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CONFORMAL IRREGULARITY FOR
DENJOY DIFFEOMORPHISMS OF THE 2-TORUS

ALEC NORTON AND JOHN A. VELLING

1. Introduction. If o € (0,1) is irrational, then the map
R, (x) = z+a (mod 1) is an irrational rotation of the circle T = R/Z.
Every R,-orbit is dense in 7! (so R, is minimal). In fact R, has a
unique invariant probability measure (so it is uniquely ergodic). This
map serves as a dynamical model for an arbitrary homeomorphism of
the circle; it has long been known that for any homeomorphism f of
T! without periodic points, there is a continuous map h : T — T?
such that hf = R,h for some irrational o. (A good reference is [4].) In
this case f is said to be semi-conjugate to R,, and « is called the
rotation number of f. When h is a homeomorphism, we say that
f is (topologically) conjugate to R,. This is the standard notion of
equivalence for dynamical systems, due to Poincaré.

The following theorem serves as our model:

Theorem (Denjoy, 1932). If f is a C' diffeomorphism of T* without
periodic points and D f has bounded variation, then f is conjugate to
an irrational rotation.

In view of the preceding remarks, we can state this another way:

Any sufficiently regular circle diffeomorphism that is semiconjugate
to a minimal translation R must in fact be conjugate to R.

In this paper we wish to address the question of whether the phe-
nomenon of Denjoy’s theorem occurs in higher dimensions; we focus on
the case of the 2-torus. In dimension one, “ sufficiently regular” means
that D f has bounded variation. In two dimensions much less is known.
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A two-dimensional analog of a rotation of the circle is a translation
R(z,y) = (z + a,y + B) (mod 1) defined on the torus 72 = R?/Z2.
When 1, o and 3 are linearly independent over the rationals, then R
is minimal. Furthermore any minimal translation of T2 is of this form.

Of course we must first identify what we mean by “phenomenon
of Denjoy’s theorem.” This is a problem because many equivalent
properties on the circle are inequivalent in higher dimensions, so that a
priori there are many inequivalent candidates for a generalized Denjoy
theorem, some of which fail easily.

For example, it is easy to construct an analytic diffeomorphism of 72
with no periodic points but which is not conjugate to a translation.

We will be guided by the following facts in one dimension. Any
circle homeomorphism with no periodic points and not conjugate to a
translation has the following properties:

(A) There is a monotone semiconjugacy of f to a minimal translation,
and

(B) f permutes a dense collection of pairwise disjoint domains.

Furthermore, such homeomorphisms exist as C!' diffeomorphisms
(but not C? by Denjoy’s theorem); they are called “Denjoy circle
diffeomorphisms.”

Recall that a minimal set for f is a closed nonempty f-invariant set
containing no closed nonempty proper invariant subsets. A connected
open set U is a wandering domain if no forward or backward image
of U meets U. Then a Denjoy circle diffeomorphism has a unique
minimal set equal to the Cantor set complementary to the union of the
wandering intervals mentioned in (B) above.

There are at least three topologically distinct models for diffeomor-
phisms of T2 satisfying (A) and (B).

Model 1. The direct product of two Denjoy circle diffeomorphisms
with rationally independent rotation numbers.

This map has a Cantor minimal set which is the product of the
minimal sets of the two factors. It is not known whether there exists a
C? diffeomorphisms topologically conjugate to this model.



DENJOY DIFFEOMORPHISMS OF THE 2-TORUS 657

Model 2. The direct product of a Denjoy circle diffeomorphism and
a mintmal circle translation, with independent rotation numbers.

This map has a unique minimal set equal to the product of a Cantor
set and a circle, and therefore must be topologically distinct from
Model 1. It has a dense collection of wandering annuli. Is there a
C? diffeomorphism conjugate to Model 27?

Model 3 (denoted “Denjoy type”). A diffeomorphism obtained
topologically from a minimal translation of T? by “blowing up one or
more orbits into disks,” as in the case of Denjoy circle homeomor-
phisms.

