, D1 and Q1¢, use A = (a) in part (1) of Theorem 4.
For Dg x Ca, use A = (a,c) in part (1). For P, use A = (a,b?) in part
(1). For D, use A = (ab, ac) in part (2). O

Finally, if a € G is of order n, 7 is relatively prime to n and m = ¢(n),
then
1—i™

u=(1+a+--+a Hm"+ ——a
n



676 M.M. PARMENTER

is a Bass cyclic unit of ZG. Note that if we choose a such that
ia+nf =1 and 0 < a < n, then the inverse of u as defined above is
given by

1—a™
a.

u—l _ (1 +ai NI +a(a—1)i)m + -

We will need the fact that, for an element a of order 8, a Bass cyclic
unit is (1 +a+a?)* —10a = 1 + (=9 — 6a + 6a®)(1 — a*).

2. Main results. Our first observation follows immediately from
[7].

Theorem 6. Let f : P — {£1} be the orientation homomorphism
with kernel (a,b?). Then in Uy(ZP), P has a torsion-free mormal
complement consisting entirely of f-unitary units satisfying u' = uf.

Proof. In [7], it was shown that the following nine elements, obtained
by applying Lemma 1 to a set of units in ZDg, generate a torsion-free
normal complement for P in U;(ZP).

v =1+ (1 —a*)(1+b*)(a+b)

vy =14 (1 —a?)(1+b%)(—a+ ab)

v3 =1+ (1—a?)(1+b%)(13a + 5b — 12ab)

vg =1+ (1—a?)(1+b%)(17a + 15b — 8ab)

vs =1+ (1 —a®)(1+b%)(—125a — 44b + 117ab)
v =1+ (1 —a?)(1+b%)(149a + 51b — 140ab)
vy =14 (1—a?)(1+b%)(

vg =1+ (1—a?)(1+b%)(

vg = 1+ (1 —a?)(1+b%)(

-2+ a — 2ab)
8 — 19a — 14b + 15ab)
2~ 7a — 4b+ 6ab).

2

Since each of these elements satisfies u~! = u/, the result follows. a
Next we turn our attention to Q1. The following was proved in [5].

Proposition 7. In Ui1(ZQ16), Q16 has a torsion-free normal com-
plement which is the direct product of an infinite cyclic group and a
free group of rank 9.
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The free group of rank 9 referred to in the above is obtained in the
same way as with ZP, namely by applying Lemma 1 to a set of units in
ZDs. Since all such units in ZDg are unitary, it again follows that we
have a set of f-unitary units in ZQ1¢ (with respect to the orientation
homomorphism with kernel (a)).

It can be seen by following the isomorphism used in the proof of
Proposition 7 in [5] that the infinite cyclic group referred to is generated
by the central unit u = a*(1 + (1 + @ — a®)(1 — b?)). Note that
u is not unitary, but u? = b*(1 + (=9 — 6a + 6a®)(1 — »?)) and
1+ (=9 — 6a + 6a®)(1 — b?) is a Bass cyclic unit.

We have proved

Theorem 8. Let f: Q16 — {*1} be the orientation homomorphism
with kernel (a). Then the Bass cyclic and f-unitary units generate a
subgroup of finite index in U(ZQ1¢).

Next we turn our attention to ZD.

Let I'(2) denote the principal congruence subgroup modulo 2 of the
Picard group. That is, I'(2) is obtained by factoring out

o) (0 5))

from the group of determinant 1 matrices of the form

14 2a 2b
2c 1+ 2d

where a, b, ¢, d are Gaussian integers. The following characterization of
U(ZD) appeared in [6].

Proposition 9. In Uy(ZD), D has a torsion-free normal comple-

mentV ={u=1+(1-c?)a|a e Az(D),u a unit}. V is isomorphic
to the subgroup of T'(2) consisting of those matrices

1+ 2a 2b
2¢ 1+ 2d
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for which b+ c is divisible by 2. One such tsomorphism maps
1+ (1—c*)(ao + aic+ (Bo + Bic)a + (Yo + y1e)b + (Jp + d1¢)abd)

to the matriz

<1 +2(cp — 81) +2(ar + 8o)i 2(70 — B1) + 2(m1 + Bo)i )
2(’}/0+ﬂ1)+2(’yl —,Bo)i 1+2(O¢0+61) +2(O[1 —(50)i ’

Let u be a unit in V' as described in the statement of Proposition 9.
The matrix representation of v ! is

(1 +2(ap+61) +2(a1 —do)i  2(—y0 + B1) +2(—71 — Bo)i )
2(=v0 = B1) +2(=71 + Bo)i 1+ 2(a0 — 1) +2(a1 +o)i )

With respect to the orientation map f : D — {£1} with kernel {(ab, ac)

uf = 14+(1-2)(ag—ar1c®— Boa+Bic®a—vob+v13b+5pc2ab— b1 cab)
= 1+(1—c*)(ap+aic—Boa—Bica—yob—~y1cb—Spab— 5y cab).