This construction is more difficult to carry out, even topologically [2].
Recently P. McSwiggen [8] has constructed, for any « < 1, an example
of a 0%t diffeomorphism of this type. This example has a minimal
set which is a “Sierpinski curve,” and is constructed so that a single
orbit of wandering disks is dense in the torus.

This is the model we will concentrate on in the remainder of this
paper. The following question arises naturally.

Question. Are there limitations on the regularity of diffeomorphisms
with properties (A) and (B) and topologically conjugate to model 3?7

For example, it is unknown whether there is a C® diffeomorphism
satisfying these properties.

This paper contains answers to this question for an interpretation of
“regularity” in terms of conformality rather than smoothness. (Con-
formality is automatic in one dimension.) Precise statements appear in
the next section (Theorems 1 and 2), but we briefly describe the main
results here.

Say that f has “conformal boundary values” on a disk A if the values
of f and Df on OA agree with those of some conformal map defined on
A. Theorem 1 says that a C! diffeomorphism f of 7 of Denjoy type
cannot be “conformally regular” in the following sense: f cannot have
conformal boundary values on each of its wandering disks.



658 A. NORTON AND J.A. VELLING

This is a kind of limitation on the geometric regularity of f on its
minimal set: if f is of Denjoy type, it must be “conformally irregular.”
For example, if f is C2, then the derivative Df cannot be the identity
map on the boundary of each wandering disk (equivalently, on the whole
minimal set); by lemma 2 below, f and Df would then have the same
boundary values as a translation on each disk, and this contradicts
Theorem 1. (Therefore Theorem 1 is a strengthening of Theorem A in
[10].)

Theorem 2 improves “conformal” to “quasiconformal” (by means of
an entirely different method of proof).

2. Statements of results.

Definitions.  Diff§(7?) is the space of C* diffeomorphisms of
T? = R?/Z? that are homotopic to the identity. Equivalently, this
is the space of orientation preserving C* diffeomorphisms of R? which
commute with unit translations in the coordinate directions. (By C°
diffeomorphism we mean a homeomorphism.) Recall that a map h of
T? is monotone if for each ¥, h=1(x) is connected. A point z is a trivial
value for h if the fiber h~1(z) is a single point.

We say that f € Diffg(12) is of Denjoy type (relative to the minimal
translation R) if f is semi-conjugate to R by a map h (i.e., there exists
a continuous map h such that hf = Rh) such that

(i) h is monotone, and
(ii) the set V of nontrivial values of h is nonempty and countable.

The main hypothesis here is (ii); it includes the case of Model 3 and
McSwiggen’s example, but excludes Models 1 and 2.

It is easy to see that the relation hf = Rh alone implies that f has
no periodic points, since R has none.

Since V' is nonempty, h is not a homeomorphism. This implies (see
Lemma 1) that f cannot be conjugate to R.

Let ' be the closure of T2 — h=!(V). The following lemma collects
some basic facts about maps of Denjoy type, and is proved in Section
3. We note that for such a map we may still have I' = T2.
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Lemma 1. If f is of Denjoy type then f is uniquely ergodic and
I' is the unique minimal set for f. In particular T' depends only
on f and not on h. Furthermore I' is connected, and is equal to
T? — U{interior (h=Y(z)) : # € V}. If T # T2, then it is nowhere
dense, and each component of its complement is an open topological
disk. In any case f is not conjugate to R.

A natural subclass of Denjoy type is composed of those homeomor-
phisms for which the nontrivial h-fibers are topological or even smooth
2-disks, as in McSwiggen’s example. Naively, one might even imagine
an example for which the nontrivial h-fibers are circular disks, with the
1-jet of f restricted to each disk boundary simply that of a uniform
homothety taking one circle onto the next. Theorem 1 below implies
that this is impossible if f is a C* diffeomorphism.

Definitions. For now we will consider 7% as C/J, where J denotes
the complex integers. For a homeomorphism f of Denjoy type with
semiconjugacy h having nontrivial values V, let V = {h='(p): p € V},
the set of nontrivial fibers of h. V is an invariant collection of closed
subsets of T2. We say f has conformal boundary values if, for each
E e V, there is a conformal map gg defined on E such that

flor = gelor and Dflog = Dgrlse.

We say that Df has conformal boundary values if there exist maps
gE as above for which one merely has Df|sg = Dgg|sk-

Theorem 1. If f € Diff5(T?) is of Denjoy type then f does not
have conformal boundary values.

The proof appears in Section 4.

Definitions. A connected set C' is rectifiably connected if, for every
z,y € C there is a connected subset S(z,y) of C containing = and
y such that S is a countable union of sets of finite 1-dimensional
Hausdorff measure. Rectifiable curves and connected open sets are
simple examples of rectifiably connected sets.
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Lemma 2. If f,g € C'(R? R?) and, for some connected set S,
Df|s = Dg|s, then (f — g)|s is constant if either

i) f and g are C?, or
ii) S is rectifiably connected.

Proof. Apply corollary 1 of [9] to each coordinate of f — g. O

Lemma 2 allows us to strengthen the conclusion of theorem 1 at the
cost of introducing mild hypotheses.

Corollary 1. If f € Diff§(T?) is of Denjoy type, and either f is C?
or OF 1is rectifiably connected for each E € V, then Df does not have
conformal boundary values.

Proof. Otherwise, adjusting each map gg by an additive constant
would, by Lemma 2, show that f itself had conformal boundary values,
contrary to Theorem 2. ]

Remark. One can generalize the notion of “rectifiably connected” by
making use of s-dimensional Hausdorff measures, s > 1. This weaker
notion of connectivity can be combined with a Holder differentiability
condition to give the conclusion of Lemma 2, and hence Corollary 1,
when neither (i) nor (ii) obtains. See [9].

We can improve the boundary hypotheses even further by realizing
that it is actually only quasiconformality we need, not conformality.

One difficulty with Theorem 1 is that, to make sense of the condition
of conformal boundary values, we have to think of the smooth manifold
T2 as supplied with a particular conformal structure, which we did
by naively identifying 7% with C/J. However, the best result along
these lines should depend only on the smooth structure on T2, as
in the one-dimensional case. Since a smooth change of coordinates
does not alter the dynamics of a diffeomorphism, we would like a
statement with hypotheses that persist after conjugating f by a smooth
diffeomorphism. Theorem 1 does not have this property.
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However, any smooth structure naturally induces a unique quasicon-
formal structure, so we can speak of quasiconformality without impos-
ing further choices on the manifold.

The reader unfamiliar with quasiconformal mappings in the plane
should consult a text such as [7] for full definitions. We give a brief
reminder here.

If f: C — C is differentiable at a point z, we denote by K(z) the
dilatation of f at z. This is defined to be the ratio of the lengths of
the major to the minor axis of any ellipse obtained as the image of a
circle under the linear transformation Df(z). It is a fact that if f is
a homeomorphism and is absolutely continuous on lines (ACL—see
[7]), then f is differentiable almost everywhere. This justifies the
definition: if U,V are open sets in the plane, and 1 < K < oo, then
a homeomorphism f : U — V is called K -quasiconformal if f is ACL
and Kf(z) < K for almost every z € U.

Definitions. Let A and B be subsets of 72. A map g : A — B is said
to be K -quasiconformal (K-qc) if g extends to a K-qc homeomorphism
from a neighborhood of A to a neighborhood of B. Thus for open A
this is the standard definition. A map is quasiconformal (qc) if it is
K-qc for some K < co.

A family F of qc maps is unformly quasiconformal (unif. qc) if there
exists K < oo such that each member of F is K-qc.