The matrix representation of u/ is

(1 +2(ap + 1) +2(c1 — d0)i 2(—v0 + B1) +2(—71 — Bo)i >
2(=v0 — B1) +2(—y1 + Bo)i 1+ 2(ag — 1) +2(c1 +60)i ) °

Hence, uf = ! for all such units u, and we have proved

Theorem 10. Let f: D — {£1} be the orientation homomorphism
with kernel (ab,ac). Then in Ui(ZD), D has a torsion-free normal

complement consisting entirely of f-unitary units satisfying u ' = uf.

Note that the above argument uses Proposition 9 instead of simply
examining a list of generators, as was done in the proof of Theorem
6. The problem is that although such a list does appear in [3], it
unfortunately contains a few errors; for example, the first generator
listed is not unitary.

Next we will prove
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Theorem 11. Let f : Dg x Cy — {£1} be the orientation homo-
morphism with kernel (a,c). Then in Uy(Z(Dg x C2)), Dg x Cy has a
torsion-free normal complement consisting entirely of f-unitary units
satisfying u~' = uf.

Proof. In [5], it was shown that a torsion-free normal complement for
Dg x Cy in Uy (Z(Dg x C9)) is generated by the bicyclic units of ZDg,
all of which satisfy u~! = uf, and

K={u=1+(1-a*)(1-c)a|a¢c Z(Dsg x C3),u a unit}.
It was also shown that

~ [ 1+4+4c 8d B
K_{A—< de 1+4f>|c,d,e,f€Z,detA—l}

via the isomorphism which maps u = 1 + (1 — a?)(1 — ¢)(ao + a1a +
asb + azab) to the matrix

1+4(ap — a1 + a2 — ag) 8(—a1 + a2)
4(061 +063) 1-’-4(0&0 +a1 — (g +a3) ’

For any such u, the matrix representing u™?! is

].+4(060 + o — o +Ol3) 8(061 —062)
4(—0[1 — 043) 1+ 4(0[0 —ay + ag — a3) ’

We also have

uf =1+ (1—a?)(1 - ¢)(ap + a1a® — asb — azab)

=14+ (1—-a*)(1—c)(ap — ara — azb — azab).

The matrix representing u/ is therefore

].+4(060 + o — o +Ol3) 8(061 —062)
4(—061 — 063) 1 + 4(060 — 7 + Qg — 013) ’

We conclude that v~ = uf, and the result follows. a
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It is interesting to note that we were unable to decide in [5] whether
or not the bicyclic units of Z(Dg x Cs) generate a subgroup of finite
index.

Finally, we recall again that Ritter and Sehgal [9] showed that the
Bass cyclic and unitary (in fact, the Bass cyclic and bicyclic) units of
Z D generate a subgroup of finite index. Note that the central unit
1+(1+a—a®)(1—a), seen earlier in ZQ1¢, shows that the Bass cyclic
and unitary units do not generate a torsion-free normal complement of
D16 in Ul(ZDl(;).

REFERENCES

1. A.A. Bovdi, Unitary subgroup of the multiplicative group of integral group
rings of a cyclic group, Math. Zametki 41 (1987), 467-474.

2. A.A. Bovdi and S.K. Sehgal, Unitary subgroup of integral group rings, Public.
Math., to appear.

3. E. Jespers and G. Leal, Describing units of integral group rings of some 2-
groups, Comm. Algebra 19 (1991), 1809-1827.

4. E. Jespers and M.M. Parmenter, Bicyclic units in ZSs, Bull. Belg. Math. Soc.
44 (1992), 141-146.

5. , Units of group rings of groups of order 16, Glasgow Math. J. 35 (1993),
367-379.

6. E. Jespers, G. Leal and M.M. Parmenter, Bicyclic and Bass cyclic units in
group rings, Canad. Math. Bull. 36 (1993), 178-182.

7. M.M. Parmenter, Torsion-free normal complements in unit groups of integral
group rings, C.R. Math. Rep. Acad. Sci. Canada 12 (1990), 113-118.

8. J. Ritter and S.K. Sehgal, Construction of units in integral group rings of
finite groups, Trans. Amer. Math. Soc. 324 (1991), 603-621.

9. , Generators of subgroups of U(ZG), Contemp. Math. 93 (1989),
331-347.
10. , Integral group rings with trivial central units, Proc. Amer. Math.

Soc. 108 (1990), 327-329.
11. S.K. Sehgal, Topics in group rings, Marcel Dekker, New York, 1978.

DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF
NEWFOUNDLAND, ST. JOHN’S, CANADA, A1C 5S7