We say a homeomorphism f of Denjoy type has uniformly quasicon-
formal boundary values if

(i) foreach E € V = {h~'(p) : p € V}, there is a qc map gy defined
on E such that f|sg = grl|og, and

(ii) the family of all possible finite compositions of the gg’s is unif.
qc.

Uniform quasiconformality of the iterates of a mapping is a way of
saying that the dynamics has “bounded (linear) distortion.” It is worth
noting the following fact, showing that diffeomorphisms of Denjoy type
must exhibit abundant unbounded distortion.
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Proposition 1. Let A be a subset of T? and suppose that f €
Diff§(T2) is such that

s={J M4
is dense in T2. If for some K < oo the iterates of f are all K-qc on
A, then [ is (qc) conjugate to a translation.

Proof. If the iterates of f are K-qc on A, then they are uniformly
K2-qc on the invariant set S, as follows. The dilatation satisfies
the following elementary properties: Kjfqo(z) < Kf(g(2))Kq4(2) and

K(z) = Ky—1(£(2))-
Now if z € S, then = f™(y) for some m € Z,y € A. Hence,

Kfn (3}') = Kfm+nffm (.’L') S Kfern (y)Kffm(l')
= Kpmin(y)Km(y) < K2

Now by continuity of D f, the iterates of f are unif. K?-qc on all of T2.
By a theorem of Sullivan [11, p. 750], there is an f-invariant conformal
structure on 7%, so (via the measurable Riemann mapping theorem) f
is qc conjugate to a conformal homeomorphism of T2, which must be
a translation. |

As a consequence, we have, for example,

Corollary 2. If the iterates of a diffeomorphism f of T? have
bounded linear distortion (i.e., bounded dilatation) at a single point
with dense orbit, then f is (qc) conjugate to a minimal translation.

Another consequence is that the iterates of a diffeomorphism f of
Denjoy type cannot be unif. gc on T2 —T" when T is not all of T2. The
import of the next theorem is that under a further hypothesis f cannot
even have uniformly quasiconformal boundary values.

Note that f|r is a homeomorphism of I'. We will say that f has
uniformly bounded dilatation on T if f™|r has bounded dilatation a.e.,
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with the bound independent of m. This property is satisfied, for
example, if I' has measure zero.

Theorem 2. If f is a qc homeomorphism of T? of Denjoy type and
f has uniformly bounded dilatation on I', then f does not have unif. qc
boundary values.

We prove this result in Section 5. Since any diffeomorphism of
T? is qc, and conformal boundary values implies uniformly bounded
dilatation on I', this theorem implies Theorem 1. (However the proof
of Theorem 1 in Section 3 makes no use of quasiconformal analysis.)

Note. Theorem 2 remains true if T2 is merely a quasiconformal torus,
without a smooth structure. The proof takes place entirely in the qc
category.

3. Proof of Lemma 1.

Proof. Let S = T? — U{interior (h=*(x)) : = € V}; we show that
I' = S. Certainly I' C S. Conversely, it suffices to show that if
r € Oh~(y) for some y € V, then = is a limit of a sequence in
7% — h=Y(V). 1If not, there is a small compact disk D centered at
z containing no elements of 7% — h=(V). This means that D is the
countable disjoint union of the compact sets D N h~*(y), y € V. This
contradicts Sierpinski’s theorem [6]: no compact, connected Hausdorff
space is the countable union of disjoint closed subsets.

Next, let ¢ and v be two invariant probability measures for f. Since
p is f-invariant, u(h~!(point)) = 0. Since V is countable, this means
pu(h~1(V)) = 0. Hence h is p-almost everywhere injective. This means
that

(h™Dehap = p,

and similarly for v. But h.pu and h.v are R-invariant probability
measures, and hence are equal by unique ergodicity of R. Therefore
@ = v and so f is uniquely ergodic.

Since any minimal set supports an invariant probability measure,
we immediately deduce that f has a unique minimal set M. By the
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relation hf = Rh, every orbit in the invariant set T2 —h~1(V) is dense,
so T? — h=1(V) is contained in M. Since M is closed, I is contained
in M, and so by minimality I' = M.

Suppose I' # T2. Then OI' # @. Since OI is a closed, invariant subset
of I', it must equal I by minimality. Hence I' has no interior, and so is
nowhere dense.

To further describe the topology of I' and its complement, it is
convenient to consider the collection of subsets M = {h™!(z) : z € T?}
as a “decomposition space.” The decomposition space M is given a
topology by declaring that a subset U of M is open if and only if UU is
open in T2 (see [12]). It is a general fact (Theorem 3.4, p. 126 of [12])
that whenever A and B are compact metric spaces and h: A — Bis a
continuous map, then the decomposition space of A is homeomorphic
to h(A) by the homeomorphism h sending h~!(z) to z. In our case this
means that M is homeomorphic to T2.

Claim. No element ofV separates T2.

Suppose for contradiction that for some z € T%, h~!(z) separates T
into disjoint open sets X,Y. Pick z € X, y € Y. Since h is monotone,
h=1(h(x)) and h~!(h(y)) lie in X and Y, respectively, and so are
separated by h~!(z). This means that removal of h=1(z) disconnects
M. This is our contradiction, since T2 cannot be disconnected by
removal of any single point, and the claim is proved.

As a consequence, if A is a component of the interior of an element
of V, then A is simply connected and therefore is an open topological
disk. To establish this, it only remains to see that A is homotopically
trivial in 72. If not, then neither is the disjoint image f(A). In this
case removal of the corresponding elements of V will disconnect M , as
above. This is impossible, since removal of two points from 72 cannot
disconnect 12

As a result, we have established that I (if # T?) is the complement
of countably many disjoint open disks, and therefore is connected.

Finally: f is not conjugate to R. If there were a homeomorphism g
such that gf = Rg, then hg~'Rg = Rh, or jR = Rj, where j = hg!.
Therefore jR™ = R"j for all n. Since R is minimal and j continuous,
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this forces j to be a translation, and therefore a homeomorphism. This
contradicts the fact that A is not a homeomorphism. ]

4. Proof of Theorem 1. The following lemma is a simple
consequence of a result of A. Hinkannen (Theorem A of [5]). First
some terminology. We say that u : [0,00) — [0,00) is a majorant if u
is continuous, nondecreasing with p(0) = 0, and

u(2t) < 2u(t) for all ¢ € [0, 00).

If f is a function defined on A, we say that p majorizes f on Aif u
is a majorant and

[f(@) = fW)I < pz—yl)  forallz,ye A

Lemma 4 (Hinkannen). Let A be a simply connnected domain in
the plane and suppose that f is analytic in A and continuous on A~ .
If u majorizes f on OA, then T4p magjorizes f on A~.

Proof of Theorem 1. We work with a lift of f to R?, denoted by the
same letter. (As in the beginning of Section 2, R? is identified with the
complex plane C in the standard way.)

There are two cases. If no element of V has interior, then U{OE : E €
V} is dense in T2, so that on a dense set D f is pointwise conformal. By
continuity D f is pointwise conformal everywhere. But any C' mapping
of the plane with everywhere a conformal derivative is necessarily
holomorphic (via the Cauchy-Riemann equations, e.g., [1]). So f is
a holomorphic diffeomorphism of T2 and hence must be a translation.
This is impossible. Therefore, we may assume that at least one (and
therefore infinitely many) E € V has interior.

Let D = {A;,A,,...} be the collection of all the components of
interiors of elements of V, ordered in some arbitrary way. (By Lemma
1, each A; is an open topological disk, and UD is dense in T2.)

For each A € D, there is a unique E € V containing A (and hence
OF contains 0A.) Let ga = gg.

For each A € D we know that

(4.1) floa = galoa and Dfloa = Dgalsa.-
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Now inductively define Fy = f, and for i =1,2,3,...

F = {Fi—l off (Al)i
ga, on (

s
=

It follows from (4.1) that each F; agrees with f on I', and that each F;
is continuous. Since each ga has degree one on 0A, ga|a- is injective.
Hence each Fj; is a homeomorphism.

By the maximum modulus principle, each partial derivative of ga has
its maximum modulus on A, where it agrees with the corresponding
partial derivative of f.

Hence the supremum norm ||Dga|a-|| is uniformly controlled over
all A by |Df|| on T?. This means that {F;} forms an equicontinuous
family. Since this family is pointwise convergent, it must converge
uniformly to a continuous mapping G.

Now G agrees with f on I' and takes each A; to f(A;). Furthermore,
G is injective on each disk A;. Since f is injective, this means that G
is globally injective, hence a homeomorphism.

We wish to show that G is a C! diffeomorphism. We accomplish this
by showing that {F;} is Cauchy relative to the C* norm || - || defined
by || g || = max(||g||, ||Dg||). (Note that (4.1) implies that each F; is
C'.) Since the space of C' mappings of T2 equipped with the norm
Il - || is complete, this will show that G is C*. Since DG has rank 2 in
each A; because ga, is conformal, and on I" because it agrees with D f
there, G must actually be a diffeomorphism.

To complete the proof of Theorem 1, we note that DG is pointwise
conformal on the dense set UD and argue as before that G must
therefore be a translation, which is impossible because of the wandering
disks A;. This is our contradiction.

It remains to show that {F;} is || - ||-Cauchy.

Since the F; converge uniformly in the C° sense, we may concentrate
on the norm of the derivatives. Write g; for ga,.



DENJOY DIFFEOMORPHISMS OF THE 2-TORUS 667

Now for i < j,
(4.2)
max || DFi(z) — DF;(z)[| < max max |Dgr(z) — Df(x)]|

< max maX(D xz)—D T
< s, max (ID0k(@) — Daw ()]

+11DJ (y(=)) ~ DI @)

where y(z) is a point of 0A; minimizing the distance dist(z,y(z)).
(Recall that Dgr, = Df on 0Ag.)

Now D f, being continuous, has some modulus of continuity u(t). (For
example p(t) = max{||Df(z)-Df(y)| : z,y € T* and |z —y| < t}.) By
suitably increasing p if necessary, we can assume that p is a majorant
(see Appendix), and therefore that it majorizes Df on T2. Hence, for
each k, p majorizes Dgg on 0Ay.

Since Dgg(xz)v = g (z)v (the lefthand side we interpret as matrix
multiplication with a tangent vector v and the righthand side is multi-
plication of the two complex numbers g;.(z) and v), this means that

gk (@) — gx ()| < p(lz —y])  forall z,y € DA,.

Since g, is analytic on A~ we may apply Lemma 4 to conclude that
|9k (%) = g, (y)| < T4u(|z — y|) for all z,y € A7, ie,,

1Dgr(z) = Dg(y)l| < Tp(lz —yl)  forallz,y € A™.
Hence, (4.2) is less than or equal to

ax wer{lgz() ~ (75p (inradius (Ak))>

where inradius (Ag) is by definition the radius of the largest ball
contained in Ay. (Note that |z—y(z)| is simply the radius of the largest
ball with center = contained in Ag.) But inradius (Ag) tends to zero
as k — oo since the collection {A} has finite total area. Therefore,
max{||DF;(z) — DF;(z)|| : z € T?} tends to zero as i, j tend to infinity.
O
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5. Proof of Theorem 2. To prove Theorem 2, we assume that f
has uniformly bounded dilatation on I', and for contradiction that f
does have unif. qc boundary values.

Suppose first that some element of V has interior. As before, let
D = {A1,As,---} be the collection of the components of the interiors
of the elements of V, ordered arbitrarily. As in the proof of Theorem
1, we define a sequence of self maps of 12, {F, : T? — T% n > 0} by
letting Fy = f and proceeding inductively with

Fo— {Fi—l off (Al)i
"o lga, on(Ay)”

For each i, since ga, agrees with F;_; on 0A,;, F; is continuous.
Furthermore, ga, has degree one on 0A; and hence is injective. Con-
sequently, F; is a homeomorphism. Now we choose K so large that f
is K-qc, all iterates of f have dilatation bounded by K a.e. on I', and
all possible compositions of the g’s are K-qc.

We claim that each F; is K-qc. We will argue this below, but first
let us see that this allows us to prove the theorem.

To this end, we lift the F; to automorphisms F; : R? — R? which
send (0,0) to a point in the fundamental region [0, 1) %[0, 1). The F} are
then K-qc homeomorphisms of C which move the fundamental lattice
at most a bounded distance from itself, and hence by a well known
theorem (found in [7, Chapter II, Section 5]) the F; form a normal
family, and so do the F;. Any limit F' of the F; is therefore a K-qc
automorphism of 72. We pick one such limiting F.

By construction, the collection of forward iterates of F' is unif. K-qc
on UD. Since by assumption they are also unif. K-qc on I, it follows
that the forward iterates of F are unif. K-qc on T2.

By a theorem of Sullivan [11, p. 750], there exists an F-invariant
conformal structure on T2, so F is conjugate to a conformal home-
omorphism of T2, which must be a translation. This contradiction
completes the proof in case some element of V has interior. If not,
then by hypothesis f is unif. qc on I' = T2, so Sullivan’s theorem gives
a contradiction as before.

To establish the claim, we need the following lemma due to Bers [3,
p. 93].
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Bers’ Lemma. Let D C C be open, and let f be a topological
automorphism of C such that f|p is q¢ and f|(3\D =1id. Then f is qc
(and has no qc dilatation off of D).

An immediate corollary of this is

Lemma 5. If f:T? — T? is a K-qc automorphism of the torus,
A C T? is open, and g is a K-qc map defined on A~ such that
gloa = floa, then the map F : T? — T? defined by

AN
gan on A~

is a K-qc automorphism of T? (and on T?\ A, all the dilatation of F
comes from f).

Proof. Let A’ = g(A), and consider the map h = go f~! on
(A")~. Our hypotheses give that h is a gc automorphism of A’ which
agrees with the identity on OA’. Extending h to be the identity on
T2\ A’ yields, by Bers’ lemma, a qc automorphism (H) of T2 which
has no conformal dilatation off of A’. Our desired F' = H o f is thus
quasiconformal. Since F' agrees with g on A, and with f off A7, it
is K-qc except perhaps on OA. But there, by the Bers lemma, H is
conformal. Thus any dilatation by F on A comes from f, so that F
is K-qc everywhere. ]

Applying this theorem inductively to the F; shows that they are each
K-qc, completing the proof. O

APPENDIX

For completeness we include a proof of the following Lemma.

Definition. A nondecreasing continuous function v : [0,00) — R
with v(0) = 0 is a modulus of continuity for a continuous function f if

[f(@) = fW) <v(e—yl) foralzy.
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Lemma 6. If v(t) is a modulus of continuity for a function f with
compact support, then there is a majorant p such that p(t) > v(t) for all
t € [0, diam(support (f))]. A fortiori, p is also a modulus of continuity
for f.

Proof. Let d be the diameter of the support of f. Choose the smallest
k € Z so that 2 > d. Define u(s) = v(2F) for all s > 2*. Now
inductively define y on [27,27FY] j =k -1,k —2,k—3,... by

() = max(v(t), u(2t)/2).

The reader can check that this defines a continuous and nondecreasing
function on [0,00) with x(0) = 0. Then p is clearly a majorant and
p(t) > v(t) for all t < 2%, o
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